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Outline
• Parallel Computer Architectures
• Components of a Cluster
• Basic Anatomy of a Server/Desktop/Laptop/Cluster-node

– Memory Hierarchy
• Structure, Size, Speed, Line Size, Associativity
• Latencies and Bandwidths

– Intel vs. AMD platforms
• Memory Architecture

– Point-to-Point Communications between platforms.

• Node Communication in Clusters
– Interconnects 
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Administrative Stuff

• Anybody need a syllabus
• Blackboard should be open to everyone

– Please take the survey before Thursday
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The Top500 List
• High-Performance LINPACK

– Dense linear system solve with LU factorization
– 2/3 n3 + O(n2)
– Measure: MFlops
– http://www.netlib.org/benchmark/hpl/

• The problem size can be chosen
– fiddle with it until you find n to get the best 

performance
– report n, maximum performace, and theoretical 

peak performance
• http://www.top500.org/
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Parallel Computers Architectures
• Parallel computing means using multiple 

processors, possibly comprising multiple computers
• Until recently, Flynn's (1966) taxonomy was 

commonly used to classify parallel computers into 
one of four types:
– (SISD) Single instruction, single data

• Your desktop (unless you have a newer multiprocessor one)
– (SIMD) Single instruction, multiple data:

• Thinking machines CM-2
• Cray 1, and other vector machines (there’s some controversy here)
• Parts of modern GPUs

– (MISD) Multiple instruction, single data
• Special purpose machines
• No commercial, general purpose machines

– (MIMD) Multiple instruction, multiple data
• Nearly all of today’s parallel machines
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Top500 by Overall Architecture
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Vector Machines
• Based on a single processor with:

– Multiple functional units
– Each performing the same operation

• Dominated early parallel market
– overtaken in the 90s by MPP, et al.

• Making a comeback (sort of)
– clusters/constellations of vector machines:

• Earth Simulator (NEC SX6) and Cray X1/X1E
– modern micros have vector instructions

• MMX, SSE, etc.
– GPUs
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Top500 by Overall Architecture
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Parallel Computer Architectures

• Top500 List now dominated by MPPs, Constellations 
and Clusters

• The MIMD model “won”.
• A much more useful way to classification is by 

memory model
– shared memory
– distributed memory

• Note that the distinction is (mostly) logical, not 
physical: distributed memory systems could still be 
single systems (e.g. Cray XT3) or a set of computers 
(e.g. clusters)
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Clusters and Constellations
• (Commodity) Clusters

– collection of independent nodes connected with a 
communications network

– each node a stand-alone computer 
– both nodes and interconnects available on the 

open market
– each node may be have more than one processor 

(i.e., be an SMP) 
• Constellations

– clusters where there are more processors within 
the node than there are nodes interconnected

– not very many of these any more (SGI Altix)
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B U S

Shared and Distributed Memory

Shared memory: single address 
space. All processors have access 
to a pool of shared memory.
(e.g., Single Cluster node (2-way, 4-way, ...), 
IBM Power5 node, Cray X1E)

Methods of memory access :
- Bus
- Distributed Switch 
( Fabric Bus Controller for each Processor)

- Crossbar

Distributed memory: each processor
has it’s own local memory. Must do 
message passing to exchange data 
between processors. 
(examples: Linux Clusters, Cray XT3)

Methods of memory access :
- single switch or switch hierarchy 

with fat tree, etc. topology

Network

P

M

P P P P P

M M M M M

Memory

P P P P P P

Bus/Crossbar

B U S

P P P P P P

Buses

FBCFBCFBCFBCFBCFBC
………………

M
…

M
…

M
…

M
…

M
…

M
…

11



P P P P

BUS
Memory

Shared Memory: UMA and NUMA

P P P P
BUS

Memory

Network

P P P P
BUS

Memory

Uniform Memory Access (UMA):
Each processor has uniform access 
time to memory - also known as
symmetric multiprocessors (SMPs) 
(example: Sun E25000 at TACC)

Non-Uniform Memory Access (NUMA):
Time for memory access depends 
onlocation of data; also known as 
Distributed Shared memory machines. 
Local access is faster than non-local 
access. Easier to scale than SMPs
(e.g.: SGI Origin 2000)

