
1

GPU Architecture and
Applications
How to determine if an application
is well-suited to GPU acceleration

Programming GPUs today
A survey of current low-level
GPU programming models

Optimizing GPU Kernels
An in-depth look at optimizing
matrix multiply on a GPU

A GPU and Accelerator
Programming Model
Portable and incremental C and Fortran
programming on x64+GPU platforms

Michael
Wolfe

 2

Accelerated computing is one of the most
refreshing developments in high performance
computing (HPC) in the last several years.
Just when we appeared destined to count x86
cores like sheep, snoring through the latest
MPI ping pong latency scores, along comes a
paradigm promising orders of magnitude leaps
in compute node performance. Will the promise
be realized, or will accelerators succumb to the
tick-tock march of the x86 penguins that has
subsumed everything in its path except IBM’s
venerable POWER architecture? Is this a new
fast track to desktop Petaflops, or just another
HPC pretender?

Dr. Michael Wolfe is a technical Fellow and
compiler engineer at The Portland Group with
over 30 years of experience in research and
development of optimizing compilers for HPC
systems. In this series of articles originally
published on HPCwire, Michael objectively
explores the potential, power and perils of high
performance computing on CPU+Accelerator
platforms. Accelerated compute nodes can
become the next HPC building block only
if early successes on x64+GPU systems are
generalized into a node architecture and
programming model that is easily accessible to
mainstream HPC application developers and
users. Read on to learn whether this is possible,
and how accelerated computing might have
an impact on you, your applications and your
organization in the years ahead.

Douglas Miles
Director
The Portland Group

Compilers and More:
GPU Architecture and Applications

One of the most exciting developments in parallel program-
ming over the past few years has been the availability and
advancement of programmable graphics cards. High end
graphics cards cost less than a high end CPU and provide
tantalizing peak performance approaching or exceeding one
Teraflop. Since microprocessor peak performance tops out
at about 25 Gigaflops/core (single precision), this poten-
tial, at such low cost, is worth exploring. Harnessing this
performance, however, is problematical.

It’s important to note that the GPUs powering the graphics
cards are designed to do specific jobs very well. They are
not designed as general purpose processors, and in fact will
do a very poor job on many programs, even highly parallel
applications. The key is to determine whether your applica-
tion can fit into a programming model that maps well onto
the GPU. I’m going to discuss the GPU architecture, but
I’m going to start with an analogy, and probably stretch the
analogy to the breaking point; let’s discuss airline travel.

Suppose your job is to transport several dozen large tour
groups between London and Seattle, each group with 30-60
members. Your most likely choice is to use jet aircraft, a
flight of about 5,000 miles or 7,700 km. Going for the most
parallelism, you could use a new Airbus A380 to move
600 people in about 9 hours. One problem you have with
these jumbo jets is they don’t fit at the main terminal, so
you have to take an airport train out to the remote termi-
nal where the plane is parked; the train can only carry so
many people at a time, but let’s be optimistic and say it
will take 90 minutes to move everyone out to the remote
gate and load them, and another 90 minutes at the other
end for unloading. This gives us a 24 hour round trip. If
you regularly fill the plane, this could be a good investment
(though, at $300M, a bit more than a GPU). However, if
you only have a half-load, it doesn’t get them there twice as
fast or at half the cost (though it does reduce the load/un-
load time). Measuring performance as passenger-miles, the
performance comes from parallelism (many passengers),
not from latency reduction.

3

Compilers and More:
GPU Architecture and Applications

Thread

Processors

Special
Function Unit

Local
Memory

Device Memor y

Thread Execut ion Control Unit

Host Memor y

DMA

0 1 3 152

Thread

Processors

Special
Function Unit

Local
Memory

Thread

Processors

Special
Function Unit

Local
Memory

Thread

Processors

Special
Function Unit

Local
Memory

Thread

Processors

Special
Function Unit

Local
Memory

Alternatively, you could opt for a few smaller planes, say
two to four Boeing 787s. Each can carry about 200-250
passengers at the same speed, so you can move the same
number of people at the same rate. You also have the ad-
vantage of parking at the main terminal, so you can reduce
the passenger load/unload time to about half an hour, and
your total round trip time is only 20 hours. Of course, you
have to arrange for more crew, more landing slots at the
airports, and so forth. Your total capital investment is about
the same, but it gives you some flexibility. If you only have
200 people to move, you can leave all but one of the planes
behind, saving on fuel and crew costs.

Or, perhaps you could invest in the (future) hypersonic
transport, which some believe may be able to travel at
speeds of Mach 6, 7-8 times faster than the current subsonic
airliners. Assuming it takes time to get up to speed (and
to slow down for landing), the total flight time might drop
from 9 hours to 2.5 hours, or 7 hours round trip. If the ca-
pacity of your hypothetical hypersonic transport is 200 pas-
sengers, you can transport 600 people in each direction in
just 21 hours. Even better, if you only have to transport 400
people, you can get the same work done in 2/3 the time.
Of course, you are buying a higher cost transport, probably
paying more for fuel, and so on.

Very high performance CPUs are more like the hypersonic
transport; they are designed to give very high performance
for small tasks, and give performance for large tasks using
that speed. Multicore processors are more like the middle
option, several smaller, lower-capacity devices, each quite
capable, and you can save power by shutting one or more
of them down. The GPU is more like the super-jumbo jet;
it only gets high performance (passenger-miles) when you
have lots of passengers. It doesn’t do so well getting just
one or a few passengers across the ocean.

So, now to GPU architecture. GPUs were originally hard-
wired for specific tasks; as transistor budgets and demand
for flexibility grew, the hardware became more program-
mable. They still contain special hardware and functional
units specific to graphics tasks, but I’ll ignore those and

view today’s GPUs as compute accelerators. A typical
design, shown in the figure, is abstracted from the informa-
tion in the NVIDIA documentation; I’ll use both NVIDIA
terms and more standard computer architecture descrip-
tions of the various parts. The key to the performance is
all those thread processors; in the figure, there are 8 thread
processors in each of 16 multiprocessors, for 128 TPs total.
NVIDIA delivers GPUs with up to 30 multiprocessors and
240 TPs. In each clock, each TP can produce a result, giv-
ing this design a very high peak performance rating.

Each multiprocessor executes in SIMD mode, meaning
each thread processor in that multiprocessor executes the
same instruction simultaneously. If one thread proces-
sor is executing a floating point add, they all are; if one is
doing a fetch, they all are. Moreover, each instruction is
quad-clocked, meaning the SIMD width is 32, even though
there are only 8 thread processors. Unlike classical SIMD
machines, there isn’t a distinction between the scalar and
parallel operations, or mono and poly operations, to borrow
terms from C* and Dataparallel C, and Cn for the Clear-
speed card. Instead, the model is that many scalar threads
just happen to be executing in SIMD mode, something

 4

GPU Architecture and Applications

NVIDIA calls SIMT execution. Careful orchestration of the
32 threads that execute in SIMD mode is necessary for best
performance.

Stretching our analogy, think of each thread processor like
a seat in our superjumbo jet, and each multiprocessor as a
tour group. Imagine that when the flight attendant serves a
meal, the whole tour group must be served at once (syn-
chronously). The whole tour group must watch the same
movie on the seat-back screens at the same time, or they
all must read books at the same time, though some may
be napping at any time. When one person wants to use the
restroom, they all must go at once, even if not everyone
needs to (note that this is a long latency operation, which
will correspond to the long latency memory).

The multiprocessors themselves execute asynchronously,
and without communication. This last point is quite impor-
tant. In a multicore or multiprocessor system, the cores or
processors can communicate through the memory. If one
thread stores a value in variable A then sets a FLAG, the
hardware will guarantee that another thread on the same or
another core or processor will not see the updated FLAG
without seeing the updated value for A. The hardware sup-
ports a memory model that preserves the store order. No
such memory model is supported on the GPU; a program
could store a set of values on one multiprocessor and read
the same locations on another, but there is no guarantee that
the value fetched will be consistent (in the formal sense)
with the values stored. Relaxing the memory model allows
the hardware to reorder the stores from a multiprocessor,
allowing more throughput.

In this GPU, each multiprocessor has a special function
unit, which handles infrequent, expensive operations, like
divide, square root, and so on; it operates more slowly than
other operations, but since it’s infrequently used, it doesn’t
affect performance. There is a high bandwidth, low latency
local memory attached to each multiprocessor. The threads
executing on that multiprocessor can communicate among
themselves using this local memory. In the current
NVIDIA generation, the local memory is quite small
(16KB).

