
AJProença, Sistemas de Computação e Desempenho, MInf, UMinho, 2010/11 1

Sistemas de Computação e Desempenho

Mestrado em Informática

2010/11

A.J.Proença

Tema
Arquitecturas Paralelas (1)

Adaptado de
Computer Organization and Design, 4th Ed, Patterson & Hennessy, © 2009, MK

AJProença, Sistemas de Computação e Desempenho, MInf, UMinho, 2010/11 2

Arquitecturas Paralelas

Estrutura do tema AP

1.  A evolução das arquitecturas pelo paralelismo

2.  Multiprocessadores (SMP e MPP)

3.  Data Parallelism: SIMD, Vector, GPU, …

4.  Topologias de interligação

AJProença, Sistemas de Computação e Desempenho, MInf, UMinho, 2010/11 3

Performance Summary

•  Performance depends on
– Algorithm: affects IC, possibly CPI
– Programming language: affects IC, CPI
– Compiler: affects IC, CPI
–  Instruction set architecture: affects IC, CPI, Tc

The BIG Picture

AJProença, Sistemas de Computação e Desempenho, MInf, UMinho, 2010/11 4

The Power Wall:
Power Trends

•  In CMOS IC technology

!1000 !30 5V " 1V

AJProença, Sistemas de Computação e Desempenho, MInf, UMinho, 2010/11 5

Reducing Power

•  Suppose a new CPU has
–  85% of capacitive load of old CPU
–  15% voltage and 15% frequency reduction

•  The power wall
– We can’t reduce voltage further
– We can’t remove more heat

•  How else can we improve performance?

AJProença, Sistemas de Computação e Desempenho, MInf, UMinho, 2010/11 6

The Sea Change:
The Switch to Multiprocessors

Constrained by power, instruction-level parallelism, memory latency

Uniprocessor Performance

AJProença, Sistemas de Computação e Desempenho, MInf, UMinho, 2010/11 7

Multiprocessors

•  Multicore microprocessors
– More than one processor per chip

•  Requires explicitly parallel programming
– Compare with instruction level parallelism

•  Hardware executes multiple instructions at once
•  Hidden from the programmer

– Hard to do
•  Programming for performance
•  Load balancing
•  Optimizing communication and synchronization

AJProença, Sistemas de Computação e Desempenho, MInf, UMinho, 2010/11 8

Parallelism and Instructions:
Synchronization

•  Two processors sharing an area of memory
–  P1 writes, then P2 reads
–  Data race if P1 and P2 don’t synchronize

•  Result depends of order of accesses

•  Hardware support required
–  Atomic read/write memory operation
–  No other access to the location allowed between the read

and write
•  Could be a single instruction

–  E.g., atomic swap of register # memory
–  Or an atomic pair of instructions

AJProença, Sistemas de Computação e Desempenho, MInf, UMinho, 2010/11 9

Parallelism and Computer Arithmetic:
Associativity

•  Parallel programs may interleave operations in
unexpected orders
– Assumptions of associativity may fail

•  Need to validate parallel programs under varying
degrees of parallelism

AJProença, Sistemas de Computação e Desempenho, MInf, UMinho, 2010/11 10

Parallelism and
Instruction-Level Parallelism (ILP)

•  Pipelining: executing multiple instructions in parallel
•  To increase ILP

–  Deeper pipeline
•  Less work per stage ! shorter clock cycle

–  Multiple issue
•  Replicate pipeline stages ! multiple pipelines
•  Start multiple instructions per clock cycle
•  CPI < 1, so use Instructions Per Cycle (IPC)
•  E.g., 4GHz 4-way multiple-issue

–  16 BIPS, peak CPI = 0.25, peak IPC = 4
•  But dependencies reduce this in practice

AJProença, Sistemas de Computação e Desempenho, MInf, UMinho, 2010/11 11

ILP: Multiple Issue

•  Static multiple issue
– Compiler groups instructions into “issue packets”
– An “issue packet” Specifies multiple concurrent

operations
! Very Long Instruction Word (VLIW)

– Compiler detects and avoids hazards
•  Dynamic multiple issue (“superscalar” processor)

– CPU examines instruction stream and chooses
instructions to issue each cycle

– Compiler can help by reordering instructions
– CPU resolves hazards using advanced techniques

at runtime
AJProença, Sistemas de Computação e Desempenho, MInf, UMinho, 2010/11 12

ILP: Speculation

•  “Guess” what to do with an instruction
–  Start operation as soon as possible
–  Check whether guess was right

•  If so, complete the operation
•  If not, roll-back and do the right thing

•  Common to static and dynamic multiple issue
•  Examples

–  Speculate on branch outcome
•  Roll back if path taken is different

–  Speculate on load
•  Avoid load and cache miss delay
•  Roll back if location is updated

AJProença, Sistemas de Computação e Desempenho, MInf, UMinho, 2010/11 13

ILP: Compiler/Hardware Speculation

•  Compiler can reorder instructions
–  e.g., move load before branch
– Can include “fix-up” instructions to recover from

incorrect guess
•  Hardware can look ahead for instructions to

execute
– Buffer results until it determines they are actually

needed
– Flush buffers on incorrect speculation

AJProença, Sistemas de Computação e Desempenho, MInf, UMinho, 2010/11 14

Measuring Cache Performance

•  Components of CPU time
– Program execution cycles

•  Includes cache hit time
– Memory stall cycles

•  Mainly from cache misses
•  With simplifying assumptions:

AJProença, Sistemas de Computação e Desempenho, MInf, UMinho, 2010/11 15

Multilevel Cache Considerations

•  Primary cache
•  Focus on minimizing hit time for a shorter clock cycle

-  Smaller with smaller block sizes
•  L-2 cache

•  Focus on reducing miss rate to reduce the penalty of long
main memory access times

•  Larger with larger block sizes
•  Higher levels of associativity

•  Hit time has less overall impact
•  Results

•  L-1 cache usually smