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Accelerated computing is one of the most 
refreshing developments in high performance 
computing (HPC) in the last several years. 
Just when we appeared destined to count x86 
cores like sheep, snoring through the latest 
MPI ping pong latency scores, along comes a 
paradigm promising orders of magnitude leaps 
in compute node performance.  Will the promise 
be realized, or will accelerators succumb to the 
tick-tock march of the x86 penguins that has 
subsumed everything in its path except IBM’s 
venerable POWER architecture? Is this a new 
fast track to desktop Petaflops, or just another 
HPC pretender?

Dr. Michael Wolfe is a technical Fellow and 
compiler engineer at The Portland Group with 
over 30 years of experience in research and 
development of optimizing compilers for HPC 
systems.  In this series of articles originally 
published on HPCwire, Michael objectively 
explores the potential, power and perils of high 
performance computing on CPU+Accelerator 
platforms.  Accelerated compute nodes can 
become the next HPC building block only 
if early successes on x64+GPU systems are 
generalized into a node architecture and 
programming model that is easily accessible to 
mainstream HPC application developers and 
users.  Read on to learn whether this is possible, 
and how accelerated computing might have 
an impact on you, your applications and your 
organization in the years ahead.

Douglas Miles
Director
The Portland Group

Compilers and More: 
GPU Architecture and Applications

One of the most exciting developments in parallel program-
ming over the past few years has been the availability and 
advancement of programmable graphics cards. High end 
graphics cards cost less than a high end CPU and provide 
tantalizing peak performance approaching or exceeding one 
Teraflop. Since microprocessor peak performance tops out 
at about 25 Gigaflops/core (single precision), this poten-
tial, at such low cost, is worth exploring. Harnessing this 
performance, however, is problematical.

It’s important to note that the GPUs powering the graphics 
cards are designed to do specific jobs very well. They are 
not designed as general purpose processors, and in fact will 
do a very poor job on many programs, even highly parallel 
applications. The key is to determine whether your applica-
tion can fit into a programming model that maps well onto 
the GPU. I’m going to discuss the GPU architecture, but 
I’m going to start with an analogy, and probably stretch the 
analogy to the breaking point; let’s discuss airline travel.

Suppose your job is to transport several dozen large tour 
groups between London and Seattle, each group with 30-60 
members. Your most likely choice is to use jet aircraft, a 
flight of about 5,000 miles or 7,700 km. Going for the most 
parallelism, you could use a new Airbus A380 to move 
600 people in about 9 hours. One problem you have with 
these jumbo jets is they don’t fit at the main terminal, so 
you have to take an airport train out to the remote termi-
nal where the plane is parked; the train can only carry so 
many people at a time, but let’s be optimistic and say it 
will take 90 minutes to move everyone out to the remote 
gate and load them, and another 90 minutes at the other 
end for unloading. This gives us a 24 hour round trip. If 
you regularly fill the plane, this could be a good investment 
(though, at $300M, a bit more than a GPU). However, if 
you only have a half-load, it doesn’t get them there twice as 
fast or at half the cost (though it does reduce the load/un-
load time). Measuring performance as passenger-miles, the 
performance comes from parallelism (many passengers), 
not from latency reduction.
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Alternatively, you could opt for a few smaller planes, say 
two to four Boeing 787s. Each can carry about 200-250 
passengers at the same speed, so you can move the same 
number of people at the same rate. You also have the ad-
vantage of parking at the main terminal, so you can reduce 
the passenger load/unload time to about half an hour, and 
your total round trip time is only 20 hours. Of course, you 
have to arrange for more crew, more landing slots at the 
airports, and so forth. Your total capital investment is about 
the same, but it gives you some flexibility. If you only have 
200 people to move, you can leave all but one of the planes 
behind, saving on fuel and crew costs.

Or, perhaps you could invest in the (future) hypersonic 
transport, which some believe may be able to travel at 
speeds of Mach 6, 7-8 times faster than the current subsonic 
airliners. Assuming it takes time to get up to speed (and 
to slow down for landing), the total flight time might drop 
from 9 hours to 2.5 hours, or 7 hours round trip. If the ca-
pacity of your hypothetical hypersonic transport is 200 pas-
sengers, you can transport 600 people in each direction in 
just 21 hours. Even better, if you only have to transport 400 
people, you can get the same work done in 2/3 the time. 
Of course, you are buying a higher cost transport, probably 
paying more for fuel, and so on.

Very high performance CPUs are more like the hypersonic 
transport; they are designed to give very high performance 
for small tasks, and give performance for large tasks using 
that speed. Multicore processors are more like the middle 
option, several smaller, lower-capacity devices, each quite 
capable, and you can save power by shutting one or more 
of them down. The GPU is more like the super-jumbo jet; 
it only gets high performance (passenger-miles) when you 
have lots of passengers. It doesn’t do so well getting just 
one or a few passengers across the ocean.

So, now to GPU architecture. GPUs were originally hard-
wired for specific tasks; as transistor budgets and demand 
for flexibility grew, the hardware became more program-
mable. They still contain special hardware and functional 
units specific to graphics tasks, but I’ll ignore those and 

view today’s GPUs as compute accelerators. A typical 
design, shown in the figure, is abstracted from the informa-
tion in the NVIDIA documentation; I’ll use both NVIDIA 
terms and more standard computer architecture descrip-
tions of the various parts. The key to the performance is 
all those thread processors; in the figure, there are 8 thread 
processors in each of 16 multiprocessors, for 128 TPs total. 
NVIDIA delivers GPUs with up to 30 multiprocessors and 
240 TPs. In each clock, each TP can produce a result, giv-
ing this design a very high peak performance rating.

Each multiprocessor executes in SIMD mode, meaning 
each thread processor in that multiprocessor executes the 
same instruction simultaneously. If one thread proces-
sor is executing a floating point add, they all are; if one is 
doing a fetch, they all are. Moreover, each instruction is 
quad-clocked, meaning the SIMD width is 32, even though 
there are only 8 thread processors. Unlike classical SIMD 
machines, there isn’t a distinction between the scalar and 
parallel operations, or mono and poly operations, to borrow 
terms from C* and Dataparallel C, and Cn for the Clear-
speed card. Instead, the model is that many scalar threads 
just happen to be executing in SIMD mode, something 
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NVIDIA calls SIMT execution. Careful orchestration of the 
32 threads that execute in SIMD mode is necessary for best 
performance.

Stretching our analogy, think of each thread processor like 
a seat in our superjumbo jet, and each multiprocessor as a 
tour group. Imagine that when the flight attendant serves a 
meal, the whole tour group must be served at once (syn-
chronously). The whole tour group must watch the same 
movie on the seat-back screens at the same time, or they 
all must read books at the same time, though some may 
be napping at any time. When one person wants to use the 
restroom, they all must go at once, even if not everyone 
needs to (note that this is a long latency operation, which 
will correspond to the long latency memory).

The multiprocessors themselves execute asynchronously, 
and without communication. This last point is quite impor-
tant. In a multicore or multiprocessor system, the cores or 
processors can communicate through the memory. If one 
thread stores a value in variable A then sets a FLAG, the 
hardware will guarantee that another thread on the same or 
another core or processor will not see the updated FLAG 
without seeing the updated value for A. The hardware sup-
ports a memory model that preserves the store order. No 
such memory model is supported on the GPU; a program 
could store a set of values on one multiprocessor and read 
the same locations on another, but there is no guarantee that 
the value fetched will be consistent (in the formal sense) 
with the values stored. Relaxing the memory model allows 
the hardware to reorder the stores from a multiprocessor, 
allowing more throughput.

In this GPU, each multiprocessor has a special function 
unit, which handles infrequent, expensive operations, like 
divide, square root, and so on; it operates more slowly than 
other operations, but since it’s infrequently used, it doesn’t 
affect performance. There is a high bandwidth, low latency 
local memory attached to each multiprocessor. The threads 
executing on that multiprocessor can communicate among 
themselves using this local memory. In the current  
NVIDIA generation, the local memory is quite small 
(16KB).

There is also a large global device memory, up to 4GB in 
some models. This is physical, not virtual; paging is not 
supported, so all the data has to fit in the memory. The 
device memory has very high bandwidth, but high latency 
to the multiprocessors. The device memory is not directly 

accessible from the host, nor is the host memory directly 
visible to the GPU. Data from the host that needs to be 
processed by the GPU must be moved via DMA across an 
IO bus from the host to the device memory, and the results 
moved back (like loading jumbo jets using thin airport 
trains).

