
CS395T: Introduction to Scientific
and Technical Computing

Instructors:

Dr. Karl W. Schulz, Research Associate, TACC
Dr. Bill Barth, Research Associate, TACC

Outline

• Continue with Unix overview
– File attributes and permissions
– Basic commands
– Pattern matching, regular expressions
– Shell scripting

/export/home/rob % ls -l
total 26
drwxr-xr-x 2 rob users 512 Nov 2 15:09 bin/
drwx------ 2 rob users 512 Nov 1 09:19 my_data/
-rw------- 1 rob users 343 Dec 5 13:51 data.fasta

UNIX Command Examples
Remember the “ls –l” command to show long listings?

The long listing displays
specific attributes about each
file or directory.

The long listing displays
specific attributes about each
file or directory.

File Attributes

• Every file has a specific list of attributes:
– Access Times:

• when the file was created
• when the file was last changed
• when the file was last read

– Size
– Owners

• user (remember UID)
• group (remember GID)

– Permissions

File Time Attributes

• Time Attributes:
– ls -l shows when the file was last changed
– ls -lc shows when the file was created
– ls -lu shows when the file was last accessed

• Special names exist for these date-related attributes:
– mtime (last modification time)
– ctime (last change time, ie. when changes were made to the

file or directory's inode: owner, permissions, etc.
– atime (last access time)

File Permissions

• Each file has a set of permissions that control who
can access the file

• There are three different types of permissions:
– read abbreviated r
– write abbreviated w
– execute abbreviated x

• In Unix, there are permission levels associated with
three types of people that might access a file:
– owner (you)
– group (a group of other users that you set up)
– world (anyone else browsing around on the file system)

File Permissions Display Format

-rwxrwxrwx
Owner Group Others

The first entry specifies the type of file:
“-” is a plain file
“d” is a directory
“c” is a character device
“b” is a block device
“l” is a symbolic link

The first entry specifies the type of file:
“-” is a plain file
“d” is a directory
“c” is a character device
“b” is a block device
“l” is a symbolic link

What is this rwx Craziness?

• Meaning for Files:
r - allowed to read
w - allowed to write
x - allowed to execute

• Meaning for Directories:
r - allowed to see the names of the files
w - allowed to add and remove files
x - allowed to enter the directory

Changing File Permissions

• The chmod command changes the permissions associated with
a file or directory

• Basic syntax is: chmod mode file

• The mode can be specified in two ways:
– symbolic representation
– octal number

• Both methods achieve the same result (user’s choice)

• Multiple symbolic operations can be given, separated by
commas

chmod: Symbolic Representation

• Symbolic Mode representation has the
following form:

[ugoa][+-=][rwxX…]

u=user + add permission r=read
g=group - remove permission w=write
o=other = set permission x=execute
a = all X= pure unix gold

• The X permission option is very handy - it sets to execute only if
the file is a directory or already has execute permission

chmod Symbolic Mode Examples

> ls -al foo
-rw------- 1 karl support ...

> chmod g=rw foo
> ls -al foo
-rw-rw---- 1 karl support ...

> chmod u-w,g+x,o=x foo
> ls -al foo
-r--rwx--x 1 karl support ...

chmod: Octal Representation

• Octal Mode uses a single argument string which describes the
permissions for a file (3 digits)

• Each digit of this number
is a code for each of the
three permission levels
(user,group,world)

• Permissions are set
according to the following
numbers:
– Read = 4
– Write = 2
– Execute = 1

• Sum the individual permissions to get the desired combination

0 = no permissions whatsoever;
1 = execute only
2 = write only
3 = write and execute (1+2)
4 = read only
5 = read and execute (4+1)
6 = read and write (4+2)
7 = read and write and execute (4+2+1)

0 = no permissions whatsoever;
1 = execute only
2 = write only
3 = write and execute (1+2)
4 = read only
5 = read and execute (4+1)
6 = read and write (4+2)
7 = read and write and execute (4+2+1)

chmod Octal Mode Examples

> ls -al foo
-rw------- 1 karl support ...

> chmod 660 foo
> ls -al foo
-rw-rw---- 1 karl support ...

> chmod 417 foo
> ls -al foo
-r----xrwx 1 karl support ...

