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Classification of Cache Misses

• Compulsory
– The first access to a block is never in the cache. Also called 

cold start misses or first reference misses.
(Misses in even an Infinite Cache)

• Capacity
– If the cache cannot contain all the blocks needed during 

execution of a program, blocks must be discarded and later 
retrieved.
(Misses in Fully Associative Size X Cache)

• Conflict
– If block-placement strategy is set associative or direct 

mapped, blocks may be discarded and later retrieved if too 
many blocks map to its set. Also called collision misses or 
interference misses.
(Misses in N-way Associative, Size X Cache)



Improving Cache Performance

• Capacity misses can be damaging to the 
performance (excessive main memory 
access)

• Increasing associativity, cache size and 
block width can reduces misses

• Changing cache size affects both 
capacity and conflict misses since it 
spreads out references to more blocks

• Some optimization techniques that 
reduces miss rate also increases hit 
access time
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Miss Rate Distribution

• Compulsory misses are very small compared to other categories

• Capacity-based misses are diminishing with increased cache 
sizes

• Increasing associativity limits the potential of placement conflicts



  

  

CPUtime = IC  CPIExecution +
Memory accesses
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   Clock  cycle  time

Techniques for Reducing 
Misses

1. Reducing Misses via Larger Block Size

2. Reducing Misses via Higher Associativity
3. Reducing Misses via Victim Cache
4. Reducing Misses via Pseudo-Associativity
5. Reducing Misses by H/W Prefetching Instr. 

and Data
6. Reducing Misses by S/W Prefetching Data
7. Reducing Misses by Compiler Optimizations

Slide: Dave Patterson



Reduce Misses via Larger 
Block Size

• Larger block sizes reduces compulsory misses (principle of 
spatial locality)

• Conflict misses increase for larger block sizes since cache has 
fewer blocks

• The miss penalty usually outweighs the decrease in the miss rate 
making large block sizes less favored
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2:1 Cache Rule: 
Miss Rate for direct 
mapped cache of size N 
= Miss Rate 2-way 
   cache size N/2

Reduce Misses via Higher 
Associativity

• Greater associativity comes at the expense of larger hit access 
time

• Hardware complexity grows for high associativity and clock cycle 
increases



Associativity Cache Size 
(KB) 1-way 2-way 4-way 8-way 

1 7.65 6.60 6.22 5.44 
2 5.90 4.90 4.62 4.09 
4 4.60 3.95 3.57 3.19 
8 3.30 3.00 2.87 2.59 

16 2.45 2.20 2.12 2.04 
32 2.00 1.80 1.77 1.79 
64 1.70 1.60 1.57 1.59 

128 1.50 1.45 1.42 1.44 
 

Assume hit time is 1 clock cycle and average miss penalty is 50 clock cycles for 
a direct mapped cache. The clock cycle increases by a factor of  1.10 for 2-
way, 1.12 for 4-way, 1.14 for 8-way associative cache. Compare the average 
memory access based on the previous figure miss rates

High associativity becomes 
a negative aspect

A good size of direct mapped cache can 
be very efficient given its simplicity

Example



Compiler-based Cache 
Optimizations

• Complier-based cache optimization reduces the miss rate without 
any hardware change or complexity

• McFarling [1989] reduced caches misses by 75% on 8KB direct 
mapped cache, 4 byte blocks in software

• For Instructions
–  Reorder procedures in memory so as to reduce conflict misses

–  Profiling to determine likely conflicts among groups of instructions

• For Data
– Merging Arrays: improve spatial locality by single array of compound 

elements vs. two arrays

– Loop Interchange: change nesting of loops to access data in order 
stored in memory

– Loop Fusion: Combine two independent loops that have same 
looping and some variables overlap

– Blocking: Improve temporal locality by accessing “blocks” of data 
repeatedly vs. going down whole columns or rows

Slide: Dave Patterson



Merging Arrays:

/* Before: 2 sequential arrays */
int val[SIZE];
int key[SIZE];

/* After: 1 array of stuctures */
struct merge {

int val;
int key;

};
struct merge merged_array[SIZE];

• Reduces misses by improving spatial locality through combined arrays that 
are accessed simultaneously

Loop Interchange:

/* Before */
for (k = 0; k < 100; k = k+1)
   for (j = 0; j < 100; j = j+1)
      for (i = 0; i < 5000; i = i+1)

x[i][j] = 2 * x[i][j];

