
CS395T: Introduction to Scientific
and Technical Computing

Instructors:

Dr. Karl W. Schulz, Research Associate, TACC
Dr. Bill Barth, Research Associate, TACC

Outline

• What is “Unix” anyway?
– historical background
– major flavors of Unix

• Basic Unix concepts
– user accounts
– file system overview
– how to get help
– interacting with a login environment

Unix in Practice

• Q: Before we begin, does anyone remember how
many machines in the June 2006 Top500 list ran
variants of the Unix operating System?

What about Windows?

• A: 94.8% are
UNIX-like

Operating System Number of Systems Percentage
Linux 367 73.40%
Unix 98 19.60%

Mac OS 5 1.00%
BSD Based 4 0.80%

Mixed 24 4.80%
Windows 2 0.40%

Unix Background

• A: > 35 Years
– Unix originally dates back to 1969

with a group at Bell Laboratories
– The original Unix operating system

was written in assembler
– n 1973 Thompson and Ritchie

finally succeeded in rewriting Unix
in their new language. This was
quite an audacious move; at the
time, system programming was
done in assembler in order to
extract maximum performance
from the hardware, and the very
concept of a portable operating
system was barely a gleam in
anyone's eye

– First Unix installations in 1972 had
3 users and a 500KB disk

• Q: How old is Unix (5, 10, 20 years, or greater)?

DEC PDP-11, 1972

What is UNIX?
• UNIX is a multi user, preemptive, multitasking operating system which

provides a number of facilities:
– management of hardware resources
– directories and file systems
– loading / execution / suspension of programs

• What does UNIX stand for?
– Nothing actually - It is a "play on words" of an older multiuser time-sharing

OS known as Multics

• There are many flavors of UNIX:
– Solaris (Sun)
– AIX (IBM)
– Tru64 (Compaq)
– IRIX (SGI)
– SysV (from AT&T)
– BSD (from Berkeley)
– Linux (its not UNIX, but it’s close enough)

What is Linux?
• Linux is a clone of the Unix operating system written from scratch by Linus

Torvalds with assistance from developers around the globe (technically
speaking, Linux is not UNIX)

• Torvalds uploaded the first version of Linux in September 1991

• Only about 2% of the current Linux kernel is written by Torvalds himself but he
remains the ultimate authority on what new code is incorporated into the Linux
kernel.

• Developed under the GNU General Public License , the source code for Linux is
freely available

• Download latest kernels from www.kernel.org

• A large number of Linux-based distributions exist (for free or purchase):
– RedHat, Fedora, CentOS
– SUSE
– Debian
– Gentoo

– Slackware
– Ubuntu
– Mandrake

http://www.linux.org/info/gnu.html
http://www.kernel.org/

Why use UNIX?

• Performance: as we’ve seen, supercomputers
generally run UNIX; rich-multi user environment

• Functionality: a number of community driven
scientific applications and libraries are developed
under UNIX (molecular dynamics, linear algebra,
fast-fourier transforms, etc).

• Flexibility/Portability: UNIX lets you build your own
applications and there is a wide array of support tools
(compilers, scientific libraries, debuggers, network
monitoring, etc.)

Some Key People

Ken Thompson and Dennis Ritchie
Your new heroes.

????
Linus Torvalds

Unix Background: Chronology

Source: The Open Group, www.unix.org

The Single UNIX Specification is the collective name of a family of standards for computer
operating systems to qualify for the name "Unix“ (eg. HP-UX, IBM AIX, SGI IRIX, Sun Solaris).

How does UNIX work?

• UNIX has a kernel and
one or more shells

• The kernel is the core of
the OS; it receives tasks
from the shell and
performs them

• The shell is the interface
with which the user
interacts

How does UNIX work?

• Everything in UNIX is either a file or a
process

• A process is an executing program identified
by a unique PID (process identifier).
Processes may be short in duration or run
indefinitely

• A file is a collection of data. They are
created by users using text editors, running
compilers, etc

• The UNIX kernel is responsible for
organizing processes and interacting with
files: it allocates time and memory to each
processes and handles the filesystem and
communications in response to system calls

What does the Shell Do?