Basic Commands

• Some basic commands for interacting with
the Unix file system are:
– ls - pwd - touch
– cd - cp - mkdir
– df - awk - rmdir
– cat - rm - find
– more (less) - chmod - grep
– head - tail - chown/chgrp

• Let’s cruise through some examples....

UNIX Commands: mkdir
mkdir creates directories.

/export/home/rob % ls
bin/ my_data/ data.fasta backup.fasta
/export/home/rob % mkdir new_data
/export/home/rob % ls
bin/ my_data/ new_data/ data.fasta
backup.fasta
/export/home/rob %

UNIX Commands: rmdir
rmdir removes directories.

/export/home/rob % ls
bin/ my_data/ new_data/ data.fasta
backup.fasta
/export/home/rob % rmdir my_data
/export/home/rob % ls
bin/ new_data/ data.fasta backup.fasta
/export/home/rob %

UNIX Commands: cd

cd changes the current directory.

/export/home/rob % ls
bin/ my_data/ new_data/
/export/home/rob % cd my_data
/export/home/rob/mydata % ls
data.fasta backup.fasta
/export/home/rob/mydata % cd ..
/export/home/rob %

Note: a “cd” with no
arguments takes you to your
HOME directory.

Note: a “cd” with no
arguments takes you to your
HOME directory.

UNIX Commands: cat
cat displays the contents of a text file:

/export/home/rob % cat data.fasta
>c01_009 499 amino acids MW=55632 D pI=5.38 numambig=0
MPGGFILAIDEGTTSARAIIYNQDLEVLGIGQYDFPQHYPSPGYVEHNPDEIWNAQMLAI
KEAMKKAKIESRQVAGIGVTNQRETTILWDAISGKPIYNAIVWQDRRTSNITDWLKENYF
GMIKDKTGLIPDPYFSGSKIKWILDNLPNVRSKAEKGEIKFGTIDTYLIWKLTNGKIHVT
IGITRGTTKAHIARAILESIAYQNRDVIEIMEKESGTKINILKVDGGGAKDNLLMQFQAD
ILGIRVVRPKVMETASMGVAMLAGLAINYWNSLNELKQKWTVDKEFIPSINKEERERRYN
AWKEAVKRSLGWEKSLGSK*
/export/home/rob %

UNIX Commands: more
more displays the contents of a text file one screen’s worth at a time:

/export/home/rob % more data.fasta
>c01_009 499 amino acids MW=55632 D pI=5.38 numambig=0
MPGGFILAIDEGTTSARAIIYNQDLEVLGIGQYDFPQHYPSPGYVEHNPDEIWNAQMLAI
KEAMKKAKIESRQVAGIGVTNQRETTILWDAISGKPIYNAIVWQDRRTSNITDWLKENYF
GMIKDKTGLIPDPYFSGSKIKWILDNLPNVRSKAEKGEIKFGTIDTYLIWKLTNGKIHVT
IGITRGTTKAHIARAILESIAYQNRDVIEIMEKESGTKINILKVDGGGAKDNLLMQFQAD
ILGIRVVRPKVMETASMGVAMLAGLAINYWNSLNELKQKWTVDKEFIPSINKEERERRYN
AWKEAVKRSLGWEKSLGSKLPNVRSKAEKGEIKFGTIDTYLIWKLTNGRDVIEIMEKESG
TKINILKVDGGGAKDNLLMQFQILDNLPNVRSKAEKGEIKFGTIDTYLIWKLTNGTSAIG
AHIARAILESIAYQNRDVIEIMEKESGTKINILKVDGGGAKDNLLMQFQADTDWLKENYF
LGWEKSLGSKLPNVRSKAEKGEIKFGTIDTYLIWKLTNGRDVIEIMIKFGTIDTYLIWTG
GMIKDKTGLIPDPYFSGSKIKWILDNLPNVRSKAEKGEIKFGTIDTYLIWKLTNGKIHVT
IGITRGTTKAHIARAILESIAYQNRDVIEIMEKESGTKINILKVDGGGAKDNLLMQFQAD
DKTGLIPDPYFSGSKIKWILDNLPNVRSKAEKGEIGVAMLAGLAINYWNSLNELKFKIHE
NILKVDGGGAKDNLLMQFQILDNLPNVRSKAEKGEIKFGTIDTYLFQFQILDNLPNVRSK
AEKGEIKFGTIDTYLIWILDVIEIMEKESGTKINILKVDGGGKVDGGIAYQNRDVIEIME
LWDAISGKPIYNDNLPNVRSKAEKGEIGVAMLAGLAINNLPNVRSKAEKGEIGKGEIGVA
--More--(75%)