/* After */
for (k = 0; k < 100; k = k+1)
   for (i = 0; i < 5000; i = i+1)
      for (j = 0; j < 100; j = j+1)

x[i][j] = 2 * x[i][j];

• Sequential accesses instead of striding through memory every 100 words; 
improved spatial locality

Examples



/* Before */
for (i = 0; i < N; i = i+1)
   for (j = 0; j < N; j = j+1)

a[i][j] = 1/b[i][j] * c[i][j];
for (i = 0; i < N; i = i+1)
   for (j = 0; j < N; j = j+1)

d[i][j] = a[i][j] + c[i][j];

/* After */
for (i = 0; i < N; i = i+1)
   for (j = 0; j < N; j = j+1) {

a[i][j] = 1/b[i][j] * c[i][j];
d[i][j] = a[i][j] + c[i][j];

}

Accessing array “a” and “c” would have caused twice the number of misses 
without loop fusion

Loop Fusion Example

• Some programs have separate sections of code that access the 
same arrays 
– (performing different computation on common data)  

• Fusing multiple loops into a single loop allows the data in cache 
to be used repeatedly before being swapped out

• Loop fusion reduces missed through improved temporal locality 
(rather than spatial locality in array merging and loop 
interchange)



Blocking Example
/* Before */

for (i = 0; i < N; i = i+1)

   for (j = 0; j < N; j = j+1) {

      r = 0;

      for (k = 0; k < N; k = k+1)

r = r + y[i][k] * z[k][j];

      x[i][j] = r;

   }

• Two Inner Loops:
– Read all NxN elements of z[]
– Read N elements of 1 row of y[] repeatedly
– Write N elements of 1 row  of x[]
• Capacity Misses a function of N & 
Cache Size:

–  3 〈  N 〈  N 〈  4 bytes => no capacity misses; 

• Idea: compute on B 〈  B sub-matrix 
that fits



Blocking Example
/* After */
for (jj = 0; jj < N; jj = jj+B)
for (kk = 0; kk < N; kk = kk+B)
for (i = 0; i < N; i = i+1)
    for (j = jj; j < min(jj+B-1,N); j = j+1) {
        r = 0;
        for (k = kk; k < min(kk+B-1,N); k = k+1) {

    r = r + y[i][k] * z[k][j];};
    x[i][j] = x[i][j] + r;

        }
    }

• B called Blocking Factor
• Memory words accessed 

2N3 + N2  2N3/B +N2
• Conflict misses can go down 
too
• Blocking is also useful for 
register allocation



Lam et al [1991] a blocking factor of 24 had a fifth the misses 
compared to a factor of 48 despite both fitting in cache

Blocking Factor

• Traditionally blocking is used to reduce capacity misses relying 
on high associativity to tackle conflict misses

• Choosing smaller blocking factor than the cache capacity can 
also reduce conflict misses (fewer words are active in cache)
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Slide: Dave Patterson

Efficiency of Compiler-Based 
Cache Opt.



Reducing Miss Penalty

• Reducing the miss penalty can be as effective as the reducing the miss rate

• With the gap between the processor and DRAM widening, the relative cost of the 
miss penalties increases over time

• Seven techniques
1. Read priority over write on miss
2. Sub-block placement
3. Merging write buffer
4. Victim cache
5. Early Restart and Critical Word First on miss
6. Non-blocking Caches (Hit under Miss, Miss under Miss)
7. Second Level Cache

• Can be applied recursively to Multilevel Caches
–  Danger is that time to DRAM will grow with multiple levels in between
–  First attempts at L2 caches can make things worse, since increased worst case 

is worse

CPUtime = IC  CPIExecution +
Memory  accesses

Instruction
 Miss rate  Miss  penalty  

  
  
   Clock  cycle  time

Slide: Dave Patterson 



Second Level Cache
• The previous techniques reduce the impact of the miss penalty on the CPU
     while inserting a second level cache handles the cache-memory interface

• The idea of a L2 cache fits with the concept of memory hierarchy

• Measuring cache performance    

    Average memory access time = Hit TimeL1 + Miss RateL1 x Miss PenaltyL1

Miss PenaltyL1 = Hit TimeL2 + Miss RateL2 x Miss PenaltyL2

 Average memory access time with L2 = Hit TimeL1 + 

                                 Miss RateL1 x (Hit TimeL2 + Miss RateL2 x Miss PenaltyL2)