There is also a large global device memory, up to 4GB in
some models. This is physical, not virtual; paging is not
supported, so all the data has to fit in the memory. The
device memory has very high bandwidth, but high latency
to the multiprocessors. The device memory is not directly

accessible from the host, nor is the host memory directly
visible to the GPU. Data from the host that needs to be
processed by the GPU must be moved via DMA across an
IO bus from the host to the device memory, and the results
moved back (like loading jumbo jets using thin airport
trains).

So, there is a hierarchy of parallelism on this GPU; threads
executing within a multiprocessor can share and communi-
cate using the local memory, while threads executing on dif-
ferent multiprocessors cannot communicate or synchronize.
This hierarchy is explicit in the programming model as
well. Parallelism comes in two flavors; outer, asynchronous
parallelism between thread groups or thread blocks, and in-
ner, synchronous parallelism within a thread block. All the
threads of a thread block will always be assigned as a group
to a single multiprocessor, while different thread blocks can
be assigned to different multiprocessors.

Because of the high latency to the device memory, the mul-
tiprocessors are highly multithreaded as well. When one set
of SIMD threads executes a memory operation, rather than
stall, the multiprocessor will switch to execute another set
of SIMD threads. The other SIMD threads may be part of
the same thread block, or may come from a different thread
block assigned to the same multiprocessor. Think of this as
the flight attendant serving another tour group while one
group gets up to visit the restrooms.

A GPU is designed as a throughput engine; it’s designed to
get a lot of work done on a lot of data, all very quickly, all
in parallel (lots of tour groups flying in the same direction).
To get high performance, your program needs enough paral-
lelism to keep the thread processors busy (lots of custom-
ers). Each of your thread blocks needs enough parallelism
to fill all the thread processors in a multiprocessor (big tour
groups), and at least as many thread blocks as you have
multiprocessors (many big tour groups). In addition, you
need even more parallelism to keep the multiprocessors
busy when they need to thread-switch past a long latency
memory operation (many many big tour groups).

However, lots of parallelism isn’t quite sufficient. The GPU
is designed for structured data accesses, which graphics
processing naturally uses (here’s where my analogy falls
apart). The memory is designed for efficient access to con-
tiguous blocks of memory, meaning adjacent threads using
adjacent data. Your program will run noticeably slower if it
does random memory fetches, or (shades of vector process-

5

GPU Architecture and Applications

ing) simultaneous accesses to the same memory bank. But
if your program is structured to use contiguous data, the
memory can run at full bandwidth.

The program model reflects this structure as well. Consider
a simple graphics shader; you want to compute the color at
each pixel on the screen. Generally, the color at each pixel
is more or less independent of the color at every other pixel
(natural parallelism), and the problem has a natural index
set (the two-dimensional pixel coordinate). So the program
model is a scalar program to be executed at each pixel co-
ordinate, replicated and parallelized over the index set. The
scalar program is a kernel and the index set is the domain.
The indices for each instance of the kernel determine which
pixel is being processed, and are used to fetch and store
data.

When you write a general purpose program for a GPU,
you must currently follow this model as well. You must
split out the computational kernels and the corresponding
domains. You have to identify which data will live in the
local memory, and move data between the local and device
memory, keeping in mind that the local memory data only
has a lifetime of a thread block.

Each kernel will complete its entire domain before the next
kernel starts. In our airline analogy, you have to complete
the Eastbound flight for all the tour groups on board before
starting the next flight Westbound. The parallelism comes
from the domain of a single kernel (data parallelism, all
tour groups flying East at the same time), not from running
many different kernels at once (task parallelism, lots of tour
groups flying all over the country or world at once). This
naturally limits (or focuses users on) the applications for
which a GPU is appropriate.

Another key difference between GPUs and more general
purpose multicore processors is hardware support for paral-
lelism. GPUs don’t try to address all the possible forms of
parallelism, but they do solve their target range quite well.
We’ve already mentioned the SIMD instruction sets within
a multiprocessor and hardware multithreading. There is also
a hardware thread control unit that manages the distribution
and assignment of thread blocks to multiprocessors. There
is additional hardware support for synchronization within a
thread block. Your common multicore processor depends
on software and the OS to provide these features, so
advantage GPU.

Programming GPUs Today
So far I haven’t really discussed how these highly parallel
GPU architectures are programmed. Past accelerators were
often programmed by offloading functions or subroutines;
the user or compiler would marshall the arguments, send
them to the accelerator, launch the function on the accelera-
tor, and wait for completion, perhaps doing other useful
work in the meantime. GPUs don’t fit this model; they
aren’t fully functional, separately programmable devices.
They really can only execute kernels, comprising a scalar
kernel program and an index domain over which to apply
it. If your function were that simple (matrix multiplication,
SGEMM), it could look like a subroutine engine. Anything
more complex, and the host has to manage the GPU execu-
tion by selecting and ordering a sequence of kernels to exe-
cute, and performing any scalar operations and conditionals
along the way. In the next article, I’ll discuss the sometimes
superhuman efforts necessary to decompose a program into
kernels and manage the data movement between the host
and the GPU.

 6

Compilers and More:
Programming GPUs Today

In the not-too-distant past, ENIAC was programmed with
switches and a plugboard. Stored program computers soon
followed that allowed one to write a program, load it into
the computer memory, and run it. Initially, those programs
had to be written in or manually translated into binary
machine code, but soon assembly languages and assemblers
were developed to simplify the process.

Soon followed operating systems, multiprogramming,
and the concept of an application binary interface (ABI).
The ABI defines the interface between an application and
the operating system, libraries, and other components.
One aspect of an ABI is to define a calling convention,
including how arguments are passed to a function and
where the return value can be retrieved. For instance,
the x64 ABI defines that the first six integer or pointer
arguments are passed in registers (%rdi, %rsi, %rdx, %rcx,
%r8, %r9), the first eight floating point arguments (single
or double precision) are passed in SSE registers (%xmm0
to %xmm7), and any remaining arguments are pushed
on the stack (in right-to-left order). This allows up to 14
arguments to be passed in registers, which surely captures
most function calls.

But not all; WRF, the Weather Research and Forecasting
Model, is used for both atmospheric research and
numerical weather prediction. A version of WRF is
included in the SPEC CPU2006 suite. One routine
(copying from the WRF source code) is “a mixed phase ice
microphysics scheme” WSM5, with 49 arguments; it calls
a subroutine WSM52D to handle the two-dimensional
physics with 47 arguments (19 integers, 18 floating point
scalars, 10 floating point arrays). Imagine writing the
routine call by hand in assembly language; it takes over 100
instructions just to marshall the arguments and put them
in the right place.

Instead, the computing community created higher level
programming languages. While the first compiler (for
the A-0 system) was more like what we would today call
a loader, programming languages and compilers have
progressed to where we use many higher level languages
(C, Java, Fortran, others too many to enumerate) with
a great increase in productivity. Much programming is
done without using a textual language at all; for instance,
a spreadsheet is a form of a program, and various visual

programming interfaces exist. Now, the routine call in
WRF with 47 arguments takes one Fortran statement,
much easier to write and maintain than the corresponding
assembly code:

 CALL wsm52D(t, q(ims,kms,j), qci, qrs, &
 w(ims,kms,j), den(ims,kms,j), &
 p(ims,kms,j), delz(ims,kms,j), rain(ims,j), &
 rainncv(ims,j),delt, g, cpd, cpv, rd, rv, t0c, &
 ep1, ep2, qmin, &
 XLS, XLV0, XLF0, den0, denr, &
 cliq, cice, psat, &
 j, &
 ids, ide, jds, jde, kds, kde, &
 ims, ime, jms, jme, kms, kme, &
 its, ite, jts, jte, kts, kte)

If programming in binary is akin to using fingers and
teeth, and assembly language is like using sticks and stone
knives, think of higher level languages as the power tools of
programming.