Notes: hit <space> to see the next page
hit “q” to quit, “/” to search, read the man page.
“less” is an enhanced version of “more” on Linux

Notes: hit <space> to see the next page
hit “q” to quit, “/” to search, read the man page.
“less” is an enhanced version of “more” on Linux

/export/home/rob % ls
bin/ my_data/ data.fasta
/export/home/rob % cp data.fasta backup.fasta
/export/home/rob % ls
bin/ my_data/ data.fasta backup.fasta
/export/home/rob %

UNIX Commands: cp
cp copies files

UNIX Commands: mv
mv moves files

/export/home/rob % ls
bin/ my_data/ data.fasta backup.fasta
/export/home/rob % mv backup.fasta my_data
/export/home/rob % ls
bin/ my_data/ data.fasta
/export/home/rob % ls my_data
backup.fasta
/export/home/rob %

UNIX Commands: mv
mv also renames files

/export/home/rob % ls
bin/ my_data/ data.fasta backup.fasta
/export/home/rob % mv backup.fasta my_data
/export/home/rob % ls
bin/ my_data/ data.fasta
/export/home/rob % ls my_data
backup.fasta
/export/home/rob % mv data.fasta Dec15.fasta
/export/home/rob % ls
bin/ my_data/ Dec15.fasta
/export/home/rob %

UNIX Commands: rm
rm deletes files - permanantly.

/export/home/rob % ls
bin/ my_data/ data.fasta backup.fasta
/export/home/rob % rm backup.fasta
/export/home/rob % ls
bin/ my_data/ data.fasta
/export/home/rob %

Note: There is no Recycle bin
or Undelete Key! Thou shalt
know what thou are doing...

Note: There is no Recycle bin
or Undelete Key! Thou shalt
know what thou are doing...

UNIX Commands: head & tail

• head displays the top of a file
– head -n displays the top n lines
– default is 10

• tail displays the bottom of a file
– tail -n displays the bottom n lines
– default is 10
– tail +n displays the file starting at line n

/export/home/rob> id
uid=1003(rob) gid=10(staff)

Use id to see your uid and
gid for the default group.

UNIX Commands: id

Use id to see your uid and
gid for the default group.

/export/home/rob> id
uid=1003(rob) gid=10(staff)

/export/home/rob> groups
staff sysadmin wwwdevel

Use groups to see all the
group names to which you
belong.

UNIX Commands: groups

Use groups to see all the
group names to which you
belong.

/export/home/rob> ls -l
total 0
-rwxr--r-- 1 rob staff 0 Sep 17 20:02 lasagne
/export/home/rob> chgrp sysadmin lasagne
/export/home/rob> ls -l
total 0
-rwxr--r-- 1 rob sysadmin 0 Sep 17 20:02 lasagne

Use chgrp to change
group ownership

UNIX Commands: chgrp

Use chgrp to change
group ownership

UNIX Commands: find

• At its simplest, find searches the filesystem for files
whose name matches a specific pattern

• However, it can do a lot more and is one of the most
useful commands in Unix (as it can find specific files
and then perform operations on them)

• Here is a simple example:

> ls
dir1 foo foo2

> find . -name foo -print
./foo

UNIX Commands: grep

/export/home/rob> cat sequence.fas
>c01_009 499 amino acids MW=55632 D pI=5.38 numambig=0
MPGGFILAIDEGTTSARAIIYNQDLEVLGIGQYDFPQHYPSPGYVEHNPDEIWNAQMLAI
KEAMKKAKIESRQVAGIGVTNQRETTILWDAISGKPIYNAIVWQDRRTSNITDWLKENYF
DYSNASRTMLFNINKLEWDREILELLKIPESILPEVRPSSDIYGYTEVLGSSIPISGDAG
DQQAALFGQVAYDMGEVKSTYGTGSFILMNIGSNPIFSENLLTTIAWGLESKRVTYALEG
SIFITGAAVQWFRDGLGREPKICKSBUTTASVPDTGGVYFVPAFVGLGAPYWDPYARGLI
IGITRGTTKAHIARAILESIAYQNRDVIEIMEKESGTKINILKVDGGGAKDNLLMQFQAD
ILGIRVVRPKVMETASMGVAMLAGLAINYWNSLNELKQKWTVDKEFIPSINKEERERRYN
AWKEAVKRSLGWEKSLGSK*

