
Optimizing your Application with Shark 4 http://developer.apple.com/tools/sharkoptimize.html

31-10-2007 19:01 1 of 12

Advanced Search

Log In | Not a Member? Contact ADC 

ADC Home > Tools >

If your application could benefit from improved performance—and let's be honest, most can—you need to know

about Shark 4, the latest update to Apple's remarkable performance optimization tool. Shark enables you to

very quickly identify where your application's performance problems lie, down to the specific functions on which

you should concentrate your optimization efforts. You can then focus on the fixes that will yield the maximum

benefits. Developers using earlier versions of Shark have found and fixed problems that improved performance

dramatically, in a matter of hours.

Shark 4 has added many features that enhance the gathering and analysis of performance data. You will find a

much improved user interface that presents you with more powerful options. You will find data mining features

that can be of tremendous assistance to you in analyzing high-level performance problems. Low-level analysis
has also been improved with the ability to view source and assembly side-by-side. Java developers can now use

Shark to optimize their applications, and all developers can take advantage of the Network profiling capabilities.

Getting Started with Shark 

The prime directive in optimization is to measure first. Before you start optimizing code, use Shark to identify

the best candidates for optimization. Much of your code could be optimized, but you need to make sure that

your effort is time well spent. For example, you don't want to begin by putting a lot of effort into tweaking code

that runs on a background thread and improving the performance a fraction of a percent. Concentrate your
efforts on improvements that an end user will perceive in their normal use of the application.

The current version of the CHUD (Computer Hardware Understanding Developer) tools is available from the

ADC Member site— you can register as an ADC member for free. When you download the Shark application, be
sure you download version 4. If you have a previous version of Shark, you can find, download, and install the

latest version by running the CHUD Updater on your Macintosh and it will download the newest version of Shark

for you. You can do this from within Shark by selecting Help> Check for Update or by double-clicking on the

Updater located in the /Developer/Applications/Performance Tools/CHUD directory. Shark 4 runs on Mac OS X v.10.3 

Panther and beyond.

To start working with Shark 4, you also need an application to profile. In this article, we are going to look at

two sample applications that illustrate Shark's features and power.

Let's begin by running a time profile for the Celestia application. You should download the latest version of the

Celestia.DMG file, also at the ADC Member site. This version of Celestia includes changes added by the Shark

team at Apple that demonstrate the performance improvements they were able to make with the assistance of

Shark 4. Download the CelestiaDemo.dmg disk image and mount it. Go to the CelestiaDemo/macosx folder on your 

Macintosh and double-click the celestia.xcode project file to open it.

In Xcode, make sure that you are creating a deployment build by selecting the Build > Detailed Build Results

menu itemm and using the pull-down menu labeled Active Build Style. Do this to make sure that you are

profiling a build that takes advantage of the compiler optimizations that are often turned off in developer

builds.

Run the Celestia application, and you will see the application, similar to what is shown in Figure 1.

Search



Optimizing your Application with Shark 4 http://developer.apple.com/tools/sharkoptimize.html

31-10-2007 19:01 2 of 12

Figure 1: The Celestia Demo Application.

Note that at the bottom of this window, a number of things have been added for the demo that are not part of

the Celestia application—a checkbox, a pull-down menu and a button. You can play with the different
optimizations that were performed by the Apple engineers which, in the tradition of space travel adventures,

they have labeled Warp 1 through Warp 9. The button to begin the demo is labeled Go! These have been added

to make the application more useful for working with Shark 4.

Identifying the Hot Spots 

A good place to start investigating an application for potential optimizations is with a Time profile. This will help

you determine whether you are spending a lot of time in a particular hot spot in your code. There are often

more gains to be had by slightly improving the performance in a function that is frequently called than in
dramatically optimizing a function that is almost never called.

With Celestia running, start up Shark 4. By default, Shark is configured to take a Time Profile of Everything.