Enter GPUs
The earliest GPUs were hardware graphics accelerators
to handle line drawing, area fill, image transfer, and so
on, offloading the CPU. The adoption of standardized
libraries such as OpenGL and Direct3D drove the
development of hardware 3D graphics accelerators,
particularly with programmable shading capability. Since
2000, the programmability of the graphics accelerator
chips has improved to the point where they can be used for
nongraphics applications. This has been called GPGPU
(Generate Purpose computation on GPUs). Early GPGPU
programming used the existing graphics libraries, such as
OpenGL, mapping between computing concepts (array,
loop, execute) and graphics concepts (texture, kernel, draw).
This is truly heroic programming. It’s like using a chain
saw to carve blocks of ice: in the right hands, it can produce
something beautiful, but one wrong move and all you have
is ice cubes (or worse).

More recently, the programming research and development
community have tried to come up with programming
models that would map well onto GPUs and similar
parallel computers, particularly stream programming,
evidenced in several projects: StreamIt at MIT, Sh at

7

Waterloo (which led to RapidMind), Brook at Stanford
(which spun out briefly as PeakStream, and which AMD
has adopted and extended as Brook+), and others.

The GPU programming model that has caught the
most attention is NVIDIA’s CUDA. The language is an
extension to C; the software includes compiler, libraries,
and many examples. There is a large user community,
including a few dozen universities which use it in course
work. Moreover, the software is free, though it (obviously)
only targets NVIDIA GPUs.

Another programming model, very similar to CUDA and
being sponsored by Apple and others, is OpenCL. The
programming models are so similar that I’ll only point out
the differences here.

My last article discussed the GPU architectures and some
of the problems facing programmers who want to compute
on one. The first is to have an application with enough of
the right type of parallelism to map onto the GPU. As the
most parallelizable simple example, let’s see what it would
take to port a matrix multiplication to the GPU.

In Fortran, a matrix multiplication looks like a triply-nested
loop:

 do i = 1,n
 do j = 1,m
 do k = 1,p
 a(i,j) = a(i,j) + b(i,k)*c(k,j)
 enddo
 enddo
 enddo

In C, we have to decide whether to store the arrays
linearized in a long vector, or whether to use a vector of
pointers, or whether we have the degenerate case with fixed
size arrays. Let’s assume we use linearized arrays:

 for(int i = 0; i < n; ++i)
 for(int j = 0; j < m; ++j)
 for(int k = 0; k < p; ++k)
 a[i+n*j] += b[i+n*k] * c[k+p*j];

Matmul is a wonderful example to use when experimenting

with loop optimizations, because it can be rewritten in
so many ways. The three loops can be interchanged or
reordered in six ways, strip-mined or tiled, parallelized and
vectorized. To optimize for vector instructions, we want
the i (stride-1) index innermost, to maximize the memory
fetch/store bandwidth. For parallel multiprocessor or
multicore execution, we want the j index outermost, so each
processor or core is computing distinct columns of a. To
optimize for cache memories, we want to tile all the loops,
so the innermost loops compute a submatrix multiplication
where the submatrices all fit in cache. An optimized,
parallelized, vectorized matmul for a quad-core processor
might look like:

 jts = j tile size;
 ts = i tile size;
 kts = k tile size;
 parfor(int p = 0; p < 4; ++p)/* parallel loop */
 for(int jt = p; jt < m; jt += 4*jts)
 for(int it = 0; it < n; it += its)
 for(int kt = 0; kt < p; kt += kts)
 for(int j = jt; j < min(m,jt+jts); ++j)
 for(int k = 0; k < min(p,kt+kts); ++k)
 for(int i = 0; i < min(n,it+its); ++i)
 /* vector mode */
 a[i+n*j] += b[i+n*k] * c[k+p*j];

So, even optimizing this for a modern parallel workstation
or server takes significant work, knowledge of the memory
hierarchy, and experimentation. In the past, programmers
would have to do this all manually, though advanced
compiler technology is now able to achieve this kind of
optimization automatically. However, we want to compute
the matmul on the GPU, using CUDA. Let’s list the steps
we must take in our program to get there.

Initialize the GPU. since we only have to do this once for
the whole application, I’ll ignore this step.

Allocate memory on the GPU. We’ve already allocated the
memory (explicitly or implicitly) on the CPU for the arrays,
but the GPU executes from its own separate memory.
So, the first thing we must do is allocate memory for new
copies of the data on the GPU. In concept, it’s just like
executing a malloc on the GPU, but things are never quite
so simple. We can start by simply allocating linear GPU
memory:

 8

 cudaMalloc(&dev _ a, n*m*sizeof(float));
 cudaMalloc(&dev _ b, n*p*sizeof(float));
 cudaMalloc(&dev _ c, p*m*sizeof(float));

However, we may decide (or find) that the matrix columns
aren’t aligned on 64-byte boundaries (we’re using column-
major storage in our example). Since aligned memory
accesses are faster than unaligned, we can force alignment
by using a different allocation routine:

 cudaMallocPitch(&dev _ a, &pitch _ a, n*sizeof(float), m);
 cudaMallocPitch(&dev _ b, &pitch _ b, n*sizeof(float), p);

 cudaMallocPitch(&dev _ c, &pitch _ c, p*sizeof(float), m);

This returns the allocated (aligned) size for the first
dimension (the pitch), given the requested sizes of the two
dimensions. There is a third option, allocating CUDA
Arrays and mapping them into textures, which I’ll not
discuss.

Move data to the GPU. The b and c matrices on the host
must be copied from host memory to GPU memory. Even
though our example loops don’t actually initialize the value
of a to zero, we’ll assume that’s what we wanted, so we
only have to move b and c. The actual data movement will
be done with a hardware DMA transfer. Hardware DMA
doesn’t know about virtual memory and is optimized to
move large contiguous chunks of memory across the PCI
bus. We can ignore that issue and just move the data with a
specialized memcpy call:

 cudaMemcpy2D(dev _ b, pitch _ b, b, n*sizeof(float), 	
	 n*sizeof(float), p, cudaMemcpyHostToDevice);
 cudaMemcpy2D(dev _ c, pitch _ c, c, p*sizeof(float), 		

	 p*sizeof(float), m,cudaMemcpyHostToDevice);

The arguments give the destination pointer and pitch, the
source pointer and pitch, the two dimension sizes, and
copy direction. If we want to optimize the data transfer,
we can allocate the host arrays in page-locked (pinned)
memory. This ensures the arrays don’t get paged out by the
virtual memory manager. The disadvantage is that pinning
large amounts of memory reduces the amount of memory
available for paging, potentially reducing performance
for other applications running at the same time. CUDA
provides handy routines to allocate and free pinned host
memory. OpenCL seems to provide the ability to allocate
and copy data in a single function call.

Select the kernel domain. As I mentioned last time,
the GPU actually executes a (usually small) scalar kernel
program on each point of a multidimensional domain. The
selected domain affects both the host program (a little)
and the kernel program (a lot). Moreover, the domain

determines how much of what kind of parallelism is being
used. I’m going to expand on this point more in my next
article, but for now let’s assume we’ve chosen to execute the
i and j loops in parallel. This gives us a kernel domain of
nxm, where the body of the kernel is the k loop.

Write the GPU kernel. Again, I’ll expand on this next
time around, but the kernel might look like:

 __ global __ void mmkernel(float* a, float* b, float* c,
 int pitch _ a, int pitch _ b, int pitch _ c,
 int n, int m, int p)
 {
 int i = blockIdx.x*32+threadIdx.x;
 int j = blockIdx.y;
 float sum = 0.0;
 for(int k = 0; k < p; ++k)
 sum += b[i+pitch _ b*k] * c[k+pitch _ c*j];
 a[i+pitch _ a*j] = sum;
 }

Recalling the last article, the kernel will run 32 copies in
SIMT mode, with (n/32)xm thread blocks executing in
parallel on the various GPU multiprocessors. Note: this is a
particularly unoptimized matrix multiplication kernel, but
it should work.