• The UNIX user interface is called the shell.
• The shell tends to do 4 jobs repeatedly:

display
prompt
display
prompt

execute
command
execute
command

process
command
process
command

read
command
read

command the shell

An Example
• Example: Suppose a user wants to

remove a particular file:

– User has a command-line prompt (the
shell is waiting for instructions)

– User types a command requesting the
file removal (eg. rm myfile) in the shell

– The shell searches the filesystem for the
file containing the remove program (rm)

– A new process is forked from the shell
to run the command with an instruction
to remove myfile

– The process requests that the kernel,
through system calls, delete the
reference to myfile in the filesystem

– When the rm process is complete, the
shell then returns to the UNIX prompt
indicating that it is waiting for further
commands

– The process ID (PID) originally assigned
to the rm command is no longer active

Unix Interaction

• The user interacts with UNIX via a shell
• The shell can be graphical (X-Windows) or

text-based (command-line) shells like tcsh
and bash

• To remotely access a shell session on TACC
production resources, use ssh (secure shell)

• ssh is a secure replacement for telnet

X-Windows and Unix
• X-Windows is the

standard graphical
layer for UNIX systems

• Most graphical interfaces
for UNIX are actually built
on top of X-Windows

• Fundamental
command-line
application in
X-windows is an
xterm

• A user can have many different invocations of xterm running at once on
the same display, each of which provides independent input/output for
the process running in it (normally the process is a Unix shell)

X-Windows
• The original idea of X emerged at MIT in

1984

• It provides a standard toolkit and protocol to
build graphical user interfaces (GUI) on
Unix, or Unix-like operating systems

• X supports remote connectivity

• The computer where application programs
(the client applications) run can differ from
the user's local machine (the display
server).

• X's usage of the terms "client" and "server"
reverses what people often expect, in that
"server" refers to the user's local display
("display server") rather than to a remote
machine.

X-Windows and Unix

• Several nice desktop
environments exist for Linux
– KDE
– Gnome

• Cygwin for Windows also
includes an Xserver and
xterm client

• XFree86 is a freely
redistributable open-source
implementation of the X
Window System
(www.xfree86.org)

Accounts and the Unix File System

Unix Accounts

• To access a Unix system you need to have
an account

• Unix account includes:
– username and password
– userid and groupid
– home directory

• a place to keep all your snazzy files
• may be quota’d, meaning that the system imposes a limit

on how much data you can have
– a default shell preference

Unix Accounts

• A username is (typically) a sequence of
alphanumeric characters of length no more
than 8:
– eg. koomie or istc00, istc01, …

• The username is the primary identifying
attribute of your account

• the name of your home directory is usually
related to your username:
– eg. /home/utexas/istc/istc00

Unix Accounts

• A password is a secret string that only the user
knows (not even the system knows it)

• When you enter your password the system encrypts
it and compares to a stored string

• passwords are (usually) no more than 8 characters
long.

• It's a good idea to include numbers and/or special
characters (don't use an english word, as this is easy
to crack)

Unix Accounts

• A userid is a number (an integer) that identifies a
Unix account. Each userid must be unique

• In Unix-speak, userid’s are known as UID’s

• Why does Unix implement UID’s? It's easier (and
more efficient) for the system to use a number than a
string like the username

• You don't necessarily need to know your userid

Unix Accounts

• Unix includes the notion of a "group" of users
• A Unix group can share files and active processes
• Each account is assigned a "primary" group
• The groupid is a number that corresponds to this

primary group
• In Unix-speak, groupid’s are knows as GID’s
• A single account can belong to many groups (but has

only one primary group)

Files and File Names

• A file is a basic unit of storage (usually
storage on a disk)

• Every file has a name
• Unix file names can contain any characters

(although some make it difficult to access the
file)

• Unix file names can be long!
– how long depends on your specific flavor of Unix

File Contents

• Each file can hold some raw data

• Unix does not impose any structure on files
– files can hold any sequence of bytes
– it is up to the application or user to interpret the files correctly

• Many programs interpret the contents of a file as having some
special structure
– text file, sequence of integers, database records, etc.
– in scientific computing, we often use binary files for efficiency in

storage and data access
• Fortran unformatted files
• Scientific data formats like NetCDF or HDF have specific formats and

provide APIs for reading and writing
• Portability is an issue with some formats (little endian vs. big endian)

Directories

• A directory is a special kind of file - Unix uses
a directory to hold information about other
files

• We often think of a directory as a container
that holds other files (or directories)

• Mac and Windows users can relate a
directory to the same idea as a folder

More about File Names

• Every file must have a name

• Each file in the same directory must have a
unique name

• Files that are in different directories can have
the same name

• Note: Unix is case-sensitive
– So, “texas-fight” is different than “Texas-Fight”

Unix Filesystem

• The filesystem is a hierarchical system of organizing files and directories

• The top level in the hierarchy is called the "root" and holds all files and
directories.