This is the option that most developers will use most of the time. After the snapshot is taken, you can filter the
view to show the results for a particular thread or process. It is often useful to view what percent of total

processor time is spent in the process you are profiling. For those with different needs, there are fourteen

available configurations. You can also specify your preferences within many of the configurations. For example,

if you change the drop down list from Everything to Process the Shark window expands horizontally to display a

pull-down list of all of the running processes. For the reasons given above, it is best to use the default values.

Ensure that Shark is configured to take a time profile of everything as shown in Figure 2.

In Celestia press the Go! button to restart the demo and then return to Shark and press its Start button. Shark

begins taking snapshots of the state of all running applications every millisecond. The snapshot includes the

thread and instruction address as well as the function call stack for the currently running process. When you
collect this information one thousand times each second, you can begin to see patterns in how the application is

working. For our purposes, after ten seconds or so press the Stop button to end the capture of information.



Optimizing your Application with Shark 4 http://developer.apple.com/tools/sharkoptimize.html

31-10-2007 19:01 3 of 12

Figure 2: Running Shark 4.

Shark then processes the samples for a few seconds, caching relevant symbols, source files and program text.

It then displays the results in a Profile window as shown in Figure 3. At the bottom of the window you will

notice that Celestia did not require all of the processor's attention. On a dual CPU system, the Process pop-up

list should report that Celestia required about half of the processor's time. Now, use the thread pop-up list to

select the thread on which Celestia ran. In these results, it is a single-threaded application.

Figure 3: Initial Profile View.

At the bottom of the Profile window, you have a choice of a Heavy view, a Tree view, or both. Select the Tree
view and look into that first tree. You can see that the bulk of the time is spent calling in to the draw() method 

in CelestialCore. For the most part, you will want to isolate where the greatest time is being spent in the code

you write, as there is little you can do about the code in AppKit, Core Foundation, and HIToolbox. As most of

the time is spent in CelestiaCore::draw(), this is a good starting place for further investigation.

Data Mining

One thing that quickly becomes clear as you start using Shark is that you are gathering a lot of data. Shark 4

includes Data Mining filtering facilities to allow you to hide some of the information that you are not currently

interested in—so you can focus on what really is important.

In this section you will see how to focus on the most relevant data. The information that you choose to hide is

not deleted in any way; you are only filtering what will be displayed. Look at the Library column in the

expanded tree that is shown in Figure 3. The only items that you have much control over are colored green. It

might be useful to hide the interior of some of the framework libraries such as AppKit, CoreFoundation, and
HIToolbox. Click on the line containing _handleWindowNeedsDisplay and then select the Data Mining menu. Your

choices should look like those shown in Figure 4.



Optimizing your Application with Shark 4 http://developer.apple.com/tools/sharkoptimize.html

31-10-2007 19:01 4 of 12

Figure 4: The Data Mining Menu.

Your choices include the ability to charge the selected symbol or its library to callers and to flatten the library.

(We will guide you through an example of using the Charge option in the Java section below.) The choice to

flatten a library results in the details of what happens inside of that library being obscured. This makes it easier

to locate problems with the code that you can address. In this example, when you flatten the AppKit library
each grouping that is currently colored in blue is collapsed into its top line. So in the first grouping you know

that you called into AppKit in the class NSApplicationMain and the next non-AppKit call was the HIToolbox

BlockUntilNextEventMatchingListInMode. Similarly, you entered the AppKit Libraries with _handleWindowNeedsDisplay

and the next non-AppKit call was in the Celestia library. The result is shown in Figure 5.

Figure 5: Flattening the AppKit Library.

For heavy duty data mining, you want to use the drawer containing the Profile Analysis and Data Mining options
to set some general settings. Select View > Show Advanced Settings or use the keyboard shortcut

Shift-Command-M. You see a drawer appear next to the window as shown in Figure 6.



Optimizing your Application with Shark 4 http://developer.apple.com/tools/sharkoptimize.html

31-10-2007 19:01 5 of 12

Figure 6: Advanced Settings for Data Mining.