Run the kernel. Here is one point where the CUDA
model really shines. Running the kernel actually takes
several steps, which are nicely hidden by the CUDA
compiler. The steps include:
1. Load the kernel to the GPU. When we run a program
on your CPU, we depend on the operating system to load
our program and prepare it for execution. If we use explicit
shared objects or dynamic load libraries, our program will
search for the object and load it at run time. GPU kernels
use a similar model; the GPU kernel must be downloaded
by the application from the host to the GPU. One
significant benefit is the GPU kernel is typically stored in
a portable format; when it is downloaded, it is translated
and optimized for the specific GPU installed in the
system. This lets us run the same program on systems with
different GPUs, without having to recompile or reoptimize
the application. Since the GPU manufacturers come out
with new models every 9-12 months, this works to our
advantage.
2. Define the execution domain; we’ve already decided on
the domain, now we have to put it in the program.
3. Pass the arguments to the kernel from the host.
4. Launch the kernel. The execution can proceed
asynchronously with the host, and the host can test
whether the kernel has completed across its whole domain.
In CUDA, this is done with a few lines:

Programming GPUs Today

9

 dim3 threads(32);
 dim3 grid(n/32, m);
 mmkernel<<< grid, threads >>>(dev _ a, dev _ b, dev _ c,

 pitch _ a, pitch _ b, pitch _ c, n, m, p);

The NVCC compiler translates this into the steps outlined
above. OpenCL is not so convenient. Since it is library-
based, it can’t depend on a compiler to simplify the steps.
Instead, we will have to do each step explicitly, something
approaching:

 /* program is a prebuilt kernel program */
 kernel = clCreateKernel(program, “mmkernel”);
 grid[0] = n;
 grid[1] = m;
 threads[0] = 32;
 threads[1] = 1;
 /* context is the GPU compute context */
 range = clCreateNDRangeContainer(context, 0, 2, grid, 	
	 threads);
 clSetKernelArg(kernel, 0, dev _ a, sizeof(dev _ a), NULL);
 clSetKernelArg(kernel, 1, dev _ b, sizeof(dev _ b), NULL);
 clSetKernelArg(kernel, 2, dev _ c, sizeof(dev _ c), NULL);
 clSetKernelArg(kernel, 3, pitch _ a, sizeof(pitch _ a),NULL);
 clSetKernelArg(kernel, 4, pitch _ b, sizeof(pitch _ b),NULL);
 clSetKernelArg(kernel, 5, pitch _ c, sizeof(pitch _ c),NULL);
 clSetKernelArg(kernel, 6, n, sizeof(n), NULL);
 clSetKernelArg(kernel, 7, m, sizeof(m), NULL);
 clSetKernelArg(kernel, 8, p, sizeof(p), NULL);
 /* queue is a GPU work queue */
 clExecuteKernel(queue, kernel, NULL, range, NULL, 0,NULL);

5. Wait for the kernel to finish. If we have a more complex
computation, we might queue up several kernels; they will
execute one after the other as they finish. In that case, we
only have to wait until the last kernel is done.
6. Move results back from the GPU to the host. This, after
all, is why we are doing the computation, to get the results.
This is simply the inverse of loading data onto the GPU:

 cudaMemcpy2D(a, n*sizeof(float), dev _ a, pitch _ a, 		
	 n*sizeof(float), m, cudaMemcpyDeviceToHost);

7. Free the device memory. Again, the inverse of allocation:

 cudaFree(dev _ a);
 cudaFree(dev _ b);
 cudaFree(dev _ c);

CUDA (and, from reports, OpenCL) lets us program the
GPU using a familiar language, C. However, a great deal
of the programming is done using library calls, and the
computation itself, the matrix multiplication, is divided
into two parts: the kernel, on the GPU, and its invocation
on the host. What was a multi-dimensional loop, which
modern compilers are pretty good at optimizing, has turned
into dozens of lines of code to manage memory, move data,
and deal with the architectural specifics of the GPU.

I’m sure some (or most, or perhaps all) of the readers will
at this point say “You shouldn’t be programming matrix
multiplication anyway; just call a library routine.” That’s
true; in fact, NVIDIA provides versions of the BLAS
routines, including SGEMM, which give very good
performance. But, if it takes this much effort to get a matrix
multiplication moved to the GPU, imagine how much
effort it takes to move a real computation (say, WRF). Here
I had only three arrays with regular access patterns and full
freedom to parallelize the loops. Can you begin to see the
difficulties?

And I haven’t even begun the real programming process,
such as handling error returns from the runtime calls.
Given the CUDA or OpenCL code, how portable will
it be, how will I maintain it to keep it at the peak of
efficiency?

As I mentioned above, the CUDA NVCC compiler
simplifies some of the coding details. Compilers are
good at bookkeeping, organizing details about memory
addressing, alignment, and so on. OpenCL seems to
be a step backwards, from a compiler-oriented solution
aimed at raising the level of programming to a library-
oriented solution aimed at giving low-level control to the
programmer.

Low-level control isn’t bad; that would be like saying
assembly language is bad. It isn’t bad, but it’s only necessary
for a very small bit of the programming we do today. If
high level languages are the power tools of programming,
we seem to be taking a step back to hand drills and saws.
Many woodworkers prefer hand tools, and they can make
beautiful furniture, but the cost is high and productivity
is low. We need hand tools, but we’ll be much more
productive with better power tools.

In the next article, I’ll look at the matrix multiplication
kernel, exploring various ways to optimize for parallelism
and memory bandwidth, and presenting performance.
Whether you think programming the host side of a GPU
program is hard, or just work, you’ll be entertained,
enlightened, or frightened when you see what goes into
the GPU side. I’m on record as saying that parallel
programming isn’t easy and never will be, but we can
and should develop the tools and training to turn this
Acceleration Nightmare into something about as scary as
a Halloween Haunted House.

Programming GPUs Today

 10

My last article discussed some of
the complexities of programming
GPUs today, focusing on how to
interface the host program with the
GPU. Here we focus on programming
the GPU itself. As with last time,
we’ll look at a simple single-precision
matrix multiplication, equivalent to
the BLAS SGEMM routine.
Matmul is a highly parallel algorithm, but let me
emphasize that parallelism does not equate to performance.
We need to carefully sculpt our algorithm to match the
parallelism available in the architecture in order to reap
the benefits. This is true whether we are targeting a GPU,
a multicore x64, or even a single core with packed SSE
operations. As an example, I took the simple matmul loop
(in C, but with the matrices stored column-major):

for(int j = 0; j < m; ++j)
 for(int k = 0; k < p; ++k)
 for(int i = 0; i < n; ++i)
 a[i+pitch _ a*j] += b[i+pitch _ b*k]*c[k+pitch _ c*j];

modified it several ways and ran it on an Intel Xeon
(3GHz, 6MB cache, 16GB memory, Penryn) using

Compilers and More:
Optimizing GPU Kernels

4096x4096 matrices (to compare with results we’ll see
below). With the loop in the order shown (stride-1 inner
loop), the program ran at 1.7 GFLOPs; this is compiled
C performance (using pgcc -fast). We can improve that
by tiling or blocking the loops, organizing the matmul
as a bunch of submatrix multiplications, sized so each
submatrix matmul fits in the processor cache. This
improves performance to 5.7 GFLOPs, and it jumps to over
22 GFLOPs when we use OpenMP directives and run on
all four cores. Advanced compilers help by automatically
managing the vectorization, unrolling, memory
alignments, adding prefetch instructions, and so forth.

We’re going to see several matmul GPU kernels, with
performance on our GPU development system, with
an NVIDIA GeForce GTX 280 (1GB memory, 30
multiprocessors), using NVIDIA’s CUDA language.
The host is a Linux (OpenSUSE 11.0) triple-core AMD
Phenom (2.1 GHz, 500KB cache, 4GB memory), though
the host hardly matters; the performance for these
experiments is entirely dominated by the GPU code.

As on the CPU, performance on a GPU can be fragile;
small changes to the program can make large differences
in performance. It’s easy to write a slow program. This
was a characteristic of High Performance Fortran, one
that (my opinion) was a major cause of its downfall; while
HPF made it easier to write parallel programs, it didn’t
make parallel programs fast. That is the job of the HPC
programmer; the same will be true for accelerators, GPUs,
and even multicore CPUs.

GPUs deliver their dramatic high performance through
a well-balanced, carefully managed, highly parallel
architecture. Algorithms running on the GPU must be
parallelized and balanced as well; this does not come for
free. Program development may cost extra time and effort
to understand and use the appropriate programming model,
a model that may not match the simple scalar processor
with cache model we are comfortable with on x64 hosts.
However, the analysis and programming techniques used
to develop GPU algorithms will probably help you develop
multicore programs as well. A good programming model
with good compilers and tools can relieve you of much
busywork, but you still have to think, and you still have to

11

understand algorithms and architecture, and you should
expect no less.

From here on below, I show many versions of matmul; if
you’re not a programmer or want to skip over the details,
look for the performance tags below, until the Summary;
you don’t want to miss the conclusions. If you are a
programmer and want to see all the code, you’ll find all the
sources in a kernels tarfile on the PGI website at
www.pgroup.com/lit/kernels/kernels.tar.

In the last article, I proposed a simple matmul kernel for
the GPU and focused on the host code to drive the kernel.
We’ll use that simple kernel to start the discussion. What I
had done is taken the matmul loop (as shown above), strip-
mined the stride-1 i loop to the CUDA SIMD width of 32:

 for(int is = 0; is < n; is += 32)
 for(int i = is; i < is+32; ++i)
 for(int j = 0; j < m; ++j)
 for(int k = 0; k < p; ++k)

 a[i+pitch _ a*j] += b[i+pitch _ b*k] * c[k+pitch _ c*j];

run the i element loop as a thread block, and run the is strip
loop and j loop in parallel:

 parfor(int is = 0; is < n; is += 32) /* K1 */
 parfor(int j = 0; j < m; ++j)
 SIMDfor(int i = is; i < is+32; ++i)

 for(int k = 0; k < p; ++k)
 a[i+pitch _ a*j] += b[i+pitch _ b*k] * c[k+pitch _ c*j];

then optimized by hand just a little. The parallel grid loops
and the SIMD thread block loop are handled implicitly by
the GPU hardware and firmware, so they don’t appear in
the kernel code. All that’s left is the body, the k loop. The
final kernel in all its glory, cut-and-pasted from my CUDA
source file, is:

 extern “C” __ global __ void /* K1 */
 mmkernel(float* a, float* b, float* c,
 int pitch _ a, int pitch _ b, int pitch _ c,
 int n, int m, int p)
 {
 int i = blockIdx.x*32 + threadIdx.x;
 int j = blockIdx.y;
 float sum = 0.0;
 for(int k = 0; k < p; ++k)
 sum += b[i+pitch _ b*k] * c[k+pitch _ c*j];

 a[i+pitch _ a*j] = sum;
 }

28 GFLOPs - SIMD width 32
This version runs at 28 GFLOPs on our system (on
4096x4096 matrices). In the interest of full disclosure,
I compiled the kernels discussed here with NVIDIA’s
NVCC compiler version 2.0 with the -O option, and
compiled the driver routine with pgcc -fast; I ran each
program three times and report the middle performance
score, rounding the GFLOPs down to an integer value.
I will generally show a GFLOPs number most directly
comparable to a host matmul, including the overhead of
transmitting the operand matrices to the GPU memory
and the result matrix back. I will sometimes give the
performance of just the matmul kernel on the GPU;
while the two numbers are often quite close, the kernel-
only number is useful to expose more clearly the effect of
changes to the kernel program (since the overhead stays the
same). I show results for 4096x4096 matrices, which is close
to the peak performance for each kernel. For version K1,
the host-to-host and kernel-only performance were 28 and
29 GFLOPs, respectively.

That may sound like good performance, but we’re not nearly
taking full advantage of the available parallelism. Recall
the NVIDIA architecture description; the card I’m using
has 30 multiprocessors, each with eight thread processors,
quad-clocked to get a SIMD width of 32. The kernel above
is a scalar program, but the card runs 32 copies of it in
SIMD mode (or SIMT mode, to use NVIDIA’s term);
the 32 copies comprise a warp. Each multiprocessor uses
multithreading to support up to 32 warps (1024 scalar
threads). The 32 warps can come from different thread
blocks (different iterations of is or j) or from wider thread
blocks (more than 32 scalar threads). There are limits in this

 12

memory. The pseudo code is:

 parfor(int is = 0; is < n; is += 32) /* K2 */
 parfor(int j = 0; j < m; ++j)
 SIMDfor(int i = is; i < is+32; ++i)
 for(int ks = 0; ks < p; ks += 32)
 cb[ks:ks+31] = c[ks+pitch _ c*j:ks+31+pitch _ c*j];
 for(int k = ks; k < ks+32; ++k)
 a[i+pitch _ a*j] += b[i+pitch _ b*k] * cb[k-ks];

33 GFLOPs - cached access to c, SIMD width 32
55 GFLOPs - cached access to c, SIMD width 64
63 GFLOPs - cached access to c, SIMD width 128
Note the vector fetch of c into the temporary array cb.
This is handled in kernel K2 by letting each thread fetch
one element and storing into the multiprocessor local
memory, so the inner loop only has one device memory
fetch; the fetch of cb from the local memory is almost
as fast as a register access; we see the performance
improves to 33 GFLOPS, up from 28. We can again
increase the number of threads per block from 32 to 64
and 128, and we see performance improve from 33 to
55 and 63 GFLOPs. As with kernel K1, increasing to
256 threads per block does not improve performance.
An implementation detail: with more than one warp per
thread block, we need to synchronize the warps after
loading the temp array cb, and before reloading it the
next time around the ks loop; see the CUDA source
code for this detail.

63 GFLOPs - cached access to c, SIMD width 64, unroll
inner loop
But we’re not done yet. What if we unroll the inner loop,
to reduce the loop overhead? We might unroll to a factor
of 2 or 4 or even 16. Unrolling the inner loop once in the
64-wide K2 kernel does improve performance, getting
63 GFLOPs, but more unrolling doesn’t help, and it
doesn’t help the 128-wide kernel.
So far we’ve got two kernel versions, with variations in
the thread-block (vector) size and unrolling. And we’ve
only just begun. We tried unrolling the inner k loop;
what if we try unrolling one of the outer loops? We
could let each kernel instance compute two values of the
i loop. The pseudo-code looks like:

 parfor(int is = 0; is < n; is += 64) /* K3 */
 parfor(int j = 0; j < m; ++j)
 SIMDfor(int i = is; i < is+32; ++i)
 for(int ks = 0; ks < p; ks += 32)
 cb[ks:ks+31] = c[ks+pitch _ c*j:ks+31+pitch _ c*j];
 for(int k = ks; k < ks+32; ++k)
 a[i+pitch _ a*j] += b[i+pitch _ b*k] * cb[k-ks];
 a[i+32+pitch _ a*j] += b[i+32+pitch _ b*k] * cb[k-ks

generation of the card: each multiprocessor can support up
to eight simultaneous thread blocks, and a thread block can
support up to 16 warps.

36 GFLOPs - SIMD width 64
The K1 kernel has only one warp per thread block,
so at most eight thread blocks will be active on each
multiprocessor, out of the possible 32. I can improve that by
strip-mining the i loop to a width of 64, changing the 32
to a 64 in kernel K1, and running with 64 threads in each
thread block. With this version, if eight thread blocks are
scheduled on each multiprocessor, we get up to 16 warps,
so the multithreading is more effective. And we see a
performance increase, to 36 GFLOPs (38 kernel-only).

35 GFLOPs - SIMD width 128
So what happens if I try this trick again, doubling or
quadrupling the strip size to 128 or 256? This increases
the maximum number of warps per multiprocessor to 32
(which is the limit), so we might expect another bump in
performance from improved multithreading. Unfortunately,
we don’t; the performance drops slightly to 35 GFLOPs
(36 kernel-only) in both cases. This I can’t quite explain.

1.7 GFLOPs - SIMD width 32, non-stride-1 array accesses
Even with this simple version, I made some assumptions
and optimizations, knowing something about the
machine. I know that stride-1 accesses in a thread block
are important, so I ran the stride-1 i loop along the thread
index. Just how important is that? Suppose we switch the
i and j indices, so the SIMD memory accesses are along a
column; the performance drops from 28 GFLOPs (K1) to
1.7. We can call this kernel Ks (s for stupid, or slow).

Still, we’ve only just started. If we inspect the code for
kernel K1, we note that the inner loop contains two
memory fetches, for b and c; both fetches are from
the device memory, which has a very high latency. In
particular, the fetch for c loads the same element for all
the threads in the thread block. The memory system is
designed for high bandwidth when all the threads access
consecutive elements, such as with the b access. This used
to be called superword access in classical vector machines,
where the memory returns 64-bytes (or more) at a time.
Kernel K1 doesn’t take advantage of this memory design
for the c access, but we can fix that. Let’s strip-mine the
k loop, and load a strip of c into the multiprocessor local

Optimizing GPU Kernels

13

53 GFLOPs - cached access to c, SIMD width 32, unroll i loop
63 GFLOPs - cached access to c, SIMD width 32, unroll i loop 3x
Each iteration of the i loop now computes values for i and
i+32. We don’t expect much advantage here, since the
only values shared between the two i iterations are loaded
from the local memory, which is already pretty fast. But
even this kernel improves upon K2, with 53 GFLOPs.
We can improve this to 63 GFLOPs by unrolling more or
increasing the SIMD width to 64.