So, there is a hierarchy of parallelism on this GPU; threads 
executing within a multiprocessor can share and communi-
cate using the local memory, while threads executing on dif-
ferent multiprocessors cannot communicate or synchronize. 
This hierarchy is explicit in the programming model as 
well. Parallelism comes in two flavors; outer, asynchronous 
parallelism between thread groups or thread blocks, and in-
ner, synchronous parallelism within a thread block. All the 
threads of a thread block will always be assigned as a group 
to a single multiprocessor, while different thread blocks can 
be assigned to different multiprocessors.

Because of the high latency to the device memory, the mul-
tiprocessors are highly multithreaded as well. When one set 
of SIMD threads executes a memory operation, rather than 
stall, the multiprocessor will switch to execute another set 
of SIMD threads. The other SIMD threads may be part of 
the same thread block, or may come from a different thread 
block assigned to the same multiprocessor. Think of this as 
the flight attendant serving another tour group while one 
group gets up to visit the restrooms.

A GPU is designed as a throughput engine; it’s designed to 
get a lot of work done on a lot of data, all very quickly, all 
in parallel (lots of tour groups flying in the same direction). 
To get high performance, your program needs enough paral-
lelism to keep the thread processors busy (lots of custom-
ers). Each of your thread blocks needs enough parallelism 
to fill all the thread processors in a multiprocessor (big tour 
groups), and at least as many thread blocks as you have 
multiprocessors (many big tour groups). In addition, you 
need even more parallelism to keep the multiprocessors 
busy when they need to thread-switch past a long latency 
memory operation (many many big tour groups).

However, lots of parallelism isn’t quite sufficient. The GPU 
is designed for structured data accesses, which graphics 
processing naturally uses (here’s where my analogy falls 
apart). The memory is designed for efficient access to con-
tiguous blocks of memory, meaning adjacent threads using 
adjacent data. Your program will run noticeably slower if it 
does random memory fetches, or (shades of vector process-
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ing) simultaneous accesses to the same memory bank. But 
if your program is structured to use contiguous data, the 
memory can run at full bandwidth.

The program model reflects this structure as well. Consider 
a simple graphics shader; you want to compute the color at 
each pixel on the screen. Generally, the color at each pixel 
is more or less independent of the color at every other pixel 
(natural parallelism), and the problem has a natural index 
set (the two-dimensional pixel coordinate). So the program 
model is a scalar program to be executed at each pixel co-
ordinate, replicated and parallelized over the index set. The 
scalar program is a kernel and the index set is the domain. 
The indices for each instance of the kernel determine which 
pixel is being processed, and are used to fetch and store 
data.

When you write a general purpose program for a GPU, 
you must currently follow this model as well. You must 
split out the computational kernels and the corresponding 
domains. You have to identify which data will live in the 
local memory, and move data between the local and device 
memory, keeping in mind that the local memory data only 
has a lifetime of a thread block.

Each kernel will complete its entire domain before the next 
kernel starts. In our airline analogy, you have to complete 
the Eastbound flight for all the tour groups on board before 
starting the next flight Westbound. The parallelism comes 
from the domain of a single kernel (data parallelism, all 
tour groups flying East at the same time), not from running 
many different kernels at once (task parallelism, lots of tour 
groups flying all over the country or world at once). This 
naturally limits (or focuses users on) the applications for 
which a GPU is appropriate.

Another key difference between GPUs and more general 
purpose multicore processors is hardware support for paral-
lelism. GPUs don’t try to address all the possible forms of 
parallelism, but they do solve their target range quite well. 
We’ve already mentioned the SIMD instruction sets within 
a multiprocessor and hardware multithreading. There is also 
a hardware thread control unit that manages the distribution 
and assignment of thread blocks to multiprocessors. There 
is additional hardware support for synchronization within a 
thread block. Your common multicore processor depends 
on software and the OS to provide these features, so  
advantage GPU.

Programming GPUs Today
So far I haven’t really discussed how these highly parallel 
GPU architectures are programmed. Past accelerators were 
often programmed by offloading functions or subroutines; 
the user or compiler would marshall the arguments, send 
them to the accelerator, launch the function on the accelera-
tor, and wait for completion, perhaps doing other useful 
work in the meantime. GPUs don’t fit this model; they 
aren’t fully functional, separately programmable devices. 
They really can only execute kernels, comprising a scalar 
kernel program and an index domain over which to apply 
it. If your function were that simple (matrix multiplication, 
SGEMM), it could look like a subroutine engine. Anything 
more complex, and the host has to manage the GPU execu-
tion by selecting and ordering a sequence of kernels to exe-
cute, and performing any scalar operations and conditionals 
along the way. In the next article, I’ll discuss the sometimes 
superhuman efforts necessary to decompose a program into 
kernels and manage the data movement between the host 
and the GPU.
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In the not-too-distant past, ENIAC was programmed with 
switches and a plugboard. Stored program computers soon 
followed that allowed one to write a program, load it into 
the computer memory, and run it. Initially, those programs 
had to be written in or manually translated into binary 
machine code, but soon assembly languages and assemblers 
were developed to simplify the process.

Soon followed operating systems, multiprogramming, 
and the concept of an application binary interface (ABI). 
The ABI defines the interface between an application and 
the operating system, libraries, and other components. 
One aspect of an ABI is to define a calling convention, 
including how arguments are passed to a function and 
where the return value can be retrieved. For instance, 
the x64 ABI defines that the first six integer or pointer 
arguments are passed in registers (%rdi, %rsi, %rdx, %rcx, 
%r8, %r9), the first eight floating point arguments (single 
or double precision) are passed in SSE registers (%xmm0 
to %xmm7), and any remaining arguments are pushed 
on the stack (in right-to-left order). This allows up to 14 
arguments to be passed in registers, which surely captures 
most function calls.

But not all; WRF, the Weather Research and Forecasting 
Model, is used for both atmospheric research and 
numerical weather prediction. A version of WRF is 
included in the SPEC CPU2006 suite. One routine 
(copying from the WRF source code) is “a mixed phase ice 
microphysics scheme” WSM5, with 49 arguments; it calls 
a subroutine WSM52D to handle the two-dimensional 
physics with 47 arguments (19 integers, 18 floating point 
scalars, 10 floating point arrays). Imagine writing the 
routine call by hand in assembly language; it takes over 100 
instructions just to marshall the arguments and put them 
in the right place.

Instead, the computing community created higher level 
programming languages. While the first compiler (for 
the A-0 system) was more like what we would today call 
a loader, programming languages and compilers have 
progressed to where we use many higher level languages 
(C, Java, Fortran, others too many to enumerate) with 
a great increase in productivity. Much programming is 
done without using a textual language at all; for instance, 
a spreadsheet is a form of a program, and various visual 

programming interfaces exist. Now, the routine call in 
WRF with 47 arguments takes one Fortran statement, 
much easier to write and maintain than the corresponding 
assembly code:

       CALL wsm52D(t, q(ims,kms,j), qci, qrs,              & 
         w(ims,kms,j), den(ims,kms,j),                  & 
         p(ims,kms,j), delz(ims,kms,j), rain(ims,j),     & 
         rainncv(ims,j),delt, g, cpd, cpv, rd, rv, t0c, & 
         ep1, ep2, qmin,                              & 
         XLS, XLV0, XLF0, den0, denr,                  & 
         cliq, cice, psat,                             & 
         j,                                           & 
         ids, ide, jds, jde, kds, kde,                 & 
         ims, ime, jms, jme, kms, kme,                 & 
              its, ite, jts, jte, kts, kte ) 

If programming in binary is akin to using fingers and 
teeth, and assembly language is like using sticks and stone 
knives, think of higher level languages as the power tools of 
programming.

Enter GPUs
The earliest GPUs were hardware graphics accelerators 
to handle line drawing, area fill, image transfer, and so 
on, offloading the CPU. The adoption of standardized 
libraries such as OpenGL and Direct3D drove the 
development of hardware 3D graphics accelerators, 
particularly with programmable shading capability. Since 
2000, the programmability of the graphics accelerator 
chips has improved to the point where they can be used for 
nongraphics applications. This has been called GPGPU 
(Generate Purpose computation on GPUs). Early GPGPU 
programming used the existing graphics libraries, such as 
OpenGL, mapping between computing concepts (array, 
loop, execute) and graphics concepts (texture, kernel, draw). 
This is truly heroic programming. It’s like using a chain 
saw to carve blocks of ice: in the right hands, it can produce 
something beautiful, but one wrong move and all you have 
is ice cubes (or worse).