At the bottom of the drawer, you can see the indication of the last action you performed in flattening the AppKit

Library and see that you can restore it; or click on Flatten Library if you want to change it to Charge Library. In

the Profile Analysis section of the drawer, checking the second checkbox enabled the color coding of the tree by

Library. If you change the Stats Display to Value, and you change the Weight By to Time, you will see the time

spent in each part of the tree as opposed to viewing the percent of the total time.

Under data mining there are options to charge code for which you have no debug information, which is in a

system library, or which has a weight below a certain threshold which you can set. Selecting any of these helps

keep the noise down in the output and allows you to quickly locate problems that are likely to be both

important and in code you can access. For example, restore your previous change and instead check the

checkbox labeled Charge System Libraries to Callers. Now the tree should just display lines from the
non-System Libraries as is shown in Figure 7.

Figure 7: No System Calls in the Tree.

As you choose different options in the data mining menu or in the advanced settings view, remember that you

are not discarding any of the underlying data; you are only changing how that data is represented. You can

always restore the view to study the data in a different way. Another nice feature in Shark 4 is that when you
end a session, your data mining settings are saved so that when you start up again you do not have to go

through the steps of massaging your data again.

The Chart View

Before heading to the chart view, uncheck Charge System Libraries to Callers and click on the line in the tree

labeled CelestiaCore::draw(). Now click on the Chart tab and you get a visual display of the time profile. The

horizontal axis is time and the vertical axis is the call stack with the longer running processes at the bottom.



Optimizing your Application with Shark 4 http://developer.apple.com/tools/sharkoptimize.html

31-10-2007 19:01 6 of 12

Because you selected draw(), the items highlighted in yellow show you when draw() was called. You can use

the slider at the bottom left to expand or contract the time axis and the slider in the middle to display a

particular time in the window. In Figure 8, you can see a particular slice of user time (blue) that is bracketed by

kernel calls (maroon).

Figure 8: Overly frequent calls to draw().

You can see that the code is making overly frequent calls to the draw() method. In fact, click on the kernel calls

and you see that these include calls to the graphics card. There is a classic comedy scene from American

television where characters named Lucy and Ethyl are shown in a factory wrapping pieces of chocolate as they

come down a conveyor belt. As the conveyor belt speeds up, the chocolate comes too fast for the women to

keep up and chaos ensues, which can be amusing, but is costly; and optimizing the conveyor belt will not help;

rather, the benefit comes from not providing chocolates faster than the women can wrap them. In the case of
Celestia, as in many video games, the call to redraw the screen is made many more times a second than the

screen can possibly be refreshed.

If you return to your demo of Celestia and change from Warp 1 to Warp 2, you can see the effect of reducing
the number of calls to draw. In fact, by requesting to redraw the screen less often, it appears that you are

redrawing the screen more often. You are not actually redrawing the screen at a significantly different rate but

you are freeing up the application to do more calculations in between screen redraws so that the application is

much more responsive. As you play with different Warp speeds you will notice that the application does get

faster as the programmers made Celestia multithreaded and addressed issues with cosine. Even given these

other improvements, the most dramatic improvement comes from limiting the frequency of the calls to draw().

Digging into the Code 

Once you have located a problem, it may be time to dig into the relevant code a little bit and explore. In the
case of the draw() method identified above, the issue is not what is happening within the call so much as with

the frequency with which it is called. Set Celestia to Warp 5 and take another Time Profile. On the Profile Tab

double-click on the line containing BigFix::BigFix[unified](double). A tab will open up labeled

BigFix::BigFix[unified]. In the top right corner you will have the options Source, Assembly, and Both. Select

Both and you should see something like what is displayed in Figure 9.



Optimizing your Application with Shark 4 http://developer.apple.com/tools/sharkoptimize.html

31-10-2007 19:01 7 of 12

Figure 9: Code Profile.