• The name of the root directory is / (the “slash” directory)

• Typical system directories below the root directory include:
/bin contains many of the programs which will be executed by users
/etc files used by system administrators
/dev hardware peripheral devices
/proc a pseudo file system which tracks running processes and system state (vm)
/lib system libraries
/usr normally contains applications software
/home home directories for different systems

Unix Filesystem (an upside-down tree)

/

bin etc users tmp usr

hollid2 scully bin etc

netprog unix X ls who

Pathnames

• The full pathname of a file includes the file name and
the name of the directory that holds the file, and the
name of the directory that holds the directory that
holds the file, and the name of the …
….all the way up up to the root directory

• The full pathname of every file in a Unix filesystem is
unique (falls from the requirement that every file in
the same directory must be a unique name)

Pathnames (cont.)

• To create a pathname you start at the root (so
you start with "/"), then follow the path down
the hierarchy (including each directory name)
terminating with the filename

• In between every directory name you put a "/"

Pathname Examples
/

bin etc users tmp usr

hollid2 scully bin etc

netprog unix X ls who

/usr/bin/ls
Syllabus

/users/hollid2/unix/Syllabus

Absolute Pathnames

• The pathnames described in the previous
slides start at the root

• These pathnames are called absolute
pathnames

• We can also talk about the pathname of a file
relative to a directory

Relative Pathnames
• A relative pathname specifies a file

in relation to the current working
directory (CWD)

• If CWD=/home, then the relative
pathname to charles is: charles

• If CWD=/home, then the relative
pathname to pigpen is: charles/pigpen

• If CWD=/home, then the relative
pathname to baseball
is: charles/franklin/baseball

• Most Unix commands deal with pathnames

• We often use relative pathnames when specifying files (for
convenience)

Special Directory Names
• There is a special relative pathname for the current working directory

(CWD):

. (yes, that’s a dot)

Example: ./foo (refers to “foo” in the current directory)

• There is also a special relative pathname for the parent directory:

.. (affectionately known as a dot-dot)

Example: ../foo (refers to “foo” in the parent directory)

• There is a special symbol for the location of your home directory:

~ (that’s a tilde)

Example: ~koomie (refers to the home directory for user “koomie”)

Disk vs. Filesystem

• Note that the file system hierarchy can actually be served
by one or more physical disk drives

• In addition, some directories may
be provided from other
computers (think NFS)

/

bin etc users tmp usr

koomie scully

Basic Commands

• Some basic commands for interacting with
the Unix file system are:
– ls - pwd - touch
– cd - cp - mkdir
– df - awk - rmdir
– cat - rm - find
– more (less) - chmod - grep
– head - tail - chown/chgrp

• We will focus on ls first

The ls command

• The ls command displays the names of files

• If you give it the name of a directory as a
command line parameter it will list all the files
in the named directory

Example ls Commands

ls list files in current directory

ls / list files in the root directory

ls . list files in the current directory

ls .. list files in the parent directory

ls /usr list files in the directory /usr

Command Line Options

• We can modify the output format of the ls program
with a command line option.

• The ls command supports a bunch of options:
– l long format (include file times, owner and

permissions)
– a all (shows hidden files as well as regular files)
– F include special char to indicate file types

In Unix, hidden files have names that start with "."

ls Command Line Options

• To use a command line option precede the
option letter with a minus:

ls -a or ls -l

• You can use two or more options at the same
time like this:

ls -al

General ls command line

• The general form for the ls command is:
ls [options] [names]

• The options must come first!

• You can mix any options with any names.

• An example:
ls -al /usr/bin

Command Line Syntax

• ls [options] [names]
– The brackets around options and names in the

general form of the ls command means that
something is optional

– This type of description is common in the
documentation for Unix commands

– Some commands have required parameters

Variable Argument Lists

• You can give the ls command many files or
directory names to display:

ls /usr /etc
ls -l /usr/bin /tmp /etc

Where to Get More Information?
• Almost all UNIX systems have extensive on-line documentation known

as man pages (short for "manual pages").
• The Unix command used to display them is man. Each page is a self-

contained document.
• So, to learn more about the ls command, refer to it’s man page:

– man ls
• Man pages are generally split into 8 numbered sections (on BSD Unix

and Linux):
– 1 General commands
– 2 System calls
– 3 C library functions
– 4 Special files (usually devices, those found in /dev)
– 5 File formats and conventions
– 6 Games
– 7 Miscellaneous
– 8 System administration commands and daemons

• You can request pages from specific sections:
– man 3 printf (shows manpage for C library function)

Example Man Page

UNIX Command Examples
Type UNIX commands at the prompt:

Welcome to the Canadian Bioinformatics Resource!
For new users, help is available on the CBR website:

http://www.cbr.nrc.ca/

/export/home/rob % ls

UNIX Command Examples

Welcome to the Canadian Bioinformatics Resource!
For new users, help is available on the CBR website:

http://www.cbr.nrc.ca/

/export/home/rob % ls
bin/ my_data/ data.fasta
/export/home/rob %

Type UNIX commands at the prompt:

/export/home/rob % ls -l
total 26
drwxr-xr-x 2 rob users 512 Nov 2 15:09 bin/
drwx------ 2 rob users 512 Nov 1 09:19 my_data/
-rw------- 1 rob users 343 Dec 5 13:51 data.fasta

UNIX Command Examples
Type UNIX commands at the prompt:

Parameters can be flags or arguments:

/export/home/rob % ls –l data.fasta
-rw------- 1 rob users 343 Dec 5 13:51 data.fasta

UNIX Command Examples

Parameters can be flags or arguments:

/export/home/rob % ls –l data.fasta
-rw------- 1 rob users 343 Dec 5 13:51 data.fasta

UNIX Command Examples

Parameters can be flags or arguments:

/export/home/rob % ls –l data.fasta
-rw------- 1 rob users 343 Dec 5 13:51 data.fasta

UNIX Command Examples

Parameters can be flags or arguments:

/export/home/rob % ls –l data.fasta
-rw------- 1 rob users 343 Dec 5 13:51 data.fasta

Flags change the behaviour of the command.
Arguments define the scope of the command.

UNIX Command Examples

Unix: A Culture in Itself

"Two of the most famous products of Berkeley
are LSD and Unix. I don't think that this is a coincidence."
(Anonymous quote from The UNIX-HATERS Handbook.)

"Two of the most famous products of Berkeley
are LSD and Unix. I don't think that this is a coincidence."
(Anonymous quote from The UNIX-HATERS Handbook.)

References/Acknowledgements

• National Research Council Canada (Rob Hutten,
Canadian Bioinformatics Resource)

• Intro. to Unix, Dave Hollinger, Rensselaer
Polytechnic Institute

• Top 500 Supercomputing Sites: (www.top500.org)
• The Open Group (www.unix.org)
• History of Linux

(www.linux.org/info/linux_timeline.html)
• Cygwin (http://www.cygwin.com/)
• XFree86 (http://www.xfree86.org/)
• CentOS (www.centos.org)

http://www.top500.org/
http://www.unix.org/
http://www.linux.org/info/linux_timeline.html
http://www.cygwin.com/
http://www.xfree86.org/
http://www.centos.org/

	CS395T: Introduction to Scientific �and Technical Computing
	Outline
	Unix in Practice
	Unix Background
	What is UNIX?
	What is Linux?
	Why use UNIX?
	Some Key People
	Unix Background: Chronology
	How does UNIX work?
	How does UNIX work?
	What does the Shell Do?
	An Example
	Unix Interaction
	X-Windows and Unix
	X-Windows
	X-Windows and Unix
	Accounts and the Unix File System
	Unix Accounts
	Unix Accounts
	Unix Accounts
	Unix Accounts
	Unix Accounts
	Files and File Names
	File Contents
	Directories
	More about File Names
	Unix Filesystem
	Unix Filesystem (an upside-down tree)
	Pathnames
	Pathnames (cont.)
	Pathname Examples
	Absolute Pathnames
	Relative Pathnames
	Special Directory Names
	Disk vs. Filesystem
	Basic Commands
	The ls command
	Example ls Commands
	Command Line Options
	ls Command Line Options
	General ls command line
	Command Line Syntax
	Variable Argument Lists
	Where to Get More Information?
	Example Man Page
	UNIX Command Examples
	UNIX Command Examples
	UNIX Command Examples
	UNIX Command Examples
	UNIX Command Examples
	UNIX Command Examples
	UNIX Command Examples
	Unix: A Culture in Itself
	References/Acknowledgements

