

VTune(TM) Performance Analyzer
for Linux

Getting Started Guide

The VTune™ Performance Analyzer provides information on the performance of your code.
The VTune analyzer shows you the performance issues, enabling you to focus your tuning
effort and get the best performance boost in the least amount of time.

The goal of this guide is to introduce you to the basic features of the VTune analyzer.

After completing this guide, you will be able to use the VTune analyzer to analyze your
code and understand where to focus your tuning efforts to gain the most performance
improvement.

This document will step you through the iterative process of tuning a sample application
and step you through the stages of performance tuning:

•

•

•

Locate a performance issue

Revise the code to remove the issue

Compare the performance of the new code with the initial code

Contents

Disclaimer and Legal Information .. 2

1 Build the Application... 3

2 Analyze Your Application ... 3

3 Analyze Your Algorithms ..10

4 Analyze Events in Your Code...15

5 Next Steps ...19

VTune(TM) Performance Analyzer for Linux

Disclaimer and Legal Information
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR
IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.
EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY
WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL
PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY,
OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended
for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications.
Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined."
Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising
from future changes to them.

MPEG is an international standard for video compression/decompression promoted by ISO. Implementations of MPEG CODECs,
or MPEG enabled platforms may require licenses from various entities, including Intel Corporation.

The software described in this document may contain software defects which may cause the product to deviate from published
specifications. Current characterized software defects are available on request.

This document as well as the software described in it is furnished under license and may only be used or copied in accordance
with the terms of the license. The information in this manual is furnished for informational use only, is subject to change
without notice, and should not be construed as a commitment by Intel Corporation. Intel Corporation assumes no
responsibility or liability for any errors or inaccuracies that may appear in this document or any software that may be provided
in association with this document.

Except as permitted by such license, no part of this document may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means without the express written consent of Intel Corporation.

Developers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined."
Improper use of reserved or undefined features or instructions may cause unpredictable behavior or failure in developer’s
software code when running on an Intel processor. Intel reserves these features or instructions for future definition and shall
have no responsibility whatsoever for conflicts or incompatibilities arising from their unauthorized use.

BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino logo, Chips, Core Inside, Dialogic, EtherExpress, ETOX, FlashFile,
i386, i486, i960, iCOMP, InstantIP, Intel, Intel logo, Intel386, Intel486, Intel740, IntelDX2, IntelDX4, IntelSX2, Intel Core,
Intel Inside, Intel Inside logo, Intel. Leap ahead., Intel. Leap ahead. logo, Intel NetBurst, Intel NetMerge, Intel NetStructure,
Intel SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel Viiv, Intel vPro, Intel XScale, IPLink, Itanium, Itanium Inside, MCS,
MMX, MMX logo, Optimizer logo, OverDrive, Paragon, PDCharm, Pentium, Pentium II Xeon, Pentium III Xeon, Performance at
Your Command, Pentium Inside, skoool, Sound Mark, The Computer Inside., The Journey Inside, VTune, Xeon, Xeon Inside
and Xircom are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other
countries.

* Other names and brands may be claimed as the property of others.

Copyright © 2006-2007, Intel Corporation.

 2 Document Number: 309564-003US

Build the Application

1 Build the Application

Before you start, you need to build the sample application with the settings that enable the
VTune analyzer to collect the most useful data. Build the application with compiler settings
for production-level optimization and symbol information. This means the code is fully
optimized (as it will be when it is released) but includes symbol information.

Our example is compiled with the GNU C compiler, with ’-g -O2’ settings (version 3.2.3).

NOTE: The results on your system may vary, based on system configuration and compiler
version.

To build the application:

1. cd to the opt/intel/vtune/samples/gsexample directory

2. Enter: make
Or, if you are using the Intel® Compiler, enter:
make CC=icc CFLAGS=”-g –O2”

2 Analyze Your Application

After building the application, you can go through the process of analyzing the
performance of the code provided in the /samples/gsexample directory. The VTune
analyzer uses data collectors to collect different types of performance data. In this step,
you will use the First-use wizard to collect data, view the results and zoom into the specific
problem areas of the source code. The First-use wizard collects system-wide data non-
intrusively, and provides basic data on the five most active functions in your application.

2.1 Create a Benchmark
Create a benchmark of the original performance:

1. Run the gsexample2a application by entering the following command:
#. /gsexample2a datafile.txt
where
datafile.txt is the data file.

Getting Started Guide 3

VTune(TM) Performance Analyzer for Linux

2. After the application run, you can see the elapsed time at the command line console,
similar to the following image:

The Elapsed time is your benchmark for this phase of tuning the application.

A benchmark
must be
measurable and
reproducible so
that it can be
used as a basis
for comparison of
future revisions.

2.2 Use the Wizard to Collect Data
In this step, you will use the First-use Wizard to create and run an Activity that collects
performance data and saves it in a VTune analyzer project.

1. From the command-line, go to your VTune analyzer installation directory and run
vtlec to start the VTune analyzer. Enter the following command:
/opt/intel/vtune/bin/vtlec

The VTune analyzer launches and shows the start-up splash screen and the Select
Workspace dialog box.

2. At the Select Workspace dialog box, click OK to use the default setting.

3. On the VTune analyzer toolbar click Add Tuning Activity to open the Select a
Wizard dialog box, as shown:

4. Select the First Use Wizard and click Next to open the First-use wizard.

5. In the Application to profile field, click Browse to browse to the gsexample2a
application. The dialog box opens.

6. In the dialog box, browse to the gsexample2a file located at
/opt/intel/vtune/samples/gsexample and click OK.

7. In the Application Arguments field, enter the name of the data file datafile.txt.

 4 Document Number: 309564-003US

Analyze Your Application

8. In the Working directory field, click Browse to browse for the gsexample
directory, as shown:

9. Click Finish to have the VTune analyzer create and run the Activity to analyze

the gsexample2a application using the default settings.

At this point, the VTune analyzer may prompt for the kernel’s location. This is
because much of the application activity is processing in the kernel and the
VTune analyzer did not locate an uncompressed kernel file.

When data collection completes, the Sampling Summary view opens:

The Sampling Summary provides data on the five most active functions in the system
during the data collection. Click the function to open the source view of the function, or
click the module it belongs to view the full list of functions in the module.

When prompted
for kernel
location:

Select Skip if you
intend to tune the
kernel in this
project, in a
future session.

Select Skip
Always if you do
not intend to tune
the kernel of this
project file.

Getting Started Guide 5

VTune(TM) Performance Analyzer for Linux

2.3 Analyze the Results
The first function listed in the summary and the one that takes the most time, is
ProcessBuffer. Focus on this function to see if you can find a way to improve its
performance.

1. Click on the ProcessBuffer to view its source code.

2. Rearrange the source view to better see the important information:
Right-click on a source view and in the pop-up menu select
View Events As % of Activity

Scroll through the code to see what lines of code consumed the most processor
time. For example, notice that line #136 has a large percentage of the clockticks
reported against it.

The First-use wizard
helps you create and
run an Activity that
collects data on the
clockticks event. a
clocktick is the
smallest unit of time
recognized by the
processor. It is the
time required by the
processor to execute
an instruction.

This is a good opportunity to get to know some other features of the Source view. The
screen cap below highlights and explains some of the features available in the Source view
when viewing Mixed by Source mode.

 6 Document Number: 309564-003US

Analyze Your Application

Click to change the view mode.
This view is in “Mixed by Source
mode.

Click the Optimization Report button to generate
compiler optimization report for the selected
code line using the Intel(R) C or Intel(R) Fortran
Compiler 9.1 (or higher).

Percentage of events assigned to
this instruction.

Use these buttons to navigate between code
lines that took a long time to execute.

Summary data for the selected
range of code lines

2.4 Revise the Code
In the analysis of the data above, you identified that the function ProcessBuffer was
consuming most of the time in the sample application and that the code line #136 shows
the largest number of Clockticks. The main reasons for this are the memory accesses and
pointer differences: the code reads the pBuf argument and loads and stores the *pCRC
parameter on each loop iteration.

