
CS395T: Introduction to Scientific
and Technical Computing

Instructors:

Dr. Karl W. Schulz, Research Associate, TACC
Dr. Bill Barth, Research Associate, TACC

Outline

• Administrative Details
– TA for the class is Vikram Prasannakumar

(vikrampkumar@mail.utexas.edu)
– Office Hours:

• MW 10:30 – 11:30
• CS Graduate Lounge in Taylor hall

• Continue with Unix overview
– Unix pipes
– Job control
– Environment Variables
– Editors
– Shell Arithmetic
– Shell scripting

• Assignment #1

mailto:vikrampkumar@mail.utexas.edu

Follow-up to Question from Last Week

• umask is a built-in shell command used to specify the default
permissions mode for newly created files

• It is a three-digit octal mode that represents the permissions that
you want to mask out

• To determine what permissions a umask will allow, subtract the
umask value from the default

• Unix has default permissions for new files and directories:
– directory is 777 (remember what that means?)
– file is 666

• A common umask value is 022:
– Default for new directories is thus, 755
– Default for new files is 644

Unix Pipes

• A pipe is a holder for a stream of data
• A Unix pipeline is a set of processes chained by their

standard streams, so that the output of each process
(stdout) feeds directly as input (stdin) of the next one

• This is handy for using multiple unix commands
together to perform a task

prog1prog1 prog2prog2
STDOUT STDIN

http://en.wikipedia.org/wiki/Stdout
http://en.wikipedia.org/wiki/Stdin

Building Commands

• More complicated commands can be built up by
using one or more pipes

• Use the “|” character to pipe two commands together
• The shell takes care of all the hard work for you
• Example:

> cat apple.txt
core
worm seed
jewel

> cat apple.txt | wc
3 4 21

Note: the wc command prints
the number of newlines,
words, and bytes in a file

Note: the wc command prints
the number of newlines,
words, and bytes in a file

Job Control

• The shell allows you to manage jobs
– place jobs in the background
– move a job to the foreground
– suspend a job
– kill a job

• If you follow a command line with “&”, the shell will
run the job in the background
– this is you useful if you don’t want to wait for the job to

complete
– you can type in a new command right away
– you can have a bunch of jobs running at once

> cat foo | sort | uniq > saved_sort &

Listing Your Jobs

• The command jobs will list all background
jobs:

> jobs
[1] Running cat foo | sort | uniq >
saved_ls &

• The shell assigns a number to each job (in
this case, the job number is 1)

Managing Jobs

• You can suspend the foreground job by pressing ^Z
(Ctrl-Z)
– Suspend means the job is stopped, but is not dead
– The job will show up in the jobs output.

• You can kill the foreground job by pressing ^C
(Ctrl-C).

• You can also kill a job in the background using the kill
command (and the appropriate job index)

> kill %1 Note: it’s important to include the
“%” sign to reference a job number.
Note: it’s important to include the
“%” sign to reference a job number.

More Job Control Commands
• The fg command will move a job to the foreground.

– You give fg a job number (as reported by the jobs command)

> jobs
[1] Stopped ls -lR > saved_ls &
> fg %1
ls -lR > saved_ls

• What happens if you start a command and then want to place it in the
background?

– Use ^-Z to suspend the command
– Use the bg command to send the job to the background

> sleep 60
Suspended
> jobs
[1] + Suspended sleep 60
> bg
[1] sleep 60 &
> jobs
[1] Running sleep 60

Unix Environment Variables

• Unix shells maintain a list of environment variables
which have a unique name and a value associated
with them
– some of these parameters determine the behavior of the

shell
– also determine which programs get run when commands are

entered (and which libraries they link against)
– provide information about the execution environment to

programs
• We can access these variables:

– set new values to customize the shell
– find out the value of some to help accomplish a task

Environment Variables
• To view environment variables, use the env command

• If you know what you are looking for, you can use your new
friend grep:

> env | grep PWD
PWD=/home/karl

• Use the echo command to print variables; the “$” prefix is
required to access the value of the variable:

> echo $PWD
/tmp

• Can also use environment variables in arbitrary commands:
Koomie@canyon--> ls $PWD
foo1 foo2

Special Environment Variable: PATH

• Each time you provide the shell a command to
execute, it does the following:
– Checks to see if the command is a built-in shell command
– If it is not a build-in command, the shell tries to find a

program whose name matches the desired command

• How does the shell know where to look on the
filesystem?

• The PATH variable tells the shell where to search for
programs (non built-in commands)

Special Environment Variable: PATH
• Example PATH Definition:

-> echo $PATH
/home/karl/bin/krb5:/opt/intel/compiler70/ia32/bi
n:/home/karl/bin:/usr/local/apps/mpich/icc/bin:/u
sr/kerberos/bin:/usr/local/bin:/bin:/usr/bin:/usr
/X11R6/bin

• The PATH is a list of directories delimited by colons (":“)
– It defines a list and search order
– Directories specified earlier in the PATH take precedent; once

the matching command is found, the search terminates

• You can add more search directories to your PATH by
changing the shell startup files
– BASH: export PATH="$PATH":/home/karl/bin
– TCSH: set path = (/home/karl/bin $path)

Other Important Variables

PWD current working directory
MANPATH determines where to find man pages
HOME home directory of user
MAIL where your email is stored
TERM what kind of terminal you have
PRINTER specifies the default printer name
EDITOR used by many applications to identify your

choice of editors (eg. vi or emacs)
LD_LIBRARY_PATH specifies a search path for

dynamic runtime libraries

Setting Environment Variables

• The syntax for setting Unix environment variables depends on
your shell:
– BASH: use the export command

> export PRINTER=scully
> echo $PRINTER
scully

– TCSH: use the setenv command
> setenv PRINTER mulder
> echo $PRINTER
mulder

• Note: environment variables that you set interactively are only
available in your current shell
– If you spawn a new shell (or login again), these settings will be lost
– To make permanent changes, you should alter the login scripts that

affect your particular shell (eg. .login, .profile, .cshrc, etc...)

Text Editors

Text Editors

• For programming, we need to make use of available
Unix text editors

• The two most popular and available editors are vi and
emacs

• You should familiarize yourself with at least one of
the two (and this let’s you enter into the editor wars
which is a never-ending debate in the programming
community)

• We will have very short introductions to each....

Vi Overview

• Fundamental thing to remember about vi is that it has two
different modes of operation:

– Insert Mode
– Command mode

• The insert mode puts anything typed on the keyboard into the
current file

• The command mode allows the entry of commands to
manipulate text. These commands are usually one or two
characters long, and can be entered with few keystrokes

• Note that vi starts out in the command mode by default

Vi Overview

• Quick Start Commands
– > vi
– Press i to enable insert mode
– Type text (use arrow keys to move around)
– Press Esc to enable command mode
– Press :w <filename> to save the file
– Press :q to exit vi

Useful vi commands

• :q! – exit without saving the document. Very handy for beginners
• :wq – save and exit
• / <string> – search within the document for text. n goes to next

result
• dd – delete the current line
• yy – copy the current line
• p – paste the last cut/deleted line
• :1 – goto first line in the file
• :$ - goto last line in the file
• $ – end of current line, ^ – beginning of line
• % – show matching brace, bracket, parentheses

Additional vi References

• http://www.eng.hawaii.edu/Tutor/vi.html

• http://staff.washington.edu/rells/R110/

• Vi Commands Reference card:
http://tnerual.eriogerg.free.fr/vimqrc.pdf

http://www.eng.hawaii.edu/Tutor/vi.html
http://staff.washington.edu/rells/R110/

Emacs Overview

• Programmer friendly modes for common languages
(C/C++, Fortran, shell scripts, etc)

• Different from vi in that emacs has only one-main
mode

• Lots of commands and extremely customizable
(using LISP)

• Includes some very sophisticated features if you take
the time to learn them:
– Compile your executables within emacs
– Interact with your revision control process (eg. CVS)
– Control RPM software builds
– Debug your application using gdb

Emacs Overview

• > emacs myfile opens myfile for editing
• Type whatever text you like (use arrow keys to

navigate)
• C-x C-s (control + x, control + s) – saves the file
• C-g exits the current command
• C-x u - Undo
• C-x C-c exit after saving

Additional Emacs References

• EMACS Tutorial 1
• EMACS Tutorial 2
• Emacs includes its own on-line tutorial; to run

issue the following:
– > emacs
– Then, enter “C-h t”, to invoke the on-line emacs

tutorial (that’s a “Control-h”, followed by a “t”)

http://www.lib.uchicago.edu/keith/tcl-course/emacs-tutorial.html
http://www.stolaf.edu/people/humke/UNIX/emacs-tutorial.html

Unix Scripting

• Scripting is “easy” - you just place all the Unix
commands in a file as opposed to typing them
interactively

• Handy for automating certain tasks:
– staging your scientific applications
– performing limited post-processing operations
– any repetitive operations on files, etc...

• Shells provide basic control syntax for looping, if
constructs, etc...

Unix Scripting
• Shell scripts must begin with a specific line to indicate which shell

should be used to execute the remaining commands in the file:
– BASH:

#!/bin/bash
– TCSH

#!/bin/tcsh
• Comment lines can be included if they start with #
• In order to run a shell-script, it must have execute permission. Consider

the following script:

> cat hello.sh
#!/bin/bash
echo “hello world”

> ./hello.sh
./hello.sh: Permission denied.