You can see that a lot of time is spent converting between a floating-point and an integer. The comment in

many of the highlighted lines is "FP to int". Press the PPC Help button and click on any line of assembly to show

the help information for the assembly code. For example, in Figure 10 you can see the information displayed for

Floating Convert to Integer Word with Round toward Zero.



Optimizing your Application with Shark 4 http://developer.apple.com/tools/sharkoptimize.html

31-10-2007 19:01 8 of 12

Figure 10: Assembly Instruction Reference.

The PPC Help window is live. If you click on another line of assembly code, the window will refresh with the
reference information about that assembly instruction. You can also search or navigate through the PPC

instruction reference to find information on other instructions.

Profiling from Afar 

Network Profiling has been introduced in Shark 4. Shark has been network enabled so that Shark running on

one machine can trigger the Shark instance running on another machine to start and stop gathering

information. On the target machine open the Network Manager by selecting the menu item Shark > Network

Profiling.. or by using the keyboard shortcut Shift-Command-N. You will see a window similar to the one shown

in Figure 11 with the Profile this computer radio button selected.



Optimizing your Application with Shark 4 http://developer.apple.com/tools/sharkoptimize.html

31-10-2007 19:01 9 of 12

Figure 11: Configuring the Target Machine.

To enable this instance of Shark to serve as a target, select the radio button labeled Share this computer for
network profiling. If you are running a firewall, you will be prompted to use the System Preferences > Sharing

> Firewall panel to open up the ports in the range 7475-7480. If you click on the "Sharing" button in the

warning window you will be taken to this panel and can use New... to create a group named Shark with this

range. Return to the Network Manager and select that radio button to "Share this computer for network

profiling" and the port will be displayed on the same line.

On the client side, select Control network profiling of shared computers. Add computers on the local link using

their .local name. In Figure 12 you can see that two local machines can be remotely profiled.

Figure 12: Configuring the Client Machine.

Shark needs to be running on the target machine and sharing must be enabled. You then select the target

machine from the client machine and decide which profile you are creating and press Start. After you have

finished and press Stop the data will be processed on the target machine and then streamed to the client
machine. This allows you to use one machine to gather and analyze your data for running an application on a

variety of platforms. You can profile the same application on single processor and multi-processor machines.

You can investigate the differences between performance on G3s, G4s, and G5s.



Optimizing your Application with Shark 4 http://developer.apple.com/tools/sharkoptimize.html

31-10-2007 19:01 10 of 12

Profiling Java Applications

Shark can now profile Java applications running on Mac OS X. In the Shark configuration pop-up list, you will

see Java Alloc Trace, Java Method Trace, and Java Time Trace. You can use a demonstration application called

Bouncy—download the Bouncy.DMG file, also on the ADC Member site. Note that unlike Celestia, Bouncy was 

created to highlight the Java profiling features of Shark and has a deliberate error with the fix included in
comments. Run a Java Time Trace on Bouncy and you will see that most of the time is spent in the tree shown

in Figure 13.

Figure 13: Time spent drawing in Bouncy.

The library names are listed on the left and the tree has been color coded by library. Notice that the three lines
that we are particularly interested in have no library associated with them. As before, there is not much you

can do to optimize the client libraries. These java.awt and sun.java2d libraries are not recognized as system

libraries to checking that check box does not turn these off. This time you are going to charge anything in the

apple.awt library to its caller. Highlight one of the lines on which the library is apple.awt and select Data Mining

> Charge Library apple.awt to Callers. Do the same for the library sun.java2d.

Next look at the tree above the line containing Bouncy:paint. These are all method calls within the Java core

classes that you can do nothing to tune. This is a sequence of events that results in the area of the screen being

redrawn. Suppose that you are not really concerned with what happens internally before the update() method

is called in the Container class. Highlight the line with Container:update and select Data Mining > Focus Symbol

Container Update. This will cause the tree to be rooted at that line as is shown in Figure 14. In fact, this is the
entire visible tree at this point.

Figure 14: The result of Focus and Charge.