There are no dependencies between pBuf and *pCRC (actual parameters of ProcessBuffer
– buf and iCRC do not reference the same memory), therefore you can remove the
redundant stores and move the *pCRC variable outside of the loop at line #136. Loading it
into a local variable reduces memory references; there is no need to load the pointer value
and then load the memory pointed to it by the value.

Follow these steps to revise the code, or use the revised code provided in the
gsexample2c.c file in the /samples/gsexample/ directory.

3. Open the file in the editor you use for developing your application.

4. Go to the source of the ProcessBuffer function.

5. Introduce new local integer variable iChkSum initialized before the loop with value of
*pCRC and use it for accumulating the sum.

6. After the loop, store iChkSum to pCRC. This enables the compiler to register iChkSum
and decrease of number of memory operations. This change also enables the compiler
to perform other more aggressive optimizations on this loop. Note that this change is
only possible if you are sure that pCRC and pBuf are independent.

7. Modify the code as follows:

Getting Started Guide 7

VTune(TM) Performance Analyzer for Linux

long ProcessBuffer(char* pBuf, long bluffer, int* pCRC)

{

 int j, iChkSum = *pCRC; //new integer variable

 long l = lBufLen;

 // parse buffer

 // calculating modulo 256

 for (j = 0; j < lBufLen; j++)

 {

 iChkSum += pBuf[j];

 iChkSum = iChkSum % 256;

 l += j;

 }

#if MYDEBUG

 printf("...lBuflen = %ld\n", lBufLen);

#endif

 *pCRC = iChkSum; //store variable value

 return l / 2;

}

8. Rebuild your application with the following settings:
cc -g -O2 gsexample2c.c -o gsexample2c

2.5 Compare Performance with the Original Code
In this step, you will compare the performance results of the new code with the results of
the original code.

1. Compile the revised application, using the same switches to generate a new version of
the application. Or, you can use gsexample2c application provided in
/opt/intel/vtune/samples/gsexample

2. Compare the performance against the benchmark. Run the revised application by
entering the command:
./gsexample2c datafile.txt

You can see that the elapsed time decreased:

3. You can also see the performance improvement using the VTune analyzer. Open the

First Use wizard and launch the gsexample2c.c application. Use the default settings to
create and Activity and generate results as in section 2a.
Compare the new Sampling Summary data to the data in the Sampling Summary you
saw after the first Activity run.

 8 Document Number: 309564-003US

Analyze Your Application

Look at the percentage of the process the ProcessBuffer. Note its decrease.

4. Click the ProcessBuffer function link to open its Source View.

5. Switch between the previous source view and the new one by clicking on the
gsexample2a.c and gsexample2c.c tabs.

6. The percentage of the clockticks for the ProcessBuffer function is less than before

(8.26%). Application performance has improved!

Getting Started Guide 9

VTune(TM) Performance Analyzer for Linux

3 Analyze Your Algorithms

The VTune(TM) Performance Analyzer for Linux* can analyze the algorithms of your code
with Call Graph.

Call Graph gathers information about how many times a function calls other functions and
the amount of time each function spent executing its code versus the code of called
functions. To profile your application for algorithmic tuning, use the Call Graph Wizard.

To start application profiling, do the following:

1. In the File menu, select New Project.

2. A dialog box appears.

3. In this dialog window, select Call Graph Wizard and click Next.

4. Make sure the collection environment is set as Linux* executable and click Next.

5. In the Application/Module Profile Settings page, enter these settings:

a. Set the Application to launch by browsing to the gsexample3a file. By default it
is in: /opt/intel/vtune/samples/gsexample

b. Set the Application Arguments as datafile.txt.

c. Set the Working Directory as /opt/intel/vtune/samples/gsexample.

6. Click Finish to start the data collection.

The VTune analyzer displays profiling results in the Function Summary view at the top of
the right frame and the Graph and Call List view at the bottom:

 10 Document Number: 309564-003US

Analyze Your Algorithms

3.1 Function Summary View
Function Summary provides full information on all the application functions in table
format. The view is adjustable, enabling you to view the information in different ways. It
enables you to compare performance of each function in the application against one
another.