Local miss rate— misses in this cache divided by the total number of
    memory accesses to this cache (Miss rateL2)

Global miss rate—misses in this cache divided by the total number of 

    memory accesses generated by the CPU (Miss RateL1 x Miss RateL2) 

Global Miss Rate is what matters since the local miss rate is a function only 
    of the secondary cache



(Global miss rate close to single level cache rate provided L2 >> L1)

Local & Global Misses



Block size of second-level cache (byte)
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•  32 bit bus
•  512KB cache

• Since the primary cache 
directly affects the processor 
design and clock cycle, it 
should be kept simple and 
small

• The bulk of the optimization 
techniques can go easily to 
L2 cache, including large 
cache and block sizes, high 
level of associativity, etc.

• Techniques for reducing the 
miss rate are more practical 
for the L2 cache

• Considering the L2 cache 
can improve the L1 cache 
design, e.g. use write-
through if L2 cache applies 
write-back

L2 Cache Parameters



Reducing Hit Time

• Since hit rate is typically very high compared to miss rate, any reduction in 
hit time is magnified to significant gain in cache performance 

• Hit time is critical because it affects the clock rate of the processor (many 
processors include on chip cache)

• Three techniques to reduce hit time
1. Simple and small caches
2. Avoid address translation during cache indexing
3. Pipelining writes for fast write hits

Simple and small caches
• Design simplicity limits the complexity of the control logic and allows to 

shorter clock cycles (e.g. direct mapped organization)

• On-chip integration decreases signal propagation delay, thus reducing hit 
time (small on-chip first level cache and large off-chip L2 cache)

– Alpha 21164 has 8KB Instruction and 8KB data cache and 96KB second level 
cache to reduce clock rate

Average Access Time = Hit Time x (1 - Miss Rate)  +  Miss Penalty x Miss Rate



Avoiding Address Translation
• Send virtual address to cache? Called Virtually Addressed Cache or just 

Virtual Cache vs.  Physical Cache
– Every time process is switched logically must flush the cache; otherwise 

get false hits
• Cost is time to flush + “compulsory” misses from empty cache

– Dealing with aliases (sometimes called synonyms); 
Two different virtual addresses map  to same physical address causing 
unnecessary read miss or even RAW problems in case user and system 
level processes

– I/O must interact with cache, so forced to use virtual addresses
• Solution to aliases

– HW guarantees  that every cache block has unique physical address 
(simply check all cache entries)

– SW guarantee: lower n bits must have same address so that it overlap 
with index; as long as covers index field & direct mapped, they must be 
unique; called page coloring

• Solution to cache flush
– Add process identifier tag that identifies process as well as address 

within process: cannot get a hit if wrong process
* Slide is courtesy of Dave Patterson 



Impact of Using Process ID

• Miss rate vs. virtually addressed cache size 
of a program measured three ways:
• Without process switches (uniprocessor)
• With process switches using a PID tag (PID)
• With process switches but without PID 

(purge)
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CPU

TB

$

MEM

VA

PA

PA

Conventional
Organization

CPU

$

TB

MEM

VA

VA

PA

Virtually Addressed Cache
Translate only on miss

Synonym Problem

CPU

$ TB

MEM

VA

PA
Tags

PA

Overlap $ access
with VA translation:
requires $ index to

remain invariant
across translation

VA
Tags

L2 $
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VA: Virtual address TB: Translation buffer PA: Page address



Indexing via Physical Addresses

• If index is physical part of address, can start tag access in parallel with 
translation so that can compare to physical tag

• To get the best of the physical and virtual caches is to use the page 
offset, which is not affected by the address translation to index the cache

• The drawback is that direct-mapped caches cannot be bigger than the 
page size (typically 4-KB)

• To support bigger caches and uses same technique, one can:
• Use higher associativity since the tag size gets smaller (moves barrier 

towards the most part of the address)
• The operating system is to implement page coloring since it will fix a 

few least significant bits in the address (move part of the index to the 
tag)



“Delayed Write Buffer”; must be 
checked on reads; either complete 
write or read from buffer

Pipeline Tag Check 
and Update Cache 
as separate stages; 
current write tag 
check & previous 
write cache update