Next, we can try unrolling the j loop, so each kernel
computes values for j and j+1. The pseudo-code is:

parfor(int is = 0; is < n; is += 32) /* K4 */
 parfor(int j = 0; j < m; j += 2)
 SIMDfor(int i = is; i < is+32; ++i)
 for(int ks = 0; ks < p; ks += 32)
 cb0[ks:ks+31] = c[ks+pitch _ c*j:ks+31+pitch _ c*j];
 cb1[ks:ks+31] = c[ks+pitch _ c*(j+1):ks+31+pitch _ c*(j+1)];
 for(int k = ks; k < ks+64; ++k)
 a[i+pitch _ a*j] += b[i+pitch _ b*k] * cb0[k-ks];
 a[i+pitch _ a*(j+1)] += b[i+pitch _ b*k] * cb1[k-ks];

59 GFLOPs - cached access to c, SIMD width 32, unroll j loop
98 GFLOPs - cached access to c, SIMD width 64, unroll j loop
117 GFLOPs - cached access to c, SIMD width 128, unroll j loop
Here, we note the two assignments in the k loop fetch the
same value of b from the device memory. This version gets
59 GFLOPs; it jumps to 98 GFLOPs when we increase
the SIMD width to 64, and again to 117 GFLOPs with
a SIMD width of 128. Now we’re starting to see real
performance, over 100 GFLOPs, host-to-host.

176 GFLOPs - cached access to c, SIMD width 128, unroll j loop
3x
But we’re not done yet. What if we unroll the j loop by four
iterations instead of just two? This involves keeping four
partial sums. Now the performance with SIMD width 128
is 176 GFLOPs host-to-host, and over 210 GFLOPs on the
device.

202 GFLOPs - cached access to c, SIMD width 128, unroll j
loop 3x and k loop 1x
208 GFLOPs - cached access to c, SIMD width 128, unroll j and
k loops 3x
More unrolling of the j loop doesn’t improve performance,
but what if we combine this with unrolling the k loop?
If we unroll the j loop 3 times and the k loop once, with
SIMD width of 128, we get 202 GFLOPs; unrolling the
k 3 times gives us 208 GFLOPs (host-to-host), and 265
GFLOPs (kernel-only).

Our peak performance so far looks pretty good. It took
some experimentation, but we have a version that uses
only 128 threads and 2KB local memory per thread block,
allowing up to 8 thread blocks on each multiprocessor, so
taking great advantage of the multithreading properties
of the machine. We haven’t even fully explored all the
combinations. What if we combine i loop unrolling with
the j and k loop unrolling? Should we explore other unroll
factors as we combine unrolling multiple loops? What if we
use pointer arithmetic instead of array references (this really
questions whether NVCC optimizes the array references,
but it seems to do a good job there)? I desperately wanted to
break the 200 GFLOP barrier, and reached it. The version
of SGEMM that comes with CUDA BLAS gets about 260
GFLOPs (host-to-host) on a 4096x4096 matrix; I’ve still
got some work to do to get that extra 25%.

When we optimize a matmul for a general purpose CPU
with a cache, we’ve learned that we need a tiled algorithm.
We can do the same thing on the GPU, where we fit the
submatrices in the local memory. The pseudo code is:

 parfor(int is = 0; is < n; is += 16) /* K5 */
 parfor(int js = 0; js < m; js += 16)
 SIMDfor(int i = 0; i < 16; ++i)
 SIMDfor(int j = 0; j < 16; ++j)
 /* init A tile */
 at[is:is+15][js:js+15] = 0.0;
 for(int ks = 0; ks < p; ks += 16)
 /* load B tile */
 bt[i][ks:ks+15] = b[i+pitch _ b*ks:
			 i+pitch _ b*(ks+15):pitch _ b];
 /* load C tile */
 ct[ks:ks+15][j] = c[ks+pitch _ c*(js+j):
 (ks+15)+pitch _ c*(js+j)];
 /* tile MM */
 for(int k = ks; k < ks+64; ++k)
 at[i][j] += bt[i][k]*ct[k][j];
 /* store A tile */
 a[i+pitch _ a*j] = a[i][j];

164 GFLOPs - tiled loops, SIMD width 16x16, cached access to
b and c
We have to choose a tile size, and square tiles seem to make
as much sense as any other shape, at least to start with. We
choose 16x16 tiles and run 256 threads in a thread group,
so each thread will compute one element of the a tile; this
lets us keep that element in a register. The actual kernel
code is slightly more complex than the previous kernels. It’s
important to recall that this scalar kernel is one of a thread
group or cohort of 256 cooperating instances, and it only
works in that domain. This version gives us 164 GFLOPs,
not quite as good as we’ve already seen. Why not? One
reason is the thread group is 256 threads, so we hit the
1024 threads/multiprocessor limit with only four thread
groups. We can address that as well, but I still haven’t
quite reached the peak performance shown on kernel K4.

Optimizing GPU Kernels

 14

The CUDA blas (260 GFLOPs) SGEMM is similar to
this tiled version. It’s based on work by Vasily Volkov, a
Computer Science PhD student at Cal; Vasily’s code uses
a 16x4 thread block with the i loop unrolled by 16, the j
loop by 4, and the k loop by 16 (if I read it right). The code
might be hard to follow, but it sure beats trying to code a
matmul in DirectX.

So let’s suppose we’ve decided on the K4 algorithm. It
assumes that the matrix sizes are multiples of 32 (or 64
or 128) in all dimensions, though it doesn’t require the
matrices to be square. One way to satisfy this is to pad
all your matrices, filling in zeroes in the extra rows and
columns. Matrix addition and multiplication will preserve
these zeroes and will not pollute the actual values; this
may be your best option. Another solution is to add
conditionals so as to not run off the ends of the matrices.
This complicates the code and can affect performance.
The simplest method to test for array limits is to put
conditionals around the device memory fetch and store
operations; if we fill in zeros to the b and c tiles, the
innermost loop won’t need any tests. I reproduce the body
of the kernel here:

 float sum0 = 0.0, sum1 = 0.0;
 for(int ks = 0; ks < p; ks += 32){
 if(ks+tx < p && j < m)
 cb0[tx] = c[ks+tx+pitch _ c*j];
 else
 cb0[tx] = 0.0;
 if(ks+tx < p && j+1 < m)
 cb1[tx] = c[ks+tx+pitch _ c*(j+1)];
 else
 cb1[tx] = 0.0;
 __ syncthreads();
 if(i < n){
 for(int k = ks; k < ((ks+32 < m) ? ks+32 : m); ++k){
 float rb = b[i+pitch _ b*k];
 sum0 += rb * cb0[k-ks];
 sum1 += rb * cb1[k-ks];
 }
 }
 __ syncthreads();
 }
 if(i < n && j < m)
 a[i+pitch _ a*j] = sum0;
 if(i < n && j+1 < m)
 a[i+pitch _ a*(j+1)] = sum1;

Even if i and j are outside the matrix bounds, we can’t
just skip the body of the loop for two reasons. First, each
thread is part of a thread group, and as such it loads part
of the data into the local temporary arrays cb0 and cb1;
even if this thread has nothing to compute, it has to do
its part of the shared work. Second, we have those pesky
barrier synchronizations; all threads in a thread group must

participate in the barrier, so even if this thread has no work
to do, it had better reach those barriers.

These tests cost about 5% in performance, in the simplest
version of K4. It’s less costly in the more complex versions,
but the code gets messy when mixed with some of the
unrolling. But it will work with any matrix size, whereas
K4 requires the size to be a multiple of 32.

Of course, if you need to deliver a library that works
regardless of the matrix sizes, you have another option.
You can create two versions of your routine, a faster one
that works when the matrix sizes are appropriate multiples
of 16, and a slower, general purpose one that works for
other matrix sizes, with a conditional test to execute the
right one. Then you get your good benchmark numbers (all
benchmarks use large powers of two, right?), and you get
right answers, too.

Summary
The point I’ve tried to make is how sensitive the
performance of the GPU is to the formulation of your
kernel, and how much and what kind of experimentation
you’ll need to do to optimize your performance. How
much of the optimization process will carry over from
one GPU to another, or from one generation to the next
from the same vendor? Many programmers like this low
level of control, and it certainly could be appropriate when
developing a numerical library, in the same way assembly
language is appropriate.

To be fair, the same is true on your CPU as well; you need
to optimize your matmul for (packed) vector operations,
memory strides, and cache locality. A bad program will
run several times slower than a good one; ordering the
matmul loops so the inner loop is non-stride-1 reduces
the performance on large matrices (on our Penryn) by
more than a factor of 10. But compilers and tools are far
more mature and helpful when compiling for an x64, IBM
POWER, Sun SPARC, or other CPU.

I’m sure many readers would like to tell me (again) that I
should be using the prebuilt library version of SGEMM for
matmul, not writing my own. Save your breath. Matmul is
just one simple example here, three loops, three matrices,
lots of parallelism, and yet I put in several days of work to
get this seven line loop optimized for the GPU.
We can compare the evolution of GPU programming to
the evolution of shared-memory parallel programming.

Optimizing GPU Kernels

15

GPU Matmul Performance

0

50

100

150

200

250

K1/none K2/none K2/k2 K3/i2 K3/i4 K4/j2 K4/j4 K4/j4,k2 K4/j4,k4 K5/none

Kernel#/Unrolling

G
F
L
O

P
S

32-wide SIMD 64-wide SIMD 128-wide SIMD 16x16 Rect.

There were many new languages designed to take
advantage of parallelism (Id, SISAL, many others). Many
low-level libraries were written to create and manage
threads, eventually standardizing on POSIX threads
(aka pthreads). Much work was done on automatic
parallelization, dating back to the 1960s and 1970s. When
successful commercial shared-memory multiprocessors
became more widely available in the 1980s, an effort began
to standardize a less intrusive programming interface for
multiple processors, driven by multiprocessor workstations,
eventually resulting in the OpenMP API, which defines
directives and a runtime interface to a shared-memory
parallel programming model.

GPUs have their own set of domain-specific languages,
including GLSL (OpenGL Shading Language), HLSL
(high level shader language) from Microsoft for DirectX,
and Cg (C for graphics) from NVIDIA. We’re now in
a period with development of low-level libraries and
interfaces to create and manage GPU threads; the OpenCL
effort aims to standardize this. The cost to port a nontrivial
application to this model is high, though the potential
performance is alluring.
Luckily for me, my application (the compiler) runs on the
host, and I don’t have to port that. But what about the real

application programmer, who has thousands (or hundreds
of thousands) of lines of code? Is it feasible to take GPU
or accelerator programming concepts, abstract them into
a predictable and useful programming model, and present
them using a portable programming interface, in the same
way that OpenMP abstracts and presents multiprocessor
and multicore systems? That’s a topic for the next article.

Optimizing GPU Kernels

“I desperately wanted to
break the 200 GFLOP
barrier, and reached it.”

 16

Okay, maybe the title should be
“Languages and More,” but I promise
to talk about compilers further on
below.
In these articles I’ve discussed parallel programming, and
programming GPUs and accelerators in particular. In an
earlier HPCwire article, I predicted that accelerator-based
systems would dominate high performance computing,
and suggested that an evolutionary approach to migrating
applications from CPUs to accelerators was possible and
appropriate. In the first article here, I discussed in more
detail the specifics of GPU hardware architecture, pointing
out its strengths for high performance computing (lots of
parallelism), as well as its weaknesses (limited to specific
parallelism domains). In the second article, I showed
what it takes to start porting a CPU program to a GPU,
exposing some of the complexities of the interactions
between the host and the GPU. The specific examples use
NVIDIA’s very popular CUDA language, but I discuss
OpenCL briefly as well. OpenCL should be about ready
for public discussion by the time you read this. In the
third article, I showed the details of optimizing a simple

matmul kernel for a GPU, including testing various ways to
organize it and vary the parallelism parameters.

If you read these, or are familiar with current approaches
to programming accelerators, you are either discomforted
by the complexities, or excited at the levels of control you
can get. The low-level programming model in CUDA and
OpenCL certainly has its place, though it’s not for the faint
of heart. So, to go back to the first of these articles, can we
come up with a different model of GPU and accelerator
programming? One that retains most of the advantages
of CUDA or OpenCL, but without requiring complete
program rewrites? That can be applied to different target
accelerators, and that retains the potential to develop and
test in a more accessible environment? In short, a model
that allows HPC programmers to focus on domain science
instead of on computer science?

Architectural Model
Let’s start by looking at the features of the architecture
that we want to use to advantage. Current GPUs are
specific implementations of a programming model that
works well for graphics problems. They support two levels
of parallelism: an outer fully-parallel doall loop level, and
an inner synchronous (SIMD or vector) loop level. Each
level can be multidimensional (2 or 3 dimensions), but
the domain must be strictly rectangular. The synchronous
level may not be fully implemented with SIMD or vector
operations, so explicit synchronization is supported and
required across this level. No synchronization is supported
between parallel threads across the doall level.

For those familiar with memory models, current GPUs
implement a particularly weak model. In particular, they
don’t support memory coherence between threads, unless
those threads are parallel only at the synchronous level and
the memory operations are separated by an explicit barrier.
Otherwise, if one thread updates a memory location and
another reads the same location, or two threads store a
value to the same location, the hardware does not guarantee
the results. You can’t say it gets the wrong answers, because
such programs are defined as being in error. There is a
software-managed cache on a GPU, and there are some
hardware caches that can be used as well, but only in
certain situations and limited to read-only data.

Compilers and More:
A GPU and Accelerator Programming Model

17

The most significant characteristic is that the memory on
the GPU or accelerator is separate from the host memory.
The host can’t simply read or write to the accelerator
memory because it’s not mapped into the virtual memory
space of the host. Similarly, the accelerator can’t simply
read or write to host memory; the host memory doesn’t
support the bandwidth necessary for the accelerator, not to
mention the need to support the virtual memory map on
the accelerator.

The chips support parallelism on the order of hundreds
of threads today, but effective programs need parallelism
on the order of thousands. This provides enough slack
parallelism to tolerate long latency memory operations by
thread switching, or multithreading, an idea pioneered by
the venerable Denelcor HEP almost 30 years ago.

In summary, today’s GPUs look like an attached processor
with its separate memory, that supports a multidimensional
rectangular domain of parallelism, including doall and
synchronous parallelism. We’d like a programming model
that simplifies most of the hardware details, but gives
experts finer levels of control. We probably can’t hide the
distinction between the two levels of parallelism, but we’d
like to avoid requiring the programmer to insert explicit
synchronization as much as possible. It’s easy to map doall
parallelism onto SIMD parallelism, but not the other way
around, so we’d like to encourage programmers to program
in a doall style when possible and appropriate. We probably
can’t completely hide the distinction between host memory
and accelerator memory, but the details of transferring data
should be handled automatically.

Our accelerator programming model shouldn’t focus on
the details of today’s GPUs as the ultimate accelerator
architecture. One can envision accelerators with mostly
(or only) synchronous parallelism (like the Clearspeed
CSX700 accelerator processor), or with mostly doall
parallelism (like the Tilera TILE64 chip). Future
accelerators may share physical and/or virtual memory with
the host, and may support a stronger memory model with
richer synchronization methods. Software and hardware
cache architectures are likely to change rapidly. A robust
programming model should express parallelism broadly
enough that compilers and tools can map an application

onto future generations of accelerators as well as it does
onto today’s GPUs. In fact, a successful model should be
able to map applications onto a multicore X64 processor,
where the SSE instructions implement the synchronous
parallelism, and the doall parallelism is mapped across
cores. From the available details, this model would even
map well onto Intel’s proposed Larrabee chip. There will
be work to tune the performance for each architecture,
both in the tools and even at the application level, but the
parallelism model needs to be reasonably portable.

Programming Model
How should we implement an accelerator-targeted
programming model? Three options immediately come to
mind: library, language, or directives. Looking at the array
of parallel programming choices, all intended to make
parallel programming easy, they span all three options.

Library-based solutions are attractive for many such
problems; they are easy to port and can be independent of
processor or compiler vendor. The MPI communication
library for large system communication is one well-known
example. It’s often easier to create and modify a standard
for a library than for a language.