More recently, the programming research and development 
community have tried to come up with programming 
models that would map well onto GPUs and similar 
parallel computers, particularly stream programming, 
evidenced in several projects: StreamIt at MIT, Sh at 
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Waterloo (which led to RapidMind), Brook at Stanford 
(which spun out briefly as PeakStream, and which AMD 
has adopted and extended as Brook+), and others.

The GPU programming model that has caught the 
most attention is NVIDIA’s CUDA. The language is an 
extension to C; the software includes compiler, libraries, 
and many examples. There is a large user community, 
including a few dozen universities which use it in course 
work. Moreover, the software is free, though it (obviously) 
only targets NVIDIA GPUs.

Another programming model, very similar to CUDA and 
being sponsored by Apple and others, is OpenCL. The 
programming models are so similar that I’ll only point out 
the differences here.

My last article discussed the GPU architectures and some 
of the problems facing programmers who want to compute 
on one. The first is to have an application with enough of 
the right type of parallelism to map onto the GPU. As the 
most parallelizable simple example, let’s see what it would 
take to port a matrix multiplication to the GPU.

In Fortran, a matrix multiplication looks like a triply-nested 
loop:

        do i = 1,n 
        do j = 1,m 
          do k = 1,p 
            a(i,j) = a(i,j) + b(i,k)*c(k,j) 
          enddo 
        enddo 
      enddo 

In C, we have to decide whether to store the arrays 
linearized in a long vector, or whether to use a vector of 
pointers, or whether we have the degenerate case with fixed 
size arrays. Let’s assume we use linearized arrays:

      for( int i = 0; i < n; ++i ) 
        for( int j = 0; j < m; ++j ) 
          for( int k = 0; k < p; ++k ) 
            a[i+n*j] += b[i+n*k] * c[k+p*j]; 

Matmul is a wonderful example to use when experimenting 

with loop optimizations, because it can be rewritten in 
so many ways. The three loops can be interchanged or 
reordered in six ways, strip-mined or tiled, parallelized and 
vectorized. To optimize for vector instructions, we want 
the i (stride-1) index innermost, to maximize the memory 
fetch/store bandwidth. For parallel multiprocessor or 
multicore execution, we want the j index outermost, so each 
processor or core is computing distinct columns of a. To 
optimize for cache memories, we want to tile all the loops, 
so the innermost loops compute a submatrix multiplication 
where the submatrices all fit in cache. An optimized, 
parallelized, vectorized matmul for a quad-core processor 
might look like:

   jts = j tile size; 
   ts = i tile size; 
   kts = k tile size; 
   parfor( int p = 0; p < 4; ++p )/* parallel loop */ 
     for( int jt = p; jt < m; jt += 4*jts ) 
       for( int it = 0; it < n; it += its ) 
         for( int kt = 0; kt < p; kt += kts ) 
           for( int j = jt; j < min(m,jt+jts); ++j ) 
             for( int k = 0; k < min(p,kt+kts); ++k ) 
               for( int i = 0; i < min(n,it+its); ++i )  
                  /* vector mode */ 
                   a[i+n*j] += b[i+n*k] * c[k+p*j]; 

So, even optimizing this for a modern parallel workstation 
or server takes significant work, knowledge of the memory 
hierarchy, and experimentation. In the past, programmers 
would have to do this all manually, though advanced 
compiler technology is now able to achieve this kind of 
optimization automatically.  However, we want to compute 
the matmul on the GPU, using CUDA. Let’s list the steps 
we must take in our program to get there.

Initialize the GPU. since we only have to do this once for 
the whole application, I’ll ignore this step.

Allocate memory on the GPU. We’ve already allocated the 
memory (explicitly or implicitly) on the CPU for the arrays, 
but the GPU executes from its own separate memory. 
So, the first thing we must do is allocate memory for new 
copies of the data on the GPU. In concept, it’s just like 
executing a malloc on the GPU, but things are never quite 
so simple. We can start by simply allocating linear GPU 
memory:
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        cudaMalloc( &dev _ a, n*m*sizeof(float) ); 
    cudaMalloc( &dev _ b, n*p*sizeof(float) ); 
    cudaMalloc( &dev _ c, p*m*sizeof(float) ); 

However, we may decide (or find) that the matrix columns 
aren’t aligned on 64-byte boundaries (we’re using column-
major storage in our example). Since aligned memory 
accesses are faster than unaligned, we can force alignment 
by using a different allocation routine:

    cudaMallocPitch( &dev _ a, &pitch _ a, n*sizeof(float), m ); 
    cudaMallocPitch( &dev _ b, &pitch _ b, n*sizeof(float), p ); 

    cudaMallocPitch( &dev _ c, &pitch _ c, p*sizeof(float), m ); 

This returns the allocated (aligned) size for the first 
dimension (the pitch), given the requested sizes of the two 
dimensions. There is a third option, allocating CUDA 
Arrays and mapping them into textures, which I’ll not 
discuss.

Move data to the GPU. The b and c matrices on the host 
must be copied from host memory to GPU memory. Even 
though our example loops don’t actually initialize the value 
of a to zero, we’ll assume that’s what we wanted, so we 
only have to move b and c. The actual data movement will 
be done with a hardware DMA transfer. Hardware DMA 
doesn’t know about virtual memory and is optimized to 
move large contiguous chunks of memory across the PCI 
bus. We can ignore that issue and just move the data with a 
specialized memcpy call:

    cudaMemcpy2D( dev _ b, pitch _ b, b, n*sizeof(float),   	
	 n*sizeof(float), p, cudaMemcpyHostToDevice ); 
    cudaMemcpy2D( dev _ c, pitch _ c, c, p*sizeof(float), 		

	 p*sizeof(float), m,cudaMemcpyHostToDevice ); 

The arguments give the destination pointer and pitch, the 
source pointer and pitch, the two dimension sizes, and 
copy direction. If we want to optimize the data transfer, 
we can allocate the host arrays in page-locked (pinned) 
memory. This ensures the arrays don’t get paged out by the 
virtual memory manager. The disadvantage is that pinning 
large amounts of memory reduces the amount of memory 
available for paging, potentially reducing performance 
for other applications running at the same time. CUDA 
provides handy routines to allocate and free pinned host 
memory. OpenCL seems to provide the ability to allocate 
and copy data in a single function call.

Select the kernel domain. As I mentioned last time, 
the GPU actually executes a (usually small) scalar kernel 
program on each point of a multidimensional domain. The 
selected domain affects both the host program (a little) 
and the kernel program (a lot). Moreover, the domain 

determines how much of what kind of parallelism is being 
used. I’m going to expand on this point more in my next 
article, but for now let’s assume we’ve chosen to execute the 
i and j loops in parallel. This gives us a kernel domain of 
nxm, where the body of the kernel is the k loop.

Write the GPU kernel. Again, I’ll expand on this next 
time around, but the kernel might look like:

  __ global __  void mmkernel( float* a, float* b, float* c, 
    int pitch _ a, int pitch _ b, int pitch _ c, 
    int n, int m, int p ) 
  { 
    int i = blockIdx.x*32+threadIdx.x; 
    int j = blockIdx.y; 
    float sum = 0.0; 
    for( int k = 0; k < p; ++k ) 
      sum += b[i+pitch _ b*k] * c[k+pitch _ c*j]; 
    a[i+pitch _ a*j] = sum; 
  }

 
Recalling the last article, the kernel will run 32 copies in 
SIMT mode, with (n/32)xm thread blocks executing in 
parallel on the various GPU multiprocessors. Note: this is a 
particularly unoptimized matrix multiplication kernel, but 
it should work.