12



Memory Access Problems

• SMP systems do not scale well
– bus-based systems can become saturated
– large, fast (high bandwidth, low latency) crossbars 

are expensive
– cache-coherency is hard to maintain at scale (we’ll 

get to what this means in a minute)
• Distributed systems scale well, but:

– they are harder to program (message passing)
– interconnects have higher latency

• makes parallel algorithm development and programming 
harder
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Basic Anatomy of a 
Server/Desktop/Laptop/Cluster-node

CPU

 • Processors

Memory

motherboard
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motherboard
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• Interconnect Network  

• Memory  

nodenode
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Interconnects

• Started with FastEthernet (Beowulf @ NASA)
– 100 Mb/s, 100 μs latency
– quickly transitioned to higher bandwidth, lower 

latency solutions
• Now

– Ethernet/IP network for administrative work
– InfiniBand, Myrinet, Quadrics for MPI traffic
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Interconnect Performance
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RAID

• Was: Redundant Array of Inexpensive Disks
• Now: Redundant Array of Independent Disks
• Multiple disk drives working together to:

– increase capacity of a single logical volume
– increase performance
– improve reliability/add fault tolerance

• 1 Server with RAIDed disks can provide disk 
access to multiple nodes with NFS
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Parallel Filesystems
• Use multiple servers together to aggregate disks

– utilizes RAIDed disks
– improved performance
– even higher capacities
– may use high-performance network

• Vendors/Products
– CFS/Lustre
– IBM/GPFS
– IBRIX/IBRIXFusion
– RedHat/GFS
– ...
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Microarchitecture

• Memory hierarchies
• Commodity CPUs

– theoretical performance
– piplining
– superscaling

• Interconnects
– Different topologies
– Performance
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Memory Hierarchies
• Due primarily to cost, memory is divided into 

different levels:
– Registers
– Caches
– Main Memory

• Memory is accessed through the hierarchy
– registers where possible
– ... then the caches
– ... then main memory
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Memory Relativity

L1 cache
(SRAM)

L2 cache
(SRAM)

MEMORY
(DRAM)

SPEED  SIZE Cost ($/bit)
CPU
Registers
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Latency and Bandwidth

• The two most important terms related to 
performance for memory subsystems and for 
networks are:
– Latency

• How long does it take to retrieve a word of memory? 
• Units are generally nanoseconds or clock periods (CP). 

– Bandwith
• What data rate can be sustained once the message is 

started? 
• Units are B/sec (MB/sec, GB/sec, etc.)
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Registers
• Highest bandwidth, lowest latency memory that a modern 

processor can acces
– built into the CPU
– often a scarce resource
– not RAM

• AMD x86-64 and Intel EM64T Registers

x86-64 EM64T

63

SSE GP

X87

x86

127 31 0 079
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Registers

• Processors instructions operate on registers 
directly
– have names like: eax, ebx, ecx, etc.
– sample instruction: 

addl %eax, %edx

• Separate instructions and registers for 
floating-point operations
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Cache 
• Between the CPU Registers and main memory
• L1 Cache : Data cache closest  to registers (on die)

• L2 Cache: Secondary data cache, stores both data and 
instructions (on die)

– Data from L2 has to go through L1 to registers
– L2 is 10 to 100 times larger than L1 
– Some systems have a off-die L3 cache, ~10x larger than L2

• Cache line
– The smallest unit of data transferred between main memory 

and the caches (or between levels of cache)
– N sequentially-stored, multi-byte words (usually N=8 or 16).

26



Main Memory

• Cheapest form of RAM
• Also the slowest

– lowest bandwidth
– highest latency

• Unfortunately most of our data lives out here
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Approximate Latencies and Bandwidths
in a Memory Hierarchy

~5 CP
~15 CP

~300 CP
~10000 CP

~2      W/CP
~1      W/CP
~0.25 W/CP
~0.01 W/CP

Registers
L1 Cache
L2 Cache
Memory
Dist. Mem.

Latency Bandwidth
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L1 DataRegs. Memory
8KB

L2

2  W (load)
CP

0.18 W
CP

@533MHz FSB
3GHz CPU

2/6 CPLatencies

0.5 W (store)
CP

7/7 CP ~90-250 CP

Line size L1/L2 =8W/16W

256/512KB

on die

Int/FLT Int/FLT

1  W (load)
CP

0.5 W (store)
CP

Example: Pentium 4
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Memory Bandwidth and Size Diagram

Functional Units

L1 Cache

Registers

Local Memory

L2 Cache

L2 Cache   1 MB

Memory     1 GB

L1 Cache 16 KB

Relative Memory Sizes

L3 Cache Off Die

~25 GB/s

~50 GB/s

Relative Memory Bandwidths

~10 GB/s

~5 GB/s

Processor
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IBM Power4 Chip Layout
cores

shared L2 cache
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Memory/Cache Related Terms

L1 cache
(SRAM)

L2 cache
(SRAM)

MEMORY
(DRAM)

SPEED  SIZE Cost ($/bit)
CPU
Registers
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Why Caches?

• Since registers are expensive
• ... and main memory slow
• Caches provide a buffer between the two
• Access is transparent

– either it’s in a register or
– it’s in a memory location
– processor/cache controller/MMU hides cache 

access from the programmer
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Memory Access Example
#include <stdlib.h>
#include <stdio.h>
#define N 1234
int main()
{
int i;
int *buf=malloc(N*sizeof(int));
buf[0]=1;
for (i=1; i < N; ++i)
buf[i]=i;

printf("%d\n",buf[N-1]);
}

movl $1, (%eax)
movl $1, %edx

.L2:
movl %edx, (%eax,%edx,4)
addl $1, %edx
cmpl $1234, %edx
jne .L2
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Cache hit
– location referenced is found in the cache

• Cache miss
– location referenced is not found in cache 
– triggers access to the next higher cache or memory

• Cache thrashing
– a thrashed cache line (TCL) much be repeatedly 

recalled in the process of accessing its elements 
– caused when other cache lines, assigned to the 

same location, are simultaneous accessing 
data/instructions that replace the TCL with their 
content.

Hits, Misses, Thrashing
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Design Considerations
• Data cache designed with two key concepts in mind
• Spatial Locality

– when an element is referenced, its neighbors will be 
referenced, too

– all items in the cache line are fetched together
– work on consecutive data elements in the same cache line 

gives performance boost

• Temporal Locality
– when an element is referenced, it will be referenced again 

soon
– arrange code so that date in cache is reused as often as 

possible
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Cache Line Size vs Access Mode

Longer 
“latency”, 
effectively 
smaller cache

Best--Fewer fetches, 
but higher probability 
for cache trashing.

Long
Line

Best—low 
“latency”

more fetches 
(overhead)

Short
Line

Random dataSequential dataAccess
Line-size
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Cache Mapping

• Because each memory subsystem is smaller 
than the next-closer level, data must be 
mapped

• Types of mapping
– Direct
– Set associative
– Fully associative
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Direct Mapped Caches

Direct mapped cache: A block from main memory can go in 
exactly one place in the cache. This is called direct mapped 
because there is direct mapping from any block address in 
memory to a single location in the cache.

cache

main memory
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Direct Mapped Caches

• If the cache size is Nc and it is divided into k
lines, then each cache line is Nc/k in size

• If the main memory size is Nm, memory is 
then divided into Nm/(Nc/k) blocks that are 
mapped into each of the k cache lines

• Means that each cache line is associated with 
particular regions of memory
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Set Associative Caches

Set associative cache : The middle range of designs between 
direct mapped cache and fully associative cache is called 
set-associative cache. In a n-way set-associative cache a 
block from main memory can go into n (n at least 2) 
locations in the cache.

2-way set-associative cache

main memory
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Set Associative Caches

• Direct-mapped caches are 1-way set-
associative caches

• For a k-way set-associative cache, each 
memory region can be associated with k
cache lines
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Fully Associative Caches

Fully associative cache : A block from main memory can be 
placed in any location in the cache. This is called fully 
associative because a block in main memory may be 
associated with any entry in the cache. 

cache

main memory

43



Fully Associative Caches

• Ideal situation
• Any memory location can be associated with 

any cache line
• Cost prohibitive

44



Intel Woodcrest Caches

• L1
– 32 KB
– 8-way set associative
– 64 byte line size

• L2
– 4 MB
– 8-way set associative
– 64 byte line size
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Theoretical Performance

• How many operations per clock cycle?
– Intel Woodcrest: 4 Flop/cp

• Clock rate?
– 2.66 GHz

• 4 Flop/cp * 2.66 Gcp/s = 10.64 GFlops
• 2 W/cp (loaded from L1 cache)

– 2 * 2.66 * 8 = 42.56 GB/s
• ~ 0.25 W/cp (from main memory)

– 0.25 * 2.66 * 8 = .665 GB/s
• 42.56 / 10.64 / 8 = 0.5 W/Flop for data in L1
• 0.665 / 10.64 / 8 = ~0.0625 W/Flop for data in main 

memory
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Theoretical Performance

• Dot product:
– sum=sum+a[i]*b[i];
– 2 words loaded, 1 add, 1 multiply for each i
– = 2 Words/2 Flops = 1 W/Flop
– sum is in a register

• Should run OK  (~50% of peak) if data fits in 
L1 cache (0.5 W/Flop)

• Will run poorly (< 10% of peak) out of main 
memory (~0.07 W/Flop)
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Strided Dot Product
sum=0.;
for (j=0; j < stride; ++j)
for(i=j; i < n; i+=stride)
sum += a[i]*b[i];

• Strided access common on vector machines
– stride = vector length
– vector machine/compiler can remove the outer 

loop and compute a stride’s worth of a·b at once
• Not likely to be useful on a scalar machine, 

but it’s an easy way to cause cache misses
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Dot Product Performance
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What’s Going On?
• Small vectors are noisy

– probably not enough work to be measuring well
– even still non-stride-1 access foil the plans of the hardware 

prefetcher
• Eventually everyone gets to the peak 

– ~1.8 GFlops = ~20% of peak
– not far from what we predicted
– probably some improvement yet to be had

• For stride != 1 we see the L1 (32K) cache size 
boundary 

• For stride == 1 prefetching and other latency hiding 
tricks let the processor maintain performance

• Everybody hits the L2 (4MB) cache size boundary 
pretty hard
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Intel System Architecture
• Basic Components of a Compute Node

– Function Units:  perform operations (e.g. Floating Point/Integer ops, 
load,stores, etc.)

– Cores: (1-4) contains a set of functional units that function as an 
independent processor.

– Caches: on-die
– Bridges: Interconnects two different busses (may contain a “controller”)

South
Bridge

Adapter

Memory

Slots

Intel products:
North Bridge has memory controller.
South Bridge interfaces to adapters 
(e.g. PCI, PCI-X PCI-E)

Memory Bus
Inter-Bridge Bus
PCI Bus

FSB (Front Side Bus)

CORE
L1 Cache

L2 Cache

Socket/Die

North
Bridge

MC

Memory

CORE
L1 Cache

L2 Cache

Socket/Die

North
Bridge

MC
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Memory Bandwidth
• Component Bandwidth (BW):  

The bus between the CPU and the Memory controller is known as the 
front-side bus (FSB).  Multiply the frequency times the bus width to 
obtain bandwidth.

The bus between the Memory Controller and the DIMMS determines the 
“Memory” speed.  Multiply the frequency, bus width and number of 
channels to obtain an “aggregate” bandwidth.

BW (memory) = 533 MHz (S) * 8B (W) * 2 = 8.5GB/s
BW  (FSB)      = 1.33 GHz (S) * 8B (W)      = 10.7GB/s

CPU Mem.
Bridge

64 bits = 8 Bytes

…

FSB

…8B

channel 2

Memory
Module

…8B

channel 1

Memory
Module
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AMD System Architecture

HyperTransport: New technology 
& protocol for data transfer—
point-to-point links (chip-to-chip)

Crossbar switches between 
memory and HyperTransport
(effectively, the Front Side Bus)

http://www.hypertransport.org/tech/index.cfm

DDR Memory Controller
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Chip
Hyper-
Transport
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eq

ue
st
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ue

ue

3.2 GB/s per dir. 
@ 800MHz x2

Core

Memory

2.66GB/s
(@333MHz)

HT

Memory

2.66GB/s

to other 
Opterons
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Pipeline 4-Stage FP Pipe

Floating Point Pipeline

Register Access

CP 1 CP 2 CP 3 CP 4

Argument Location

Memory
Pair  1

Memory
Pair  2

Memory
Pair  3

Memory
Pair  4

A serial multistage functional unit.  
Each stage can work on different 
sets of independent operands 
simultaneously.

After execution in the final stage,
first result is available.

Latency = # of stages * CP/stage

CP/stage is the same for 
each stage and usually 1.

Pipelining
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Branch Prediction
• The “instruction pipeline” is all of the processing steps (also 

called segments) that an instruction must pass through to be 
“executed”.