/export/home/rob> grep AA sequence.fas
DQQAALFGQVAYDMGEVKSTYGTGSFILMNIGSNPIFSENLLTTIAWGLESKRVTYALEG
SIFITGAAVQWFRDGLGREPKICKSBUTTASVPDTGGVYFVPAFVGLGAPYWDPYARGLI

grep can also use a regular expression
for the pattern to search

grep extracts lines from a file that match a given string or pattern

grep can also use a regular expression
for the pattern to search

Regular Expressions
• In addition to grep, a number of Unix commands support the use of

regular expressions to describe patterns:
– sed
– awk
– perl

• General search pattern characters:
– Any character (except a metacharacter) matches itself
– “.” matches any character except a newline
– “*” matches zero or more occurrences of the single preceding character
– “+” matches one or more of the proceeding character
– “?” matches zero or one of the proceeding character

• Additional special characters:
– “()” parentheses are used to quantify a sequence of characters
– “|” works as an OR operator
– “{}” braces are used to indicate ranges in the number of occurrences

Regular Expressions

• If you really want to match a period '.', you
need to escape it with a backslash "\."

Regexp Matches Does not match
a.b axb abc
a\.b a.b axb

Regular Expressions

• A character class, also called a character set can be used to
match only one out of several characters

• To use, simply place the characters you want to match between
square brackets []

• You can use a hyphen inside a character class to specify a
range of characters

• Placing a caret (^) after the opening square bracket will negate
the character class. The result is that the character class will
match any character that is not in the character class

• Examples:
[abc] matches a single a b or c
[0-9] matches a single digit between 0 and 9
[^A-Za-z] matches a single character as long as it is not a letter

Regular Expressions

• Since certain character classes are used often, a
series of shorthand character classes are available
for convenience:

\d a digit. eg [0-9]
\D a non-digit, eg. [^0-9]
\w a word character (matches letters and digits)
\W a non-word character
\s a whitespace character
\S a non-whitespace character

Regular Expressions

• More shorthand classes are available for matching
boundaries:

^ the beginning of a line
$ the end of a line
\b a word boundary
\B a non-word boundary
\A the beginning of the input
\z the end of the input

Regular Expressions Examples

• “notice” a string that has the text "notice" in it
• “F.” matches an “F” followed by any character
• “a.b” matches “a” followed by any 1 char followed by “b”
• “^The” matches any string that starts with "The"
• “oh boy$” matches a string that ends in the substring "oh boy";
• “^abc$” matches a string that starts and ends with "abc" -- that could only

be "abc" itself!
• “ab*” matches an “a” followed by zero or more “b”'s ("a", "ab", "abbb",

etc.)
• “ab+” similar to previous, but there's at least one “b” ("ab", "abbb", etc.)
• “(b|cd)ef” matches a string that has either "bef" or "cdef"
• “a(bc)*”
• “ab{3,5}”

• “[Dd][Aa][Vv][Ee]”

matches an “a” followed by zero or more copies of the sequence "bc"
matches an “a” followed by three to five “b”'s ("abbb", "abbbb",
or "abbbbb")

matches "Dave" or "dave" or "dAVE“, does
not match "ave" or "da"