Run the kernel. Here is one point where the CUDA 
model really shines. Running the kernel actually takes 
several steps, which are nicely hidden by the CUDA 
compiler. The steps include:
1. Load the kernel to the GPU. When we run a program 
on your CPU, we depend on the operating system to load 
our program and prepare it for execution. If we use explicit 
shared objects or dynamic load libraries, our program will 
search for the object and load it at run time. GPU kernels 
use a similar model; the GPU kernel must be downloaded 
by the application from the host to the GPU. One 
significant benefit is the GPU kernel is typically stored in 
a portable format; when it is downloaded, it is translated 
and optimized for the specific GPU installed in the 
system. This lets us run the same program on systems with 
different GPUs, without having to recompile or reoptimize 
the application. Since the GPU manufacturers come out 
with new models every 9-12 months, this works to our 
advantage.
2. Define the execution domain; we’ve already decided on 
the domain, now we have to put it in the program.
3. Pass the arguments to the kernel from the host.
4. Launch the kernel. The execution can proceed 
asynchronously with the host, and the host can test 
whether the kernel has completed across its whole domain. 
In CUDA, this is done with a few lines:

Programming GPUs Today
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    dim3 threads( 32 ); 
    dim3 grid( n/32, m ); 
    mmkernel<<< grid, threads >>>( dev _ a, dev _ b, dev _ c, 

                pitch _ a, pitch _ b, pitch _ c, n, m, p );

The NVCC compiler translates this into the steps outlined 
above. OpenCL is not so convenient. Since it is library-
based, it can’t depend on a compiler to simplify the steps. 
Instead, we will have to do each step explicitly, something 
approaching:

  /* program is a prebuilt kernel program */ 
  kernel = clCreateKernel( program, “mmkernel” ); 
  grid[0] = n; 
  grid[1] = m; 
  threads[0] = 32; 
  threads[1] = 1; 
  /* context is the GPU compute context */ 
  range = clCreateNDRangeContainer( context, 0, 2, grid, 	
	 threads ); 
  clSetKernelArg( kernel, 0, dev _ a, sizeof(dev _ a), NULL ); 
  clSetKernelArg( kernel, 1, dev _ b, sizeof(dev _ b), NULL ); 
  clSetKernelArg( kernel, 2, dev _ c, sizeof(dev _ c), NULL ); 
  clSetKernelArg( kernel, 3, pitch _ a, sizeof(pitch _ a),NULL ); 
  clSetKernelArg( kernel, 4, pitch _ b, sizeof(pitch _ b),NULL ); 
  clSetKernelArg( kernel, 5, pitch _ c, sizeof(pitch _ c),NULL ); 
  clSetKernelArg( kernel, 6, n, sizeof(n), NULL ); 
  clSetKernelArg( kernel, 7, m, sizeof(m), NULL ); 
  clSetKernelArg( kernel, 8, p, sizeof(p), NULL ); 
  /* queue is a GPU work queue */    
  clExecuteKernel( queue, kernel, NULL, range, NULL, 0,NULL ); 

5. Wait for the kernel to finish. If we have a more complex 
computation, we might queue up several kernels; they will 
execute one after the other as they finish. In that case, we 
only have to wait until the last kernel is done.
6. Move results back from the GPU to the host. This, after 
all, is why we are doing the computation, to get the results. 
This is simply the inverse of loading data onto the GPU:

    cudaMemcpy2D( a, n*sizeof(float), dev _ a, pitch _ a, 		
	 n*sizeof(float), m, cudaMemcpyDeviceToHost );

7. Free the device memory. Again, the inverse of allocation:

    cudaFree( dev _ a ); 
    cudaFree( dev _ b ); 
    cudaFree( dev _ c ); 

CUDA (and, from reports, OpenCL) lets us program the 
GPU using a familiar language, C. However, a great deal 
of the programming is done using library calls, and the 
computation itself, the matrix multiplication, is divided 
into two parts: the kernel, on the GPU, and its invocation 
on the host. What was a multi-dimensional loop, which 
modern compilers are pretty good at optimizing, has turned 
into dozens of lines of code to manage memory, move data, 
and deal with the architectural specifics of the GPU.

I’m sure some (or most, or perhaps all) of the readers will 
at this point say “You shouldn’t be programming matrix 
multiplication anyway; just call a library routine.” That’s 
true; in fact, NVIDIA provides versions of the BLAS 
routines, including SGEMM, which give very good 
performance. But, if it takes this much effort to get a matrix 
multiplication moved to the GPU, imagine how much 
effort it takes to move a real computation (say, WRF). Here 
I had only three arrays with regular access patterns and full 
freedom to parallelize the loops. Can you begin to see the 
difficulties?

And I haven’t even begun the real programming process, 
such as handling error returns from the runtime calls. 
Given the CUDA or OpenCL code, how portable will 
it be, how will I maintain it to keep it at the peak of 
efficiency?

As I mentioned above, the CUDA NVCC compiler 
simplifies some of the coding details. Compilers are 
good at bookkeeping, organizing details about memory 
addressing, alignment, and so on. OpenCL seems to 
be a step backwards, from a compiler-oriented solution 
aimed at raising the level of programming to a library-
oriented solution aimed at giving low-level control to the 
programmer.

Low-level control isn’t bad; that would be like saying 
assembly language is bad. It isn’t bad, but it’s only necessary 
for a very small bit of the programming we do today. If 
high level languages are the power tools of programming, 
we seem to be taking a step back to hand drills and saws. 
Many woodworkers prefer hand tools, and they can make 
beautiful furniture, but the cost is high and productivity 
is low. We need hand tools, but we’ll be much more 
productive with better power tools.

In the next article, I’ll look at the matrix multiplication 
kernel, exploring various ways to optimize for parallelism 
and memory bandwidth, and presenting performance. 
Whether you think programming the host side of a GPU 
program is hard, or just work, you’ll be entertained, 
enlightened, or frightened when you see what goes into 
the GPU side. I’m on record as saying that parallel 
programming isn’t easy and never will be, but we can 
and should develop the tools and training to turn this 
Acceleration Nightmare into something about as scary as  
a Halloween Haunted House.

Programming GPUs Today
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My last article discussed some of  
the complexities of programming  
GPUs today, focusing on how to 
interface the host program with the 
GPU. Here we focus on programming 
the GPU itself. As with last time,  
we’ll look at a simple single-precision 
matrix multiplication, equivalent to  
the BLAS SGEMM routine.
Matmul is a highly parallel algorithm, but let me 
emphasize that parallelism does not equate to performance. 
We need to carefully sculpt our algorithm to match the 
parallelism available in the architecture in order to reap 
the benefits. This is true whether we are targeting a GPU, 
a multicore x64, or even a single core with packed SSE 
operations. As an example, I took the simple matmul loop 
(in C, but with the matrices stored column-major):

for( int j = 0; j < m; ++j ) 
  for( int k = 0; k < p; ++k ) 
    for( int i = 0; i < n; ++i ) 
      a[i+pitch _ a*j] += b[i+pitch _ b*k]*c[k+pitch _ c*j]; 

modified it several ways and ran it on an Intel Xeon 
(3GHz, 6MB cache, 16GB memory, Penryn) using 

Compilers and More: 
Optimizing GPU Kernels

4096x4096 matrices (to compare with results we’ll see 
below). With the loop in the order shown (stride-1 inner 
loop), the program ran at 1.7 GFLOPs; this is compiled 
C performance (using pgcc -fast). We can improve that 
by tiling or blocking the loops, organizing the matmul 
as a bunch of submatrix multiplications, sized so each 
submatrix matmul fits in the processor cache. This 
improves performance to 5.7 GFLOPs, and it jumps to over 
22 GFLOPs when we use OpenMP directives and run on 
all four cores. Advanced compilers help by automatically 
managing the vectorization, unrolling, memory 
alignments, adding prefetch instructions, and so forth.

We’re going to see several matmul GPU kernels, with 
performance on our GPU development system, with 
an NVIDIA GeForce GTX 280 (1GB memory, 30 
multiprocessors), using NVIDIA’s CUDA language. 
The host is a Linux (OpenSUSE 11.0) triple-core AMD 
Phenom (2.1 GHz, 500KB cache, 4GB memory), though 
the host hardly matters; the performance for these 
experiments is entirely dominated by the GPU code.

As on the CPU, performance on a GPU can be fragile; 
small changes to the program can make large differences 
in performance. It’s easy to write a slow program. This 
was a characteristic of High Performance Fortran, one 
that (my opinion) was a major cause of its downfall; while 
HPF made it easier to write parallel programs, it didn’t 
make parallel programs fast. That is the job of the HPC 
programmer; the same will be true for accelerators, GPUs, 
and even multicore CPUs.

GPUs deliver their dramatic high performance through 
a well-balanced, carefully managed, highly parallel 
architecture. Algorithms running on the GPU must be 
parallelized and balanced as well; this does not come for 
free. Program development may cost extra time and effort 
to understand and use the appropriate programming model, 
a model that may not match the simple scalar processor 
with cache model we are comfortable with on x64 hosts. 
However, the analysis and programming techniques used 
to develop GPU algorithms will probably help you develop 
multicore programs as well. A good programming model 
with good compilers and tools can relieve you of much 
busywork, but you still have to think, and you still have to 



11 

understand algorithms and architecture, and you should 
expect no less.

From here on below, I show many versions of matmul; if 
you’re not a programmer or want to skip over the details, 
look for the performance tags below, until the Summary; 
you don’t want to miss the conclusions. If you are a 
programmer and want to see all the code, you’ll find all the 
sources in a kernels tarfile on the PGI website at  
www.pgroup.com/lit/kernels/kernels.tar.