You can see that most of the time is being spent in Bouncy:paintBalls so double-click on that line. If you have

not already done so, you will be prompted to navigate to the source file Bouncy.java. As with the Celestia



Optimizing your Application with Shark 4 http://developer.apple.com/tools/sharkoptimize.html

31-10-2007 19:01 11 of 12

example, you are directed to the lines that are taking the most time. Navigate to line 174-188 in the source

code and you will find that objects are being unnecessarily created every time the window is repainted. Both

the offending code and a fix are included in these lines.

public void paintBalls(Graphics2D g, Ball balls[], int numberOfBalls) {
  for (int i=0; i < numberOfBalls; i++) {       
    if ((i % 2) == 0) {
      // BOTTLENECK!!! replace with LUCIDA global
      //g.setFont(LUCIDA);
      g.setFont(new Font("Lucida", Font.PLAIN, 20));
    } else {
      // BOTTLENECK!!! replace with TIMES global
      //g.setFont(TIMES);
      g.setFont(new Font("Times", Font.PLAIN, 10));
    }
    ((Ball)balls[i]).show(g);
  }
}

Uncomment the line g.setFont(LUCIDA); and comment out the line g.setFont(new Font("Lucida", Font.PLAIN, 20));

to replace the bottleneck code which creates a new Font object every time it is called with code that uses a

single global. Similarly, switch in the global version for the TIMES font. You will immediately notice the speedup

in performance of the application when you save, compile, and rerun Bouncy with these changes.

Tracing Memory Allocation

Another useful data point, when you are optimizing an application, is to look at the memory allocation. You can
do this using the "Malloc Trace" configurations for C-based applications and with the "Java Alloc Trace"

configuration for applications written in the Java programming language. Evaluate the initial version of Bouncy

with the Java Alloc Trace configuration and on the Chart tab you will see that the Alloc Size chart looks like the

one shown in Figure 15.

Figure 15: Creating too many objects.

You can see that, with an outlier between 1.1 and 1.2 seconds, a lot of memory is being allocated all the time.

The chart shows every time memory is allocated or freed. Contrast that with the first two seconds taken in this
snapshot after the changes in the creation of the Font objects have been made.

Figure 16: Reusing objects.

In Figure 16 you can see that the same amount of memory was allocated in the first second and then memory

usage tailed off dramatically. You can see a more striking pair of images by comparing the aggregate memory

allocation. Open the additional settings using View > Show Advanced Settings. In the Perf Counters table check

the sigma checkbox in the Alloc Size row. Now you will see this profile for the first 8 seconds of the initial run of

Bouncy before any performance enhancements are made.



Optimizing your Application with Shark 4 http://developer.apple.com/tools/sharkoptimize.html

31-10-2007 19:01 12 of 12

Figure 17: Totally too many objects.

Contrast this with the first 8 seconds of the run of Bouncy after the performance enhancements are made. In

Figure 18 you see a similar shape to that shown above in Figure 17. You should note the difference in the label

on the vertical axis.

Figure 18: Totally not so many objects.

The aggregate for the first eight seconds in the unoptimized version is more than 3.5MB while the aggregate for

the optimized version for the first eight seconds is less than three quarters of a single MB.

When to Use Shark

Deciding when to use Shark in your development cycle is a matter of judgment and application development
style. You can tread a middle ground and optimize early to point to architectural decisions that must be made.

You can also optimize later to identify the low level optimizations that are best made after the code base works

and passes functional tests.

For More Information

For an introduction to optimization with Shark, read Optimizing with Shark: Big Payoff, Small Effort which 

covers Shark 3.0, but from a beginning level.

For performance issues and resources, see the Performance topic page. 

For tools issues and resources, see the Tools topic pages. 

Posted: 2004-11-08

Get information on Apple products.
Visit the Apple Store online or at retail locations.

1-800-MY-APPLE

Copyright © 2007 Apple Inc.
All rights reserved. | Terms of use | Privacy Notice