The Function Summary Hierarchy option is very useful, when dealing with multithreaded
applications. However, since gsexample3a is a single-threaded application, you can turn it
off by right-clicking the Function Summary view and unchecking Hierarchy in the pop-up
menu.

Click the Self Time column heading to sort the functions by the time spent
executing its own code:

You may want to rearrange columns for more convenience. To move a column, click the
column header and drag it to the desired position. A red arrow indicates where the column
will be placed when you drop it.

Self-Time - time
(microseconds)
spent inside a
function, including
time spent waiting
between execution
activities. It does
not include time
spent in calls to
other instrumented
functions.

Getting Started Guide 11

VTune(TM) Performance Analyzer for Linux

The time function is the 4th highest self-time function. The Calls column value shows that
it is called once per file loop trip, as often as the ProcessFile function. This causes
unwanted overhead, which you can reduce by adding the following lines to gsexample3b:

if ((fileCount % 1000) == 0) time(stop);

3.2 Graph View
The Graph view provides a graphical presentation of the application execution. By default,
it displays only the critical function path. In this case, it is the path from the start of the
thread to the Store2Load function:

To control the content of this view, use the filter toolbar at the top of the Graph view

window . Use this toolbar to set your
individual filter settings for the analyzed functions. In the Show Top drop-down menu,
you can select what percentage of functions (5, 10, 20, 50 % or All) you want to view at a
time. After you define the percentage, click the Recalculate button to view the result. You
can also highlight the functions of interest by choosing the criterion from the Highlight
drop-down menu. This feature is very useful when you analyze an application with many
functions. In such cases, the graph can be overwhelming and filtering allows to pinpoint
the most time consuming functions.

The Graph and Function Summary views are synchronized with each other. When you
select a function in one view, the other view updates to highlight the selected function
also. For example:

1. In the Show Top drop-down menu, choose 50 (percent) and click Recalculate. This
will expand the Graph view to display 50% of the highest self-time functions in the
application. Note that ctime function is displayed in the function summary view, but is
hidden in the graph.

 12 Document Number: 309564-003US

Analyze Your Algorithms

2. Double-click ctime in the function summary view. The node becomes visible in the
graph.

3. Click the ProcessFile node in the graph view.

ProcessFile becomes the focus function and is automatically highlighted both in the
function summary and the graph windows.

3.3 Call List View
Call list view provides full information on the selected (focus) function, its callers
and callees in the table format.

To see the call list view, click on the Call List tab.

In this view, you can see which functions contributed to the focus function Total time and
to what extent. Call list is divided into two windows: caller functions (main) and callee
functions (Store2Load, ProcessBuffer, DoSomeWork).

To see how this view displays function interaction, double-click DoSomeWork to select this
function as the focus one.

Callee - a child
function that is
called by the
current function.

Caller - a parent
function that calls
the current
function.

Getting Started Guide 13

VTune(TM) Performance Analyzer for Linux

The Callers list now shows all functions that call the DoSomeWork function and what percent
of overall calls comes from each of them.

Double-click on the ProcessFile function to select it as the focus function. The
Store2Load and ProcessBuffer functions are called 10 times for each call to
ProcessFile, which causes overhead. One approach to reducing the overhead is to
allocate a larger buffer. In fact, you could allocate a buffer large enough to hold the entire
file.

3.4 Revise Your Code
In the analysis of your code you found that Store2Load and ProcessBuffer functions are
called very often, because the buffer is not large enough. Follow these steps to revise the
code, or use the revised code (gsexample3c.c) provided in the

opt/intel/vtune/samples/gsexample directory.