> chmod 700 hello.sh
> ./hello.sh
hello world

Unix Scripting: Arithmetic Operations

• Simple arithmetic syntax depends on the shell:
– TCSH

set i1=10
set j1=3
@ k1 = $i1 + $j1 # Note space between @ and k1
echo "The sum of $i1 and $j1 is $k1”

– BASH
i1=2
j1=6
k1=$(($i1*$j1))
echo "The multiple of $i1 and $j1 is $k1”

• Note, you can also use the expr command (for both shells). For
example:

– TCSH: set z=`expr $i1 + $j1`
– BASH: z=`expr $i1 + $j1` consult man page on

expr for more details
consult man page on
expr for more details

Unix Scripting: Conditionals
• Syntax for conditional expressions depends on your choice of shell:

• BASH (general format):

if [condition_A]; then
code to run if condition_A true

elif [condition_B]; then
code to run if condition_A false and
condition_B true

else
code to run if both conditions false

fi

• TCSH (general format):

if (condition) then
commands

else if (other condition) then
commands

else
commands

endif

Unix Scripting: String Comparisons

• string1 = string2 Test identity
• string1 !=string2 Test inequality
• -n string the length of string is

nonzero
• -z string the length of string is

zero

BASH Example:
today="monday"
if ["$today" = "monday"] ; then

echo "today is monday"
fi

BASH Example:
today="monday"
if ["$today" = "monday"] ; then

echo "today is monday"
fi

TCSH Example:
set today="friday"
if ("$today" != "monday”) then

echo "today is not monday"
endif

TCSH Example:
set today="friday"
if ("$today" != "monday”) then

echo "today is not monday"
endif

BASH Integer Comparisons

• int1 –eq int2 Test identity
• int1 –ne int2 Test inequality
• int1 –lt int2 Less than
• int1 –gt int2 Greater than
• int1 –le int2 Less than or equal
• int1 –ge int2 Greater than or equal

BASH Example:
x=13
y=25
if [$x -lt $y]; then
echo “$x is less than $y"

fi

BASH Example:
x=13
y=25
if [$x -lt $y]; then
echo “$x is less than $y"

fi

TCSH Integer Comparisons

• int1 < int2 Less than
• int1 > int2 Greater than
• int1 <= int2 Less than or equal
• int1 >= int2 Greater than or equal
• int1 == int2 Equal to
• int1 != int2 Not equal to

TCSH Example:
set x=13
set y=25
if ($x < $y) then
echo “$x is less than $y"

endif

TCSH Example:
set x=13
set y=25
if ($x < $y) then
echo “$x is less than $y"

endif

Unix Scripting: Common File Tests

• -d file Test if file is a directory
• -f file Test if file is not a directory
• -s file Test if the file has non zero length
• -r file Test if the file is readable
• -w file Test if the file is writable
• -x file Test if the file is executable
• -o file Test if the file is owned by the user
• -e file Test if the file exists
• -z file Test if the file has zero length

BASH Example:
if [-f foo]; then
echo "foo is a file"

fi

BASH Example:
if [-f foo]; then
echo "foo is a file"

fi

TCSH Example:
if (-d foo.dir) then
echo "foo.dir is a directory"

endif

TCSH Example:
if (-d foo.dir) then
echo "foo.dir is a directory"

endif

Unix Scripting: For loops

• These are useful when you want to run the same command in
sequence with different options

• sh example:
for VAR in test1 test5 test7b finaltest; do

runmycode $VAR > $VAR.out
done

• csh example:
foreach VAR (test1 test5 test7b finaltest)

runmycode $VAR > $VAR.out
end

• sh one-liner:
for i in `seq 1 5`; do echo $i; done
1
2
3
4
5

Quoting in Unix
• We've seen that some metacharacters are treated

special on the command line: * ?

• What if we don't want the shell to treat these as
special - we really mean *, not all the files in the
current directory

• To turn off special meaning - surround a string with
double quotes:

> echo here is a star "*“
here is a star *

Use of Quotes

• You have to be careful with the use of
different styles of quotes in your commands
or scripts

• They have different functions:
– Double quotes inhibit wildcard replacement only
– Single quotes inhibit wildcard replacement,

variable substitution and command substitution
– Back quotes cause command substitution

Double Quotes

• Double quotes around a string turn the string
in to a single command line parameter:
> ls
fee file? foo
> ls "foo fee file?"
ls: foo fee file?: No such file or
directory

• Double quotes only inhibit wildcards; use \ to
escape special characters:

> echo “This is a quote \" “
This is a quote “

Single Quotes

• Single quotes are similar to double quotes,
but they also inhibit variable substitution and
command substitution

• Means that special characters do not have to
be escaped:

> echo 'This is a quote \" '
This is a quote \"

Back Quotes

• If you surround a string with back quotes, the string is
replaced with the result of running the command in
back quotes:

> echo `ls`
foo fee file?