Pipelined Cache Writes
• In cache read, tag check and block reading are performed in parallel 

while writing requires validating the tag first

– Tag Check can be performed in parallel with a previous cache 
update

– pipelined cache write



Cache Optimization Summary

Technique MR   MP      HT     Complexity

Larger Block Size +   – 0
Higher Associativity +          – 1
Victim Caches + 2
Pseudo-Associative Caches + 2
HW Pre-fetching of Instr/Data + 2
Compiler Controlled Pre-fetching + 3
Compiler Reduce Misses + 0

Priority to Read Misses   + 1
Sub-block Placement   +         + 1
Early Restart & Critical Word 1st   + 2
Non-Blocking Caches   + 3
Second Level  Caches   + 2

Small & Simple Caches –         + 0
Avoiding Address Translation         + 2
Pipelining Writes         + 1
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CPU Registers
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Main Memory Background
• Performance of Main Memory: 

–  Latency: affects cache miss penalty

• Access Time: time between request and word arrives

• Cycle Time: time between requests

–  Bandwidth: primary concern for I/O & large Block Miss Penalty (L2)

• Main Memory is DRAM: Dynamic Random Access Memory

–  Dynamic since needs to be refreshed periodically (8 ms, 1% time)

–  Addresses divided into 2 halves (Memory as a 2D matrix):

• RAS or Row Access Strobe

• CAS or Column Access Strobe

• Cache uses SRAM: Static Random Access Memory

–  No refresh (6 transistors/bit vs. 1 transistor /bit, area is 10X)

–  Address not divided: Full address

•  Size: DRAM/SRAM - 4-8, 

    Cost/Cycle time: SRAM/DRAM - 8-16

* Slide is courtesy of Dave Patterson 



DRAM Logical Organization 

• Refreshing prevent access to the DRAM (typically 1-5% of the time)
• Reading one byte refreshes the entire row
• Read is destructive and thus data need to be re-written after reading

–  Cycle time is significantly larger than access time
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Problem: 
Improvements in access time are not enough to catch up

Solution: 
Increase the bandwidth of main memory (improve throughput)



Memory Organization
CPU

Cache

Bus

Memory

a. One-word-wide
memory organization

CPU

Bus

b. Wide memory organization

Memory

Multiplexor

Cache

CPU

Cache
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Memory
bank 1

Memory
bank 2

Memory
bank 3
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c. Interleaved memory organization

•  Simple: CPU, Cache, Bus, Memory same width (32 bits)

•  Wide:  CPU/Mux 1 word; Mux/Cache, Bus, Memory N words

•  Interleaved: CPU, Cache, Bus 1 word: Memory N Modules
                    (4 Modules); example is word interleaved

Memory organization would have significant effect on bandwidth



  Access Pattern without Interleaving:

Start Access for D1

CPU Memory

Start Access for D2
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  Access Pattern with 4-way 
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A
cc

es
s 

B
an

k 
0

We can Access Bank 0 again

CPU

Memory
Bank 1

Memory
Bank 0

Memory
Bank 3

Memory
Bank 2

Memory Interleaving
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Independent Memory Banks
• Original motivation for memory banks is higher bandwidth by interleaving sequential 

access using one memory controller and one data bus

• Memory banks that allows multiple independent accesses are useful for:

– Multiprocessor system: allowing concurrent execution

– I/O: limiting memory access contention and expedite data transfer

– CPU with Hit under n Misses, Non-blocking Cache

• Supporting multiple independent accesses requires separate controller, address bus 
and possibly data buses for each bank

 Superbank: all memory active on one block transfer 
 Bank: portion within a superbank that is word interleaved (or Subbank)

Superbanks act as separate memories mapped to the same address space
* Slide is courtesy of Dave Patterson 



Avoiding Bank Conflicts
• The effectiveness of interleaving depends on the frequency that independent 

requests will go to different banks
• Sequential requests and accesses that differ by an odd number would work 

well with interleaving

Example: Assuming 128 banks
int x[256][512];
for (j = 0; j < 512; j = j+1)

for (i = 0; i < 256; i = i+1)
x[i][j] = 2 * x[i][j];

• Bank number =  address MOD number of banks
• Address within bank = address / number of words in bank
• Since 512 is multiple of 128, all elements of a column will be in the same 

bank and code will stall on data cache misses

Solutions
• SW: loop interchange or declaring array not power of 2 (“array padding”)
• HW: Prime number of banks and modulo interleaving

–  Complexity of modulo & divide per memory access with prime no. banks?
–  Simple address calculation using the Chinese Remainder Theorem

* Slide is courtesy of Dave Patterson 