In the last article, I proposed a simple matmul kernel for 
the GPU and focused on the host code to drive the kernel. 
We’ll use that simple kernel to start the discussion. What I 
had done is taken the matmul loop (as shown above), strip-
mined the stride-1 i loop to the CUDA SIMD width of 32:

 for( int is = 0; is < n; is += 32 ) 
   for( int i = is; i < is+32; ++i ) 
     for( int j = 0; j < m; ++j ) 
       for( int k = 0; k < p; ++k ) 

         a[i+pitch _ a*j] += b[i+pitch _ b*k] * c[k+pitch _ c*j];

run the i element loop as a thread block, and run the is strip 
loop and j loop in parallel:

  parfor( int is = 0; is < n; is += 32 )    /* K1 */ 
    parfor( int j = 0; j < m; ++j ) 
      SIMDfor( int i = is; i < is+32; ++i ) 

        for( int k = 0; k < p; ++k ) 
        a[i+pitch _ a*j] += b[i+pitch _ b*k] * c[k+pitch _ c*j];

then optimized by hand just a little. The parallel grid loops 
and the SIMD thread block loop are handled implicitly by 
the GPU hardware and firmware, so they don’t appear in 
the kernel code. All that’s left is the body, the k loop. The 
final kernel in all its glory, cut-and-pasted from my CUDA 
source file, is:

    extern “C” __ global __ void    /* K1 */ 
    mmkernel( float* a, float* b, float* c, 
      int pitch _ a, int pitch _ b, int pitch _ c, 
      int n, int m, int p ) 
    { 
        int i = blockIdx.x*32 + threadIdx.x; 
        int j = blockIdx.y; 
        float sum = 0.0; 
        for( int k = 0; k < p; ++k ) 
          sum += b[i+pitch _ b*k] * c[k+pitch _ c*j]; 

        a[i+pitch _ a*j] = sum; 
    } 

28 GFLOPs - SIMD width 32
This version runs at 28 GFLOPs on our system (on 
4096x4096 matrices). In the interest of full disclosure, 
I compiled the kernels discussed here with NVIDIA’s 
NVCC compiler version 2.0 with the -O option, and 
compiled the driver routine with pgcc -fast; I ran each 
program three times and report the middle performance 
score, rounding the GFLOPs down to an integer value. 
I will generally show a GFLOPs number most directly 
comparable to a host matmul, including the overhead of 
transmitting the operand matrices to the GPU memory 
and the result matrix back. I will sometimes give the 
performance of just the matmul kernel on the GPU; 
while the two numbers are often quite close, the kernel-
only number is useful to expose more clearly the effect of 
changes to the kernel program (since the overhead stays the 
same). I show results for 4096x4096 matrices, which is close 
to the peak performance for each kernel. For version K1, 
the host-to-host and kernel-only performance were 28 and 
29 GFLOPs, respectively.

That may sound like good performance, but we’re not nearly 
taking full advantage of the available parallelism. Recall 
the NVIDIA architecture description; the card I’m using 
has 30 multiprocessors, each with eight thread processors, 
quad-clocked to get a SIMD width of 32. The kernel above 
is a scalar program, but the card runs 32 copies of it in 
SIMD mode (or SIMT mode, to use NVIDIA’s term); 
the 32 copies comprise a warp. Each multiprocessor uses 
multithreading to support up to 32 warps (1024 scalar 
threads). The 32 warps can come from different thread 
blocks (different iterations of is or j) or from wider thread 
blocks (more than 32 scalar threads). There are limits in this 
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memory. The pseudo code is:

  parfor( int is = 0; is < n; is += 32 )    /* K2 */ 
    parfor( int j = 0; j < m; ++j ) 
      SIMDfor( int i = is; i < is+32; ++i ) 
        for( int ks = 0; ks < p; ks += 32 ) 
          cb[ks:ks+31] = c[ks+pitch _ c*j:ks+31+pitch _ c*j]; 
          for( int k = ks; k < ks+32; ++k ) 
            a[i+pitch _ a*j] += b[i+pitch _ b*k] * cb[k-ks]; 

33 GFLOPs - cached access to c, SIMD width 32
55 GFLOPs - cached access to c, SIMD width 64
63 GFLOPs - cached access to c, SIMD width 128 
Note the vector fetch of c into the temporary array cb. 
This is handled in kernel K2 by letting each thread fetch 
one element and storing into the multiprocessor local 
memory, so the inner loop only has one device memory 
fetch; the fetch of cb from the local memory is almost 
as fast as a register access; we see the performance 
improves to 33 GFLOPS, up from 28. We can again 
increase the number of threads per block from 32 to 64 
and 128, and we see performance improve from 33 to 
55 and 63 GFLOPs. As with kernel K1, increasing to 
256 threads per block does not improve performance. 
An implementation detail: with more than one warp per 
thread block, we need to synchronize the warps after 
loading the temp array cb, and before reloading it the 
next time around the ks loop; see the CUDA source 
code for this detail.

63 GFLOPs - cached access to c, SIMD width 64, unroll 
inner loop
But we’re not done yet. What if we unroll the inner loop, 
to reduce the loop overhead? We might unroll to a factor 
of 2 or 4 or even 16. Unrolling the inner loop once in the 
64-wide K2 kernel does improve performance, getting 
63 GFLOPs, but more unrolling doesn’t help, and it 
doesn’t help the 128-wide kernel.
So far we’ve got two kernel versions, with variations in 
the thread-block (vector) size and unrolling. And we’ve 
only just begun. We tried unrolling the inner k loop; 
what if we try unrolling one of the outer loops? We 
could let each kernel instance compute two values of the 
i loop. The pseudo-code looks like:

 parfor( int is = 0; is < n; is += 64 )  /* K3 */ 
   parfor( int j = 0; j < m; ++j ) 
     SIMDfor( int i = is; i < is+32; ++i ) 
      for( int ks = 0; ks < p; ks += 32 ) 
       cb[ks:ks+31] = c[ks+pitch _ c*j:ks+31+pitch _ c*j]; 
        for( int k = ks; k < ks+32; ++k ) 
         a[i+pitch _ a*j] += b[i+pitch _ b*k] * cb[k-ks]; 
           a[i+32+pitch _ a*j] += b[i+32+pitch _ b*k] * cb[k-ks 

generation of the card: each multiprocessor can support up 
to eight simultaneous thread blocks, and a thread block can 
support up to 16 warps.

36 GFLOPs - SIMD width 64 
The K1 kernel has only one warp per thread block, 
so at most eight thread blocks will be active on each 
multiprocessor, out of the possible 32. I can improve that by 
strip-mining the i loop to a width of 64, changing the 32 
to a 64 in kernel K1, and running with 64 threads in each 
thread block. With this version, if eight thread blocks are 
scheduled on each multiprocessor, we get up to 16 warps, 
so the multithreading is more effective. And we see a 
performance increase, to 36 GFLOPs (38 kernel-only).

35 GFLOPs - SIMD width 128
So what happens if I try this trick again, doubling or 
quadrupling the strip size to 128 or 256? This increases 
the maximum number of warps per multiprocessor to 32 
(which is the limit), so we might expect another bump in 
performance from improved multithreading. Unfortunately, 
we don’t; the performance drops slightly to 35 GFLOPs 
(36 kernel-only) in both cases. This I can’t quite explain.

1.7 GFLOPs - SIMD width 32, non-stride-1 array accesses
Even with this simple version, I made some assumptions 
and optimizations, knowing something about the 
machine. I know that stride-1 accesses in a thread block 
are important, so I ran the stride-1 i loop along the thread 
index. Just how important is that? Suppose we switch the 
i and j indices, so the SIMD memory accesses are along a 
column; the performance drops from 28 GFLOPs (K1) to 
1.7. We can call this kernel Ks (s for stupid, or slow).

Still, we’ve only just started. If we inspect the code for 
kernel K1, we note that the inner loop contains two 
memory fetches, for b and c; both fetches are from 
the device memory, which has a very high latency. In 
particular, the fetch for c loads the same element for all 
the threads in the thread block. The memory system is 
designed for high bandwidth when all the threads access 
consecutive elements, such as with the b access. This used 
to be called superword access in classical vector machines, 
where the memory returns 64-bytes (or more) at a time. 
Kernel K1 doesn’t take advantage of this memory design 
for the c access, but we can fix that. Let’s strip-mine the 
k loop, and load a strip of c into the multiprocessor local 
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53 GFLOPs - cached access to c, SIMD width 32, unroll i loop
63 GFLOPs - cached access to c, SIMD width 32, unroll i loop 3x 
Each iteration of the i loop now computes values for i and 
i+32. We don’t expect much advantage here, since the 
only values shared between the two i iterations are loaded 
from the local memory, which is already pretty fast. But 
even this kernel improves upon K2, with 53 GFLOPs. 
We can improve this to 63 GFLOPs by unrolling more or 
increasing the SIMD width to 64.