> echo "It is now `date` and OU is still
questionable”
It is now Tue Sep 19 11:24:25 CDT 2006 and OU
is still questionable

More Quote Examples

• Some Quoting Examples:
$ echo Today is date
Today is date
$ echo Today is `date`
Today is Thu Sep 19 12:28:55 EST 2002
$ echo ”Today is `date`”
Today is Thu Sep 19 12:28:55 EST 2002
$ echo ’Today is `date`’
Today is `date`

“ “ = double quotes
‘ ‘ = single quotes
` ` = back quotes

“ “ = double quotes
‘ ‘ = single quotes
` ` = back quotes

Command-Line Parsing

• To build generic shell scripts, consider using command-line arguments to provide the
inputs you need internally (syntax again depends on the choice of shell)

• Syntax:
– $# refers to the number of command-line arguments
– $0 refers to the name of the calling command
– $1, $2, ..., $N refers to the Nth argument
– $* refers to all command-line parameters

echo "Calling command is: $0"
echo "Total # of arguments is: $#"
echo "A list of all arguments is: $*"
echo "The 2nd argument is: $2"

> ./foo.sh texas rose bowl
Calling command is: ./foo.sh
Total # of arguments is: 3
A list of all arguments is: texas rose bowl
The 2nd argument is: rose

In tcsh, you can also
reference individual
arguments with $argv:
eg. $1 = $argv[1]

In tcsh, you can also
reference individual
arguments with $argv:
eg. $1 = $argv[1]

More UNIX Commands for Programmers
– man –k Search man pages by topic
– time How long your program took to run
– date print out current date/time
– test Compare values, existence of files, etc
– tee Replicate output to one or more files
– diff Report differences between two files
– sdiff Report differences side-by-side
– wc Show number of lines, words in a file
– sort Sort a file line by line
– gzip Compress a file
– gunzip Uncompress it
– strings Print out ASCII strings from a (binary)
– ldd Show shared libraries program is linked to
– nm Show detailed info about a binary obj
– tar Archiving utility
– uniq Remove duplicate lines from a sorted file
– which Show full path to a command
– file Determine file type

Assignment

• Assignment #1 has been uploaded to
blackboard
– It is due a week from Friday, September 29, 2006
– Motivation is to use Lonestar to perform some

simple commands and write a shell-script
– Use the accounts provided

• Important Note:
– don’t try to login until after this weekend
– Lonestar is out of production this week
– We’ll send out an email when you can login again

References/Acknowledgements

• National Research Council Canada (Rob Hutten,
Canadian Bioinformatics Resource)

• Intro. to Unix, Dave Hollinger, Rensselaer
Polytechnic Institute

• Bash Reference Manual,
http://www.faqs.org/docs/bashman/bashref.html

• Advanced Bash-Scripting Guide, http://db.ilug-
bom.org.in/Documentation/abs-guide/

• TCSH Reference,
http://www.tcsh.org/tcsh.html/top.html

• Unix in a Nutshell, A. Robbins, O’Reilly Media,
2006.

http://www.faqs.org/docs/bashman/bashref.html
http://db.ilug-bom.org.in/Documentation/abs-guide/
http://db.ilug-bom.org.in/Documentation/abs-guide/
http://www.tcsh.org/tcsh.html/top.html

	CS395T: Introduction to Scientific �and Technical Computing
	Outline
	Follow-up to Question from Last Week
	Unix Pipes
	Building Commands
	Job Control
	Listing Your Jobs
	Managing Jobs
	More Job Control Commands
	Unix Environment Variables
	Environment Variables
	Special Environment Variable: PATH
	Special Environment Variable: PATH
	Other Important Variables
	Setting Environment Variables
	Text Editors
	Text Editors
	Vi Overview
	Vi Overview
	Useful vi commands
	Additional vi References
	Emacs Overview
	Emacs Overview
	Additional Emacs References
	Unix Scripting
	Unix Scripting
	Unix Scripting: Arithmetic Operations
	Unix Scripting: Conditionals
	Unix Scripting: String Comparisons
	BASH Integer Comparisons
	TCSH Integer Comparisons
	Unix Scripting: Common File Tests
	Unix Scripting: For loops
	Quoting in Unix
	Use of Quotes
	Double Quotes
	Single Quotes
	Back Quotes
	More Quote Examples
	Command-Line Parsing
	More UNIX Commands for Programmers
	Assignment
	References/Acknowledgements