/export/home/rob> cat sequence.fas
>c01_009 499 amino acids MW=55632 D pI=5.38 numambig=0
MPGGFILAIDEGTTSARAIIYNQDLEVLGIGQYDFPQHYPSPGYVEHNPDEIWNAQMLAI
KEAMKKAKIESRQVAGIGVTNQRETTILWDAISGKPIYNAIVWQDRRTSNITDWLKENYF
DYSNASRTMLFNINKLEWDREILELLKIPESILPEVRPSSDIYGYTEVLGSSIPISGDAG
DQQAALFGQVAYDMGEVKSTYGTGSFILMNIGSNPIFSENLLTTIAWGLESKRVTYALEG
SIFITGAAVQWFRDGLGREPKICKSBUTTASVPDTGGVYFVPAFVGLGAPYWDPYARGLI
IGITRGTTKAHIARAILESIAYQNRDVIEIMEKESGTKINILKVDGGGAKDNLLMQFQAD
ILGIRVVRPKVMETASMGVAMLAGLAINYWNSLNELKQKWTVDKEFIPSINKEERERRYN
AWKEAVKRSLGWEKSLGSK*

/export/home/rob> grep '[ST].[RK]' sequence.fas
MPGGFILAIDEGTTSARAIIYNQDLEVLGIGQYDFPQHYPSPGYVEHNPDEIWNAQMLAI
KEAMKKAKIESRQVAGIGVTNQRETTILWDAISGKPIYNAIVWQDRRTSNITDWLKENYF
DQQAALFGQVAYDMGEVKSTYGTGSFILMNIGSNPIFSENLLTTIAWGLESKRVTYALEG
IGITRGTTKAHIARAILESIAYQNRDVIEIMEKESGTKINILKVDGGGAKDNLLMQFQAD

a regular expression search

UNIX Commands: grep

grep extracts lines from a file that match a given string or pattern

a regular expression search

Interacting with the Shell

Running a Unix Program
• Typically, you type in the name of a program

and some command line options

• The shell reads this line, finds the program
and runs it, feeding it the options you
specified

• The shell establishes 3 separate I/O streams:
– Standard Input
– Standard Output
– Standard Error

Programs and Standard I/O

ProgramProgramStandard Input
(STDIN)

Standard Output
(STDOUT)

Standard Error
(STDERR)

Note: File descriptors
are associated with
each stream

0=STDIN
1=STDOUT
2=STDERR

Note: File descriptors
are associated with
each stream

0=STDIN
1=STDOUT
2=STDERR

Defaults for I/O

• When a shell runs a program for you:
– standard input is your keyboard
– standard output is your screen or window
– standard error is your screen or window

• If standard input is your keyboard, you can type stuff
in that goes to a program

• To end the input you press Ctrl-D (^D) on a line by
itself, this ends the input stream

• The shell is a program that reads from standard input
• Any idea what happens when you give the shell ^D?

UNIX: Shell Flavors

• There are two main ‘flavors’ of shells:
– Bourne created what is now known as the standard shell:

“sh”, or “bourne shell”. It’s syntax roughly resembles Pascal.
It’s derivatives include “ksh” (“korn shell”) and now, the most
widely used, “bash” (“bourne again shell”)

– One of the creators of the C language implemented a shell
to have a “C-programming” like syntax. This is called “csh” or
“C-shell”. Today’s most widely used form is the very popular
“tcsh”

• Shells can run interactively or as a shell script

Customization

• Each shell supports some customization.
– user prompt settings
– environment variable settings
– aliases

• The customization takes place in startup files
which are read by the shell when it starts up
– Global files are read first - these are provided by

the system administrators (eg. /etc/profile)
– Local files are then read in the user’s HOME

directory to allow for additional customization

Shell Startup Files

sh,ksh:
~/.profile

bash:
~/.bash_profile
~/.bash_login
~/.profile
~/.bashrc
~/.bash_logout

csh:
~/.cshrc
~/.login
~/.logout

tcsh:
~/.tshrc
~/.cshrc
~/.login
~/.logout

Note: on TACC production
systems, we provide an alternative
location for customization files to
avoid over-riding system defaults:

BASH: ~/.profile_user
CSH/TCSH: ~/.login_user

~/.cshrc_user

Note: on TACC production
systems, we provide an alternative
location for customization files to
avoid over-riding system defaults:

BASH: ~/.profile_user
CSH/TCSH: ~/.login_user

~/.cshrc_user

Wildcards for Filename Abbreviation

• When you type in a command line the shell
treats some characters as special
(metacharacters)

• These special characters make it easy to
specify filenames

• The shell processes what you give it, using
the special characters to replace your
command line with one that includes a bunch
of file names

The special character *

• “*” matches anything.
• If you give the shell “*” by itself (as a

command line argument), the shell will
remove the * and replace it with all the
filenames in the current directory.

• “a*b” matches all files in the current
directory that start with a and end with b.

Understanding *

• The echo command prints out whatever you tell it:

> echo hi
hi

> ls
dir1 foo foo2

• What will the following command do?

> echo *
dir1 foo foo2

Shell Stream Redirection

• A very powerful function in Unix is redirection for
input and output:
– The shell can attach things other than your keyboard to

standard input (stdin)
• A file (the contents of the file are fed to a program as if you

typed it) - common in scientific programming
• A pipe (the output of another program is fed as input as if you

typed it)
– The shell can attach things other than your screen to

standard output (stderr)
• A file (the output of a program is stored in file)
• A pipe (the output of a program is fed as input to another

program

Stream Redirection

• To tell the shell to store the output of your
program in a file, follow the command line for
the program with the “>” character followed
by the filename:

ls > lsout

• The command above will create a file named
lsout and place the output of the ls
command in the file

Stream Redirection

• To have the shell get standard input from a file, use
the “<“ character:

sort < nums

• The command above would sort the lines in the file
nums and send the result to stdout

• Beauty of redirection is that you can do both forms
together:

sort < nums > sortednums

Modes of Output Redirection

• There are two modes of output redirections:
– “>” the create mode
– “>>” the append mode

• For example:
– the command ls > foo will create a new file

named foo (deleting any existing file named foo).
– if you use “>>” instead, the output will be

appended to foo:

ls /etc >> foo
ls /usr >> foo

Stream Redirection

• Many commands send error messages to standard error (stderr)
which is different from stdout.

• However, the “>” output redirection only applies to stdout (not
stderr)

• To redirect stderr to a file you need to know what shell you are
using:
– BASH

• “2>” redirects stderr (eg. ls foo blah gork 2> erroroutput)

• “&>” redirects stdout and stderr (eg. ls foo &> /dev/null)

– TCSH
• “>&” merges stdout and stderr and sends to a file:

ls foo blah >& saveboth
• “>>&” merges stdout and stderr and appends to a file:

ls foo blah >>& saveboth

References/Acknowledgements

• National Research Council Canada (Rob
Hutten, Canadian Bioinformatics Resource)

• Intro. to Unix, Dave Hollinger, Rensselaer
Polytechnic Institute

• Unix in a Nutshell, A. Robbins, O’Reilly
Media, 2006.

• Regular expression info (http://www.regular-
expressions.info/reference.html)

http://www.regular-expressions.info/reference.html
http://www.regular-expressions.info/reference.html
http://www.regular-expressions.info/reference.html

	CS395T: Introduction to Scientific �and Technical Computing
	Outline
	UNIX Command Examples
	File Attributes
	File Time Attributes
	File Permissions
	File Permissions Display Format
	What is this rwx Craziness?
	Changing File Permissions
	chmod: Symbolic Representation
	chmod Symbolic Mode Examples
	chmod: Octal Representation
	chmod Octal Mode Examples
	Basic Commands
	UNIX Commands: mkdir
	UNIX Commands: rmdir
	UNIX Commands: cd
	UNIX Commands: cat
	UNIX Commands: more
	UNIX Commands: cp
	UNIX Commands: mv
	UNIX Commands: mv
	UNIX Commands: rm
	UNIX Commands: head & tail
	UNIX Commands: id
	UNIX Commands: groups
	UNIX Commands: chgrp
	UNIX Commands: find
	UNIX Commands: grep
	Regular Expressions
	Regular Expressions
	Regular Expressions
	Regular Expressions
	Regular Expressions
	Regular Expressions Examples
	UNIX Commands: grep
	Interacting with the Shell
	Running a Unix Program
	Programs and Standard I/O
	Defaults for I/O
	UNIX: Shell Flavors
	Customization
	Shell Startup Files
	Wildcards for Filename Abbreviation
	The special character *
	Understanding *
	Shell Stream Redirection
	Stream Redirection
	Stream Redirection
	Modes of Output Redirection
	Stream Redirection
	References/Acknowledgements