Next, we can try unrolling the j loop, so each kernel 
computes values for j and j+1. The pseudo-code is:

parfor( int is = 0; is < n; is += 32 )    /* K4 */ 
  parfor( int j = 0; j < m; j += 2 ) 
    SIMDfor( int i = is; i < is+32; ++i ) 
      for( int ks = 0; ks < p; ks += 32 ) 
        cb0[ks:ks+31] = c[ks+pitch _ c*j:ks+31+pitch _ c*j]; 
        cb1[ks:ks+31] = c[ks+pitch _ c*(j+1):ks+31+pitch _ c*(j+1)]; 
        for( int k = ks; k < ks+64; ++k ) 
          a[i+pitch _ a*j] += b[i+pitch _ b*k] * cb0[k-ks]; 
          a[i+pitch _ a*(j+1)] += b[i+pitch _ b*k] * cb1[k-ks]; 

59 GFLOPs - cached access to c, SIMD width 32, unroll j loop
98 GFLOPs - cached access to c, SIMD width 64, unroll j loop
117 GFLOPs - cached access to c, SIMD width 128, unroll j loop
Here, we note the two assignments in the k loop fetch the 
same value of b from the device memory. This version gets 
59 GFLOPs; it jumps to 98 GFLOPs when we increase 
the SIMD width to 64, and again to 117 GFLOPs with 
a SIMD width of 128. Now we’re starting to see real 
performance, over 100 GFLOPs, host-to-host.

176 GFLOPs - cached access to c, SIMD width 128, unroll j loop 
3x
But we’re not done yet. What if we unroll the j loop by four 
iterations instead of just two? This involves keeping four 
partial sums. Now the performance with SIMD width 128 
is 176 GFLOPs host-to-host, and over 210 GFLOPs on the 
device.

202 GFLOPs - cached access to c, SIMD width 128, unroll j 
loop 3x and k loop 1x 
208 GFLOPs - cached access to c, SIMD width 128, unroll j and 
k loops 3x 
More unrolling of the j loop doesn’t improve performance, 
but what if we combine this with unrolling the k loop? 
If we unroll the j loop 3 times and the k loop once, with 
SIMD width of 128, we get 202 GFLOPs; unrolling the 
k 3 times gives us 208 GFLOPs (host-to-host), and 265 
GFLOPs (kernel-only).

Our peak performance so far looks pretty good. It took 
some experimentation, but we have a version that uses 
only 128 threads and 2KB local memory per thread block, 
allowing up to 8 thread blocks on each multiprocessor, so 
taking great advantage of the multithreading properties 
of the machine. We haven’t even fully explored all the 
combinations. What if we combine i loop unrolling with 
the j and k loop unrolling? Should we explore other unroll 
factors as we combine unrolling multiple loops? What if we 
use pointer arithmetic instead of array references (this really 
questions whether NVCC optimizes the array references, 
but it seems to do a good job there)? I desperately wanted to 
break the 200 GFLOP barrier, and reached it. The version 
of SGEMM that comes with CUDA BLAS gets about 260 
GFLOPs (host-to-host) on a 4096x4096 matrix; I’ve still 
got some work to do to get that extra 25%.

When we optimize a matmul for a general purpose CPU 
with a cache, we’ve learned that we need a tiled algorithm. 
We can do the same thing on the GPU, where we fit the 
submatrices in the local memory. The pseudo code is: 

 parfor( int is = 0; is < n; is += 16 )    /* K5 */ 
   parfor( int js = 0; js < m; js += 16 ) 
     SIMDfor( int i = 0; i < 16; ++i ) 
       SIMDfor( int j = 0; j < 16; ++j ) 
         /* init A tile */ 
         at[is:is+15][js:js+15] = 0.0; 
         for( int ks = 0; ks < p; ks += 16 ) 
            /* load B tile */  
            bt[i][ks:ks+15] = b[i+pitch _ b*ks: 
			    i+pitch _ b*(ks+15):pitch _ b]; 
            /* load C tile */  
            ct[ks:ks+15][j] = c[ks+pitch _ c*(js+j): 
                            (ks+15)+pitch _ c*(js+j)]; 
            /* tile MM */ 
            for( int k = ks; k < ks+64; ++k ) 
               at[i][j] += bt[i][k]*ct[k][j]; 
         /* store A tile */ 
         a[i+pitch _ a*j] = a[i][j]; 

164 GFLOPs - tiled loops, SIMD width 16x16, cached access to 
b and c
We have to choose a tile size, and square tiles seem to make 
as much sense as any other shape, at least to start with. We 
choose 16x16 tiles and run 256 threads in a thread group, 
so each thread will compute one element of the a tile; this 
lets us keep that element in a register. The actual kernel 
code is slightly more complex than the previous kernels. It’s 
important to recall that this scalar kernel is one of a thread 
group or cohort of 256 cooperating instances, and it only 
works in that domain. This version gives us 164 GFLOPs, 
not quite as good as we’ve already seen. Why not? One 
reason is the thread group is 256 threads, so we hit the 
1024 threads/multiprocessor limit with only four thread 
groups. We can address that as well, but I still haven’t 
quite reached the peak performance shown on kernel K4. 
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The CUDA blas (260 GFLOPs) SGEMM is similar to 
this tiled version. It’s based on work by Vasily Volkov, a 
Computer Science PhD student at Cal; Vasily’s code uses 
a 16x4 thread block with the i loop unrolled by 16, the j 
loop by 4, and the k loop by 16 (if I read it right). The code 
might be hard to follow, but it sure beats trying to code a 
matmul in DirectX. 

So let’s suppose we’ve decided on the K4 algorithm. It 
assumes that the matrix sizes are multiples of 32 (or 64 
or 128) in all dimensions, though it doesn’t require the 
matrices to be square. One way to satisfy this is to pad 
all your matrices, filling in zeroes in the extra rows and 
columns. Matrix addition and multiplication will preserve 
these zeroes and will not pollute the actual values; this 
may be your best option. Another solution is to add 
conditionals so as to not run off the ends of the matrices. 
This complicates the code and can affect performance. 
The simplest method to test for array limits is to put 
conditionals around the device memory fetch and store 
operations; if we fill in zeros to the b and c tiles, the 
innermost loop won’t need any tests. I reproduce the body 
of the kernel here:

        float sum0 = 0.0, sum1 = 0.0; 
        for( int ks = 0; ks < p; ks += 32 ){ 
          if( ks+tx < p && j < m ) 
            cb0[tx] = c[ks+tx+pitch _ c*j]; 
          else 
            cb0[tx] = 0.0; 
          if( ks+tx < p && j+1 < m ) 
            cb1[tx] = c[ks+tx+pitch _ c*(j+1)]; 
          else 
            cb1[tx] = 0.0; 
          __ syncthreads(); 
          if( i < n ){ 
            for( int k = ks; k < ((ks+32 < m) ? ks+32 : m); ++k ){ 
              float rb = b[i+pitch _ b*k]; 
              sum0 += rb * cb0[k-ks]; 
              sum1 += rb * cb1[k-ks]; 
            } 
          } 
          __ syncthreads(); 
        } 
        if( i < n && j < m ) 
          a[i+pitch _ a*j] = sum0; 
        if( i < n && j+1 < m ) 
          a[i+pitch _ a*(j+1)] = sum1; 

Even if i and j are outside the matrix bounds, we can’t 
just skip the body of the loop for two reasons. First, each 
thread is part of a thread group, and as such it loads part 
of the data into the local temporary arrays cb0 and cb1; 
even if this thread has nothing to compute, it has to do 
its part of the shared work. Second, we have those pesky 
barrier synchronizations; all threads in a thread group must 

participate in the barrier, so even if this thread has no work 
to do, it had better reach those barriers.

These tests cost about 5% in performance, in the simplest 
version of K4. It’s less costly in the more complex versions, 
but the code gets messy when mixed with some of the 
unrolling. But it will work with any matrix size, whereas 
K4 requires the size to be a multiple of 32.