1. Open the file gsexample3b.c in the editor you use for developing your application.

2. Open the source of ProcessFile function.

 14 Document Number: 309564-003US

Analyze Events in Your Code

3. To reduce overhead, rewrite the code to allocate the buffer once for the whole file:
if (fd >= 0)
{pbuf = malloc(filelen);

 if(pbuf == NULL)

 {printf(“\n*** Error: failed to allocate enough memory for file!
Aborting. ***\n”);

 exit(3);}

 actual = read(fd, pbuf, filelen);
 //removed if (actual > 0)

 fileCharCount += ProcessBuffer(pbuf,(long)
 actual, &iCRC);
 Store2Load(pbuf, (long) actual);

 close(fd);

 free(pbuf);

 *pCRC = iCRC;

 f = DoSomeWork();}

4. Pass the pointer into the ProcessFile function:
long ProcessFile(char* cFileName, char* pbuf, long filelen, int* pCRC)

if (fd >= 0)
 {actual = read(fd, pbuf, filelen);
 fileCharCount += ProcessBuffer(pbuf,
 (long) actual, &iCRC);
 Store2Load(pbud, (long) actual);
 close(fd);
 *pCRC = iCRC;
 f = DoSomeWork();}

5. Rebuild your application with the same settings you used before and rerun it. See if
the number of characters processed per second increase.

4 Analyze Events in Your Code The frequency at
which the samples
are collected is
determined by
how often the
event is caused
by the software
running in the
system during
sampling data
collection. The
Clockticks event is
selected by
default.

Use the Sampling wizard to collect specific data on various aspects on the processor
events that are happening during data collection. Use the information to improve code
performance by reorganizing code to reduce the occurrence of events that stall the
processor.

Before analyzing the application, get some more information on the available events.
Go to the VTune Performance Analyzer Reference online help and find the
processor you are interested in under the Processor Events and Advice book.

4.1 Use the Sampling Wizard
Before you start tuning your application, create another benchmark with gsexample3a

Getting Started Guide 15

VTune(TM) Performance Analyzer for Linux

Create a new Activity:

During EBS the
collector may run
multiple times. In
each run, the
sampling collector
does one of the
following:

Calibrates the
Sample After value
for the selected
events. During data
collection, data is
collected based on
the calibrated
Sample After
value

Collects data on the
selected events
using the default
Sample After value

1. In the VTune analyzer toolbar, click the Add Tuning Activity button, to open
the Select a Wizard dialog box.

2. From the Select a Wizard dialog box, choose the Sampling Wizard.

3. Click Next to go to the Environment and Activity Settings page.

4. In the Environment and Activity Settings page, select Linux* executable
collection environment and the Application for the application type.
Click Next to go to the Application/Module Profile Settings page.

5. Configure the following settings:

a. in the Application parameters, check Working Directory and browse
to the gsexample3a application

b. in the Application arguments, enter datafile.txt.
Click Next to go to the Sampling Collection Settings page.

6. At the Sampling Collection Settings page, uncheck When the application
terminates (before duration completes).
Click Next to go to the Options page.

7. In the Modify Configuration field, configure the following settings:

a. check the Change the Sampling Events and set advanced options such as
interval, calibration, and delay check box.

b. check Run this Activity check box to enable the VTune analyzer run the
Activity after you finish configuring it.

8. Click Finish to create an Activity and open the Activity Configuration dialog box.

Analyze the application with the Event-Based Sampling (EBS):

1. In the Activity Duration field, click the second radio button and enter the value of 10
into the editable box. This makes the Activity run for 10 seconds during the data
collection.

2. Click the Configure button under the Collector(s) window to configure the Sampling
collector.

The Configure Sampling dialog box appears.

3. In the Configure sampling dialog box, select Events tab.

 16 Document Number: 309564-003US

Analyze Events in Your Code

4. In the Available Events window, select the MOB Loads Replays Retired event. Click
on the arrow as shown on the image below to add it to the Selected Events window.

5. Click OK to close the dialog box and start data collection. The VTune analyzer runs the

Activity and displays the Sampling results upon its termination.

4.2 View the Sampling Results
Let’s look at some of the sampling view features that you can configure to view more
interesting data:

Click to change the view mode.

This column displays the module for which
the data was collected.

The Selection Summary shows the total
value of events and samples, as well as
the percentage of samples collected for
the selected module. Toggle the view
with the Selection Summary button.

General information on the sampling data
that was collected. Use this pane to see if
you have collected enough, but not too
many samples.