• Higher frequency machines have a larger number of segments.
• Branches are points in the instruction stream where the 

execution may jump to another location, instead of executing the
next instruction.

• For repeated branch points (within loops), instead of waiting for 
the loop to branch route outcome, it is predicted. 

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Pentium III processor pipeline

Pentium 4   processor pipeline

Misprediction is more “expensive” on Pentium 4’s.

55



Hardware View of Communication 
(Intel)

CPU

North
Bridge

South
Bridge

Adapter Switch

CPU

North
Bridge

South
Bridge

Adapter

mem mem

Resources Consumed
by ALL communcations

PCI* 
Speed

PCI*
Speed

Chip Set “I/O” needs to Exceed 
Switch & Adapter Speeds

Usage
CPU Participation
nonDMA or DMA
Interrupt or Poll

Usage
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Performance

Ease of Use Performance

High

Low High

Low

1.)  Latency
2.)  Bandwidth
3.)  Host Overhead

Polling vs interrupt
user API vs direct access

• Software

• Hardware
Adapter
Control

Performance

High

Low Low

High

Direct Memory Access -- DMA
Switch, Adapter, Host Bus
μprocessors

Message Cost = Latency + Bandwidth * Message Size
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Node Communication in Clusters

• Latency : How long does it take to start 
sending a "message"? Units are generally 
microseconds or milliseconds. 

• Bandwidth : What data rate can be sustained 
once the message is started? Units are 
Mbytes/sec or Gbytes/sec.

• Topology: What is the actual ‘shape’ of the 
interconnect? Are the nodes connect by a 2D 
mesh? A ring? Something more elaborate?
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Node Communication in Clusters
• Processors can be connected by a variety of interconnects
• Static/Direct

– point-to-point, processor-to-processor
– no switch
– major types/topologies

• completely connected
• star
• linear array
• ring
• n-d mesh
• n-d torus
• n-d hyper cube

• Dynamic
– processors connect to switches
– major types

• crossbar
• fat tree
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Completely Connected and Star Networks

• Completely Connected : Each processor has direct 
communication link to every other processor

• Star Connected Network : The middle processor is 
the central processor. Every other processor is 
connected to it. Counter part of Cross Bar switch in 
Dynamic interconnect. 
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Arrays and Rings

• Linear Array : 

• Ring :

• Mesh Network (e.g. 2D-array)
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Torus

2-d Torus (2-d version of the ring)
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Hypercubes
• Hypercube Network : A multidimensional mesh of 

processors with exactly two processors in each 
dimension. A d dimensional processor consists of

p = 2d processors 
• Shown below are 0, 1, 2, and 3D hypercubes

0-D    1-D       2-D                 3-D       hypercubes
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Busses/Hubs and Crossbars

Hub/Bus: Every processor shares the 
communication links

Crossbar Switches: Every processor connects 
to the switch which routes communications to 
their destinations
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Fat Trees
• Multiple switches
• Each level has the same 

number of links in as out
• Increasing number of 

links at each level
• Gives full bandwidth 

between the links
• Added latency the higer

you go
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Interconnects
• Diameter

– maximum distance between any two processors in the 
network.

– The distance between two processors is defined as the 
shortest path, in terms of links, between them. 

– completely connected network is 1, for star network is 2, for 
ring is p/2 (for p even processors)

• Connectivity
– measure of the multiplicity of paths between any two 

processors (# arcs that must be removed to break the 
connection).

– high connectivity is desired since it lowers contention for 
communication resources. 

– 1 for linear array, 1 for star, 2 for ring, 2 for mesh, 4 for torus
– technically 1 for traditional fat trees, but there is redundancy

in the switch infrastructure
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Interconnects
• Bisection width

– Minimum # of communication links that have to be removed to 
partition the network into two equal halves.  Bisection width is

– 2 for ring, sq. root(p) for mesh with p (even) processors, p/2 for 
hypercube, (p*p)/4 for completely connected (p even).

• Channel width
– of physical wires in each communication link

• Channel rate 
– peak rate at which a single physical wire link can deliver bits

• Channel BW 
– peak rate at which data can be communicated between the ends of 

a communication link 
– =  (channel width) * (channel rate) 

• Bisection BW
– minimum volume of communication found between any 2 halves of 

the network with equal # of procs
– = (bisection width) * (channel BW) 
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