Of course, if you need to deliver a library that works 
regardless of the matrix sizes, you have another option. 
You can create two versions of your routine, a faster one 
that works when the matrix sizes are appropriate multiples 
of 16, and a slower, general purpose one that works for 
other matrix sizes, with a conditional test to execute the 
right one. Then you get your good benchmark numbers (all 
benchmarks use large powers of two, right?), and you get 
right answers, too.

Summary
The point I’ve tried to make is how sensitive the 
performance of the GPU is to the formulation of your 
kernel, and how much and what kind of experimentation 
you’ll need to do to optimize your performance. How 
much of the optimization process will carry over from 
one GPU to another, or from one generation to the next 
from the same vendor? Many programmers like this low 
level of control, and it certainly could be appropriate when 
developing a numerical library, in the same way assembly 
language is appropriate.

To be fair, the same is true on your CPU as well; you need 
to optimize your matmul for (packed) vector operations, 
memory strides, and cache locality. A bad program will 
run several times slower than a good one; ordering the 
matmul loops so the inner loop is non-stride-1 reduces 
the performance on large matrices (on our Penryn) by 
more than a factor of 10. But compilers and tools are far 
more mature and helpful when compiling for an x64, IBM 
POWER, Sun SPARC, or other CPU.

I’m sure many readers would like to tell me (again) that I 
should be using the prebuilt library version of SGEMM for 
matmul, not writing my own. Save your breath. Matmul is 
just one simple example here, three loops, three matrices, 
lots of parallelism, and yet I put in several days of work to 
get this seven line loop optimized for the GPU.
We can compare the evolution of GPU programming to 
the evolution of shared-memory parallel programming. 
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There were many new languages designed to take 
advantage of parallelism (Id, SISAL, many others). Many 
low-level libraries were written to create and manage 
threads, eventually standardizing on POSIX threads 
(aka pthreads). Much work was done on automatic 
parallelization, dating back to the 1960s and 1970s. When 
successful commercial shared-memory multiprocessors 
became more widely available in the 1980s, an effort began 
to standardize a less intrusive programming interface for 
multiple processors, driven by multiprocessor workstations, 
eventually resulting in the OpenMP API, which defines 
directives and a runtime interface to a shared-memory 
parallel programming model.

GPUs have their own set of domain-specific languages, 
including GLSL (OpenGL Shading Language), HLSL 
(high level shader language) from Microsoft for DirectX, 
and Cg (C for graphics) from NVIDIA. We’re now in 
a period with development of low-level libraries and 
interfaces to create and manage GPU threads; the OpenCL 
effort aims to standardize this. The cost to port a nontrivial 
application to this model is high, though the potential 
performance is alluring.
Luckily for me, my application (the compiler) runs on the 
host, and I don’t have to port that. But what about the real 

application programmer, who has thousands (or hundreds 
of thousands) of lines of code? Is it feasible to take GPU 
or accelerator programming concepts, abstract them into 
a predictable and useful programming model, and present 
them using a portable programming interface, in the same 
way that OpenMP abstracts and presents multiprocessor 
and multicore systems? That’s a topic for the next article.

Optimizing GPU Kernels

“I desperately wanted to 
break the 200 GFLOP 
barrier, and reached it.”
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Okay, maybe the title should be 
“Languages and More,” but I promise 
to talk about compilers further on 
below.
In these articles I’ve discussed parallel programming, and 
programming GPUs and accelerators in particular.  In an 
earlier HPCwire article, I predicted that accelerator-based 
systems would dominate high performance computing, 
and suggested that an evolutionary approach to migrating 
applications from CPUs to accelerators was possible and 
appropriate.  In the first article here, I discussed in more 
detail the specifics of GPU hardware architecture, pointing 
out its strengths for high performance computing (lots of 
parallelism), as well as its weaknesses (limited to specific 
parallelism domains).  In the second article, I showed 
what it takes to start porting a CPU program to a GPU, 
exposing some of the complexities of the interactions 
between the host and the GPU. The specific examples use 
NVIDIA’s very popular CUDA language, but I discuss 
OpenCL briefly as well.  OpenCL should be about ready 
for public discussion by the time you read this. In the 
third article, I showed the details of optimizing a simple 

matmul kernel for a GPU, including testing various ways to 
organize it and vary the parallelism parameters.

If you read these, or are familiar with current approaches 
to programming accelerators, you are either discomforted 
by the complexities, or excited at the levels of control you 
can get. The low-level programming model in CUDA and 
OpenCL certainly has its place, though it’s not for the faint 
of heart. So, to go back to the first of these articles, can we 
come up with a different model of GPU and accelerator 
programming?  One that retains most of the advantages 
of CUDA or OpenCL, but without requiring complete 
program rewrites?  That can be applied to different target 
accelerators, and that retains the potential to develop and 
test in a more accessible environment?  In short, a model 
that allows HPC programmers to focus on domain science 
instead of on computer science?

Architectural Model
Let’s start by looking at the features of the architecture 
that we want to use to advantage. Current GPUs are 
specific implementations of a programming model that 
works well for graphics problems. They support two levels 
of parallelism: an outer fully-parallel doall loop level, and 
an inner synchronous (SIMD or vector) loop level. Each 
level can be multidimensional (2 or 3 dimensions), but 
the domain must be strictly rectangular. The synchronous 
level may not be fully implemented with SIMD or vector 
operations, so explicit synchronization is supported and 
required across this level. No synchronization is supported 
between parallel threads across the doall level.

For those familiar with memory models, current GPUs 
implement a particularly weak model. In particular, they 
don’t support memory coherence between threads, unless 
those threads are parallel only at the synchronous level and 
the memory operations are separated by an explicit barrier. 
Otherwise, if one thread updates a memory location and 
another reads the same location, or two threads store a 
value to the same location, the hardware does not guarantee 
the results. You can’t say it gets the wrong answers, because 
such programs are defined as being in error. There is a 
software-managed cache on a GPU, and there are some 
hardware caches that can be used as well, but only in 
certain situations and limited to read-only data.

Compilers and More: 
A GPU and Accelerator Programming Model
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The most significant characteristic is that the memory on 
the GPU or accelerator is separate from the host memory. 
The host can’t simply read or write to the accelerator 
memory because it’s not mapped into the virtual memory 
space of the host. Similarly, the accelerator can’t simply 
read or write to host memory; the host memory doesn’t 
support the bandwidth necessary for the accelerator, not to 
mention the need to support the virtual memory map on 
the accelerator.

The chips support parallelism on the order of hundreds 
of threads today, but effective programs need parallelism 
on the order of thousands. This provides enough slack 
parallelism to tolerate long latency memory operations by 
thread switching, or multithreading, an idea pioneered by 
the venerable Denelcor HEP almost 30 years ago.

In summary, today’s GPUs look like an attached processor 
with its separate memory, that supports a multidimensional 
rectangular domain of parallelism, including doall and 
synchronous parallelism. We’d like a programming model 
that simplifies most of the hardware details, but gives 
experts finer levels of control. We probably can’t hide the 
distinction between the two levels of parallelism, but we’d 
like to avoid requiring the programmer to insert explicit 
synchronization as much as possible. It’s easy to map doall 
parallelism onto SIMD parallelism, but not the other way 
around, so we’d like to encourage programmers to program 
in a doall style when possible and appropriate. We probably 
can’t completely hide the distinction between host memory 
and accelerator memory, but the details of transferring data 
should be handled automatically.

Our accelerator programming model shouldn’t focus on 
the details of today’s GPUs as the ultimate accelerator 
architecture. One can envision accelerators with mostly 
(or only) synchronous parallelism (like the Clearspeed 
CSX700 accelerator processor), or with mostly doall 
parallelism (like the Tilera TILE64 chip). Future 
accelerators may share physical and/or virtual memory with 
the host, and may support a stronger memory model with 
richer synchronization methods. Software and hardware 
cache architectures are likely to change rapidly. A robust 
programming model should express parallelism broadly 
enough that compilers and tools can map an application 

onto future generations of accelerators as well as it does 
onto today’s GPUs. In fact, a successful model should be 
able to map applications onto a multicore X64 processor, 
where the SSE instructions implement the synchronous 
parallelism, and the doall parallelism is mapped across 
cores. From the available details, this model would even 
map well onto Intel’s proposed Larrabee chip. There will 
be work to tune the performance for each architecture, 
both in the tools and even at the application level, but the 
parallelism model needs to be reasonably portable.

Programming Model
How should we implement an accelerator-targeted 
programming model? Three options immediately come to 
mind: library, language, or directives. Looking at the array 
of parallel programming choices, all intended to make 
parallel programming easy, they span all three options.