This is the Module view in table format.
To view collected data in the horizontal
bar chart format, right-click and select
View as Bar Chart.

Activity Summary by Core. Use this view to
see if there are any cores that are not fully
utilized.

Getting Started Guide 17

VTune(TM) Performance Analyzer for Linux

In this view you can see the following useful information:

•

•

Process view – use this view to see a system-wide view of all the processes running on
your system when sampling data was collected. A high number of events in a
particular process indicates high CPU usage, which in turn, can indicate potential
performance bottlenecks

Module view - use the information from the Module view to drill down to the hotspots.
Modules that were called frequently during sampling data collection are those
displayed as ones with the highest number of events or the most CPU time.

Use the sampling results view to locate the problem in the code:

1. Look at the gsexample3a process section of the Process view that opens by default.

2. Switch to Module view by clicking the Module button.

3. Click the gsexample3a module to select it.

4. Click Hotspot button to view the most active functions of the gsexample3a
module.

5. You can see that the largest number of events and MOB Loads replays retired occurred
at the Store2Load function. This is the problem area of the code.

6. Click the Source view button to see the source view of this function.

4.3 Revise the Code
In the analysis of your code you found a store blocked forward issue. Follow these steps to
revise the code, or use gsexample4 provided in the opt/intel/vtune/samples/gsexample
directory.

1. Open the file in the editor you use for developing your application.

2. Open the source of Store2Load function.

The code lines of the problem area:

(((char) (pBits + i)) + 1) = 0;

clr = *(pBits + i);

The problem is that at the first line we clear the byte within the 32-bit value and then
load the 32-bit value. The processor must wait for the write of the byte to complete,
before it can load the 32-bit value containing the byte. This causes a blocked store-
forward issue.

3. To eliminate the blocked store-forward, you need to write and read data of the same
size. Change the code so that the 32-bit value is read, then the first byte of this value
is cleared in the 32-bit integers and stored as the 32-bit value.
The revised code section looks as follows:

clr = *(pBits + i);

clr &= 0xffff00ff;

*(pBits + i) = clr;

4. Rebuild your application with the same settings you used before.

 18 Document Number: 309564-003US

Next Steps

4.4 Compare Performance With the Previous Code
To compare the results of the code revised in this step, create another Sampling Activity
by repeating the procedure described in step 3a. Use the optimized code or the
gsexample3c application provided in /opt/intel/vtune/samples/gsexample directory. After
creating and running the Activity look at the results:

 The results show that the number of the MOB Loads Replays Retired decrease and you
can also note the performance increase of the application.

5 Next Steps

You can use the VTune analyzer to filter the compiler optimization information. These
reports often contain excellent tuning information. In source view, select the code lines

you are interested in and click Compiler Optimization Report to go directly to the
compiler advice for your selected code lines. This feature is supported by the Intel(R)
Compiler 9.1, or higher, but it utilizes a standard format open to other compilers. For more
information, search the online help for “Compiler Optimization”. The training exercise in
<installdir>/vtune/samples is self-contained and pre-compiled so you can try it even if you
don’t have a compatible compiler installed.

You can use the VTune analyzer for further analysis of your application with the help of
data collectors. See the web-based tutorial located at
<installdir>/vtune/training/gs_vtl/index.htm to better understand the product functionality
and features.

You can learn about other Intel software development products through the Intel web site
at: http://www.intel.com/software/products/.

See the product Release Notes document for information about Technical Support and any
Limitations that apply to the product.

Getting Started Guide 19

	Contents
	1 Build the Application
	2 Analyze Your Application
	2.1 Create a Benchmark
	2.2 Use the Wizard to Collect Data
	Analyze the Results
	2.4 Revise the Code
	2.5 Compare Performance with the Original Code
	3 Analyze Your Algorithms
	3.1 Function Summary View
	3.2 Graph View
	3.3 Call List View
	3.4 Revise Your Code

	Analyze Events in Your Code
	4.1 Use the Sampling Wizard
	4.2 View the Sampling Results
	4.3 Revise the Code
	4.4 Compare Performance With the Previous Code

	5 Next Steps