Language-based solutions expose the semantics in the
language, allowing compilers or other tools to analyze
and optimize the program. Co-Array Fortran, which is
(currently) part of the next (allegedly minor) revision of
the Fortran standard, exposes MPI-like parallelism and
communication in the language, similar in some respects
to Unified Parallel C (UPC). A compiler for Co-Array
Fortran might be able to discover that a data copy from one
image (thread) to another in a loop could be vectorized,
given the appropriate support in the communication
layer; such analysis in an MPI program is left entirely to
the programmer. However, languages are expensive to
implement, typically change quite slowly, and mistakes are
hard to remedy once the standard is written.
A directive-based approach has some of the advantages
of language-based solutions, in that directives expose
the semantics to the compiler and other tools, allowing
intelligent analysis and optimization. Such an approach

 18

also allows a program to be developed and tested on
platforms that don’t support the directives, since the base
language is unchanged. OpenMP is a widely available,
successful parallel programming model based on directives
to describe the parallel regions of the program.

Getting good performance on today’s accelerators depends
on selecting a region that has enough work to amortize the
overhead of moving data between the host and accelerator.
This is one instance of the more general problem of
selecting a region that has enough compute intensity to
amortize the data traffic across the memory hierarchy, be
it separate memory or multilevel caches. Someday, we may
trust compilers to make this determination automatically,
but not yet.

So, let me propose a model that borrows strategies from
OpenMP, since I’m the PGI representative to the OpenMP
group. I’ll propose directives in C and Fortran programs
to delineate the regions of the program (loops) that should
be accelerated (compiled for the GPU or other accelerator).
Since the architecture model uses regular rectangular
domains, I’ll propose using parallel loops as the primitive
parallel operation.

The keys to tuning are minimizing and perhaps optimizing
the data traffic between the host and accelerator, and
selecting a schedule for the parallelism. In many cases,
a compiler can analyze the nested loops and determine
the input and output data sets, so it can manage the data
traffic automatically. However, we should never trust
automatic analysis to solve all our performance problems,
so we’ll need directives or clauses to modify or augment the
analysis.

As for scheduling, we saw in the previous article that
there can be many possible schedules for even the simplest
of parallel loops. Recent academic research in this area
depends on doing more or less what I did by hand:
generating many versions of the program and running
each of them, then choosing the best one from the bunch;
see Shane Ryoo’s PhD dissertation (University of Illinois,
2008), and joint work from Professors Ramanujam and
Sadayappan (Louisiana State University and The Ohio
State University) as good examples.

Such an approach is valid for research, or when searching
for a good algorithm for a highly tuned library, but
inappropriate for a compiler. Instead, we will depend on the
compiler to determine a reasonably good schedule (as we

do when we use automatic parallelization and vectorization
today), again with directives or clauses to modify or
augment the decisions.
It’s important that a programmer be able to control
any compiler optimization decision here; the difference
between good and bad performance is quite dramatic, and
at least in the immediate future, any compiler decision
will be made with only partial information. However, to
support this requires that the compiler tell the programmer
what decisions it has made, and hopefully why, so the
programmer knows whether it’s appropriate to step in and
make a change.

So let me propose two directives. The first delineates an
accelerator region, with optional clauses to control the
data movement between host and accelerator memory.
Borrowing liberally from OpenMP, I’ll propose a
#pragma acc prefix for C directives, and !$acc prefix in
Fortran. In C, I’ll describe an acceleration region as:

 #pragma acc region
 {
 /* loops to be accelerated go here */
 }

Fortran doesn’t have structured blocks (yet), so we’ll use
region and end region directives:

 !$acc region
 ! loops to be accelerated go here

 !$acc end region

Compare these to the OpenMP parallel regions. I propose
optional clauses to tell the compiler what data needs to be
copied into the region, from host to accelerator, what data
needs to be copied out, and what data is local to the region;
local data corresponds roughly to OpenMP private data.
Compiler analysis is often able to determine the input,
output and local data automatically.

The second directive is used to describe the mapping
of parallel loops onto the hardware parallelism, what I
called the schedule earlier. This corresponds roughly to
the OpenMP loop directive, which describes the work-
sharing pattern of parallel loops. It’s probably easiest to
explain with a familiar example; in the previous article, I
showed several versions of matmul in CUDA with different
schedules. The first (and simplest) version would be written
(in Fortran) using these directives as:

GPU & Accelerator Programming Model

19

 !$acc region
 !$acc do parallel
 do j = 1, m
 do k = 1, p
 !$acc do parallel, vector(32)
 do i = 1, n
 a(i,j) = a(i,j) + b(i,k)*c(k,j)
 enddo
 enddo
 enddo

 !$acc end region

The loop directives do two things: the first is to tell the
compiler about loop-level parallelism, augmenting its analysis.
The second is to tell the compiler how to schedule or map the
loop-level parallelism onto the hardware. In this loop, both
the i and j loops exhibit doall parallelism, but we want to map
the stride-1 i loop onto the synchronous (vector) parallelism in
strips of size 32, using doall parallelism between the strips. We
expect compilers to issue a warning message if a programmer
inserts a do parallel directive on a loop that compiler analysis
shows is in fact not parallel. Compare this code for clarity with
the corresponding CUDA kernel in the previous article.

This isn’t intended to be a user guide, tutorial, even a formal
proposal, but I hope to convince you that a directive-based
approach is feasible in the short term, and can address many
of the problems programmers will face when porting large
applications for use on host+GPU platforms in particular, and
host+accelerators in general.

This model does use reasonably sophisticated compiler analysis,
but nothing that hasn’t been implemented in commercial
parallelizing compilers for many years. In this example, the
compiler must take the following steps:

• Determine what data is input to the region; for this loop,
 the input data is a(1:n,1:m), b(1:n,1:p), c(1:p,1:m), and
 the loop limits.

• Determine what data is output to the region; this is
 simply a(1:n,1:m).

• Determine what data is local to the region, which is
 empty (except perhaps for the loop counters). Classical
 data flow and array region analysis solves all three of
 these problems.

• Determine which loops can run in parallel, augmented
 by information in the directives. For this loop, the j
 and i loops are completely parallel; the k loop requires
 a sum reduction, which is less efficient but could still be
 parallelized.
• Determine the loop schedule; in this example, the
 schedule is specified by the directives. Without the loop
 directives, the compiler would have to search among the
 possible schedules and select a best one; note to
 academics: this is still a fertile area for continued research.

• Generate code for the accelerator. For the most part, this
 is a classical compiler problem, and well known methods
 apply. On a target like the NVIDIA GPU, optimizing
 for the software-managed cache adds some complexity,
 but such problems have been addressed on past machines
 as well.

• Generate host code to move data to the accelerator,
 launch the accelerator kernel(s), and move results back
 from the accelerator.

Final Words
Will adoption and use of directives such as these make GPUs
more generally applicable? These directives may make GPUs
more accessible, but there are still serious limitations to the
parallelism GPUs support. The restrictions include rectangular
domains, two levels of parallelism, limited synchronization,
and a weak memory model (in the formal sense). This makes it
unlikely that anyone will be porting unstructured mesh code
or dynamic pointer-chasing data structures to a GPU anytime
soon.

Can this programming model be adapted to make parallel
programming easy in general? I’ve argued that parallel
programming is difficult, and always will be, regardless of
the programming model, and I’m not backing down. To
reiterate, this directive model is intended to make accelerator
programming accessible, so programmers can focus on
algorithms and performance, not on syntax and other
trivialities.

This proposed style of parallel programming isn’t universal,
but it does address a significant segment of the parallel
community. The model is portable, across GPUs, across
accelerators, even to multicore CPUs, though we need to
develop the compilers. Moreover, it’s nicely incremental; you
can use these directives to accelerate parts of your program
without having to undertake a whole rewrite, and, as with
OpenMP, you can still build and test your application on the
host by ignoring the directives altogether.

GPU & Accelerator Programming Model

Visit www.pgroup.com/resources/articles.htm to find
links to all of Michael Wolfe’s HPCwire articles.

 20

For more information about Accelerator Programming
www.pgroup.com

PGI and The Portland Group are registered trademarks of The Portland Group, Incorporated, an STMicroelectronics company. Other brands and names are the property of their respective owners.

The Portland Group