Library-based solutions are attractive for many such 
problems; they are easy to port and can be independent of 
processor or compiler vendor. The MPI communication 
library for large system communication is one well-known 
example. It’s often easier to create and modify a standard 
for a library than for a language.

Language-based solutions expose the semantics in the 
language, allowing compilers or other tools to analyze 
and optimize the program. Co-Array Fortran, which is 
(currently) part of the next (allegedly minor) revision of 
the Fortran standard, exposes MPI-like parallelism and 
communication in the language, similar in some respects 
to Unified Parallel C (UPC). A compiler for Co-Array 
Fortran might be able to discover that a data copy from one 
image (thread) to another in a loop could be vectorized, 
given the appropriate support in the communication 
layer; such analysis in an MPI program is left entirely to 
the programmer. However, languages are expensive to 
implement, typically change quite slowly, and mistakes are 
hard to remedy once the standard is written.
A directive-based approach has some of the advantages 
of language-based solutions, in that directives expose 
the semantics to the compiler and other tools, allowing 
intelligent analysis and optimization. Such an approach 
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also allows a program to be developed and tested on 
platforms that don’t support the directives, since the base 
language is unchanged. OpenMP is a widely available, 
successful parallel programming model based on directives 
to describe the parallel regions of the program.

Getting good performance on today’s accelerators depends 
on selecting a region that has enough work to amortize the 
overhead of moving data between the host and accelerator. 
This is one instance of the more general problem of 
selecting a region that has enough compute intensity to 
amortize the data traffic across the memory hierarchy, be 
it separate memory or multilevel caches. Someday, we may 
trust compilers to make this determination automatically, 
but not yet. 

So, let me propose a model that borrows strategies from 
OpenMP, since I’m the PGI representative to the OpenMP 
group. I’ll propose directives in C and Fortran programs 
to delineate the regions of the program (loops) that should 
be accelerated (compiled for the GPU or other accelerator). 
Since the architecture model uses regular rectangular 
domains, I’ll propose using parallel loops as the primitive 
parallel operation.

The keys to tuning are minimizing and perhaps optimizing 
the data traffic between the host and accelerator, and 
selecting a schedule for the parallelism. In many cases, 
a compiler can analyze the nested loops and determine 
the input and output data sets, so it can manage the data 
traffic automatically. However, we should never trust 
automatic analysis to solve all our performance problems, 
so we’ll need directives or clauses to modify or augment the 
analysis.

As for scheduling, we saw in the previous article that 
there can be many possible schedules for even the simplest 
of parallel loops. Recent academic research in this area 
depends on doing more or less what I did by hand: 
generating many versions of the program and running 
each of them, then choosing the best one from the bunch; 
see Shane Ryoo’s PhD dissertation (University of Illinois, 
2008), and joint work from Professors Ramanujam and 
Sadayappan (Louisiana State University and The Ohio 
State University) as good examples. 

Such an approach is valid for research, or when searching 
for a good algorithm for a highly tuned library, but 
inappropriate for a compiler. Instead, we will depend on the 
compiler to determine a reasonably good schedule (as we 

do when we use automatic parallelization and vectorization 
today), again with directives or clauses to modify or 
augment the decisions.
It’s important that a programmer be able to control 
any compiler optimization decision here; the difference 
between good and bad performance is quite dramatic, and 
at least in the immediate future, any compiler decision 
will be made with only partial information. However, to 
support this requires that the compiler tell the programmer 
what decisions it has made, and hopefully why, so the 
programmer knows whether it’s appropriate to step in and 
make a change.

So let me propose two directives. The first delineates an 
accelerator region, with optional clauses to control the 
data movement between host and accelerator memory. 
Borrowing liberally from OpenMP, I’ll propose a  
#pragma acc prefix for C directives, and !$acc prefix in 
Fortran. In C, I’ll describe an acceleration region as:

    #pragma acc region 
    { 
       /* loops to be accelerated go here */ 
    } 

Fortran doesn’t have structured blocks (yet), so we’ll use 
region and end region directives:

    !$acc region 
        ! loops to be accelerated go here 

    !$acc end region 

Compare these to the OpenMP parallel regions. I propose 
optional clauses to tell the compiler what data needs to be 
copied into the region, from host to accelerator, what data 
needs to be copied out, and what data is local to the region; 
local data corresponds roughly to OpenMP private data.  
Compiler analysis is often able to determine the input, 
output and local data automatically.

The second directive is used to describe the mapping 
of parallel loops onto the hardware parallelism, what I 
called the schedule earlier. This corresponds roughly to 
the OpenMP loop directive, which describes the work-
sharing pattern of parallel loops. It’s probably easiest to 
explain with a familiar example; in the previous article, I 
showed several versions of matmul in CUDA with different 
schedules. The first (and simplest) version would be written 
(in Fortran) using these directives as:

GPU & Accelerator Programming Model
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    !$acc region 
        !$acc do parallel 
        do j = 1, m 
           do k = 1, p 
              !$acc do parallel, vector(32) 
              do i = 1, n 
                 a(i,j) = a(i,j) + b(i,k)*c(k,j) 
              enddo 
           enddo 
        enddo 

    !$acc end region 

The loop directives do two things: the first is to tell the 
compiler about loop-level parallelism, augmenting its analysis. 
The second is to tell the compiler how to schedule or map the 
loop-level parallelism onto the hardware. In this loop, both 
the i and j loops exhibit doall parallelism, but we want to map 
the stride-1 i loop onto the synchronous (vector) parallelism in 
strips of size 32, using doall parallelism between the strips. We 
expect compilers to issue a warning message if a programmer 
inserts a do parallel directive on a loop that compiler analysis 
shows is in fact not parallel. Compare this code for clarity with 
the corresponding CUDA kernel in the previous article.

This isn’t intended to be a user guide, tutorial, even a formal 
proposal, but I hope to convince you that a directive-based 
approach is feasible in the short term, and can address many 
of the problems programmers will face when porting large 
applications for use on host+GPU platforms in particular, and 
host+accelerators in general.

This model does use reasonably sophisticated compiler analysis, 
but nothing that hasn’t been implemented in commercial 
parallelizing compilers for many years. In this example, the 
compiler must take the following steps:

• Determine what data is input to the region; for this loop,  
   the input data is a(1:n,1:m), b(1:n,1:p), c(1:p,1:m), and  
   the loop limits.

• Determine what data is output to the region; this is   
   simply a(1:n,1:m).

• Determine what data is local to the region, which is  
   empty (except perhaps for the loop counters). Classical   
   data flow and array region analysis solves all three of   
   these problems.

• Determine which loops can run in parallel, augmented   
   by information in the directives. For this loop, the j   
   and i loops are completely parallel; the k loop requires   
   a sum reduction, which is less efficient but could still be   
   parallelized.
• Determine the loop schedule; in this example, the   
   schedule is specified by the directives. Without the loop   
   directives, the compiler would have to search among the   
   possible schedules and select a best one; note to   
   academics: this is still a fertile area for continued research.

• Generate code for the accelerator. For the most part, this   
   is a classical compiler problem, and well known methods   
   apply. On a target like the NVIDIA GPU, optimizing   
   for the software-managed cache adds some complexity,   
   but such problems have been addressed on past machines   
   as well.

• Generate host code to move data to the accelerator,   
   launch the accelerator kernel(s), and move results back   
   from the accelerator.

Final Words
Will adoption and use of directives such as these make GPUs 
more generally applicable? These directives may make GPUs 
more accessible, but there are still serious limitations to the 
parallelism GPUs support. The restrictions include rectangular 
domains, two levels of parallelism, limited synchronization, 
and a weak memory model (in the formal sense). This makes it 
unlikely that anyone will be porting unstructured mesh code 
or dynamic pointer-chasing data structures to a GPU anytime 
soon.

Can this programming model be adapted to make parallel 
programming easy in general? I’ve argued that parallel 
programming is difficult, and always will be, regardless of 
the programming model, and I’m not backing down. To 
reiterate, this directive model is intended to make accelerator 
programming accessible, so programmers can focus on 
algorithms and performance, not on syntax and other 
trivialities.

This proposed style of parallel programming isn’t universal, 
but it does address a significant segment of the parallel 
community. The model is portable, across GPUs, across 
accelerators, even to multicore CPUs, though we need to 
develop the compilers. Moreover, it’s nicely incremental; you 
can use these directives to accelerate parts of your program 
without having to undertake a whole rewrite, and, as with 
OpenMP, you can still build and test your application on the 
host by ignoring the directives altogether.

GPU & Accelerator Programming Model

Visit www.pgroup.com/resources/articles.htm to find  
links to all of Michael Wolfe’s HPCwire articles.
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