Higher Level Programming Abstractions for FPGAs using OpenCL

Desh Singh Supervising Principal Engineer Altera Corporation Toronto Technology Center

Programmable Solutions: 1985-2002

Technology scaling favors programmability

Programmable Solutions: 2002-20XX

Technology scaling favors programmability and parallelism

Programmable and Sequential

Reaching the limit

- After four decades of success...

"The End of Denial Architecture" - William J. Dally [DAC'2009]

- Single thread processors are in denial about parallelism and locality
- They provide two illusions:

Serial execution

- Denies parallelism
- Tries to exploit parallelism with ILP limited scalability

Flat memory

- Denies locality
- Tries to provide illusion with caches very inefficient when working set doesn't fit in the cache

Programmable and *Parallel*

- Exploit parallelism on a chip
 - Take advantage of Moore's law
 - Processors not getting faster, just wider
 - Keep the power consumption down
- Use more transistors for information processing

FPGA : Ultimately Configurable Multicore

Processor Possibilities

Our challenges

- Generally, programmers have difficulty using FPGAs as massive multi-core devices to accelerate parallel applications
- Need a programming model that allows the designer to think about the FPGA as a configurable multi-core device
- Today, the FPGA's programming model revolves around RTL (VHDL / Verilog)
 - State machines, datapaths, arbitration, buffering, etc.

An ideal programming environment ...

Has the following characteristics:

- Based on a standard multicore programming model rather than something which is FPGA-specific
- Abstracts away the underlying details of the hardware
 - VHDL / Verilog are similar to "assembly language" programming
 - Useful in rare circumstances where the highest possible efficiency is needed
- The price of abstraction is not too high
 - Still need to efficiently use the FPGA's resources to achieve high throughput / low area
- Allows for software-like compilation & debug cycles
 - Faster compile times
 - Profiling & user feedback

OPENCL : BRIEF INTRODUCTION

What is OpenCL

- OpenCL is a programming model developed by the Khronos group to support silicon acceleration
- An industry consortium creating open API standards
- Enables software to leverage silicon acceleration
- Commitment to royalty-free standards
 - Making money from enabled products not from the standards themselves

OpenCL

- OpenCL is a parallel language that provides us with two distinct advantages
 - Parallelism is declared by the programmer
 - Data parallelism is expressed through the notion of parallel threads which are instances of computational kernels
 - Task parallelism is accomplished with the use of queues and events that allow us to coordinate the coarse grained control flow
 - Data storage and movement is explicit
 - Hierarchical Memory model
 - Registers
 - Accelerator Local Memory
 - Global off-chip memory
 - It is up to the programmer to manage their memories and bandwidth efficiently

OpenCL Structure

- Natural separation between the code that runs on accelerators* and the code that manages those accelerators
 - The management or "host" code is pure software that can be executed on any sort of conventional microprocessor
 - Soft processor, Embedded hard processor, external x86 processor
 - The kernel code is 'C' with a minimal set of extensions that allows for the specification of parallelism and memory hierarchy
 - Likely only a small fraction of the total code in the application
 - Used only for the most computationally intensive portions

* Accelerator = Processor + Memory combo

OpenCL Host Program

- Pure software written in standard 'C'
- Communicates with the Accelerator Device via a set of library routines which abstract the communication between the host processor and

OpenCL Kernels

Data-parallel function

- Defines many parallel threads of execution
- Each thread has an identifier specified by "get_global_id"
- Contains keyword extensions to specify parallelism and memory hierarchy

```
__kernel void
sum(__global const float *a,
   __global const float *b,
   __global float *answer)
{
int xid = get_global_id(0);
answer[xid] = a[xid] + b[xid];
}
```


Altera supported system configurations

External host

Embedded

OpenCL : FPGA Programming Model

- OpenCL is a standard multi-core programming model that can be used to provide a higher-level layer of abstraction for FPGAs
- Research challenges abound
 - Need to collaborate with academics, third parties and members of the Khronos group
 - Require libraries, kernel compilers, debugging tools, pre-defined templates, etc.
 - We have to consider that our "competition" is no longer just other FPGA vendors
 - A broad spectrum of programmable multi-core devices targeting different market segments

Thank You

ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the United States and are trademarks or registered trademarks in other countries.

OpenCL Driving Forces

- Attempt at driving an industry standard parallel language across platforms
 - CPUs, GPUs, Cell Processors, DSPs, and even FPGAs

So far driven by applications from:

- The consumer space
 - Image Processing & Video Encoding
 - 1080p video processing on mobile devices
 - Augmented reality & Computational Photography
- Game programming
 - More sophisticated rendering algorithms
- Scientific / High Performance Computing
 - Financial, Molecular Dynamics, Bioinformatics, etc.

Challenges

- OpenCL's compute model targets an "abstract machine" that is not an FPGA
 - Hierarchical array of processing elements
 - Corresponding hierarchical memory structure
- It is more difficult to target an OpenCL program to an FPGA than targeting more natural hardware platforms such as CPUs and GPUs
 - These problems are research opportunities ③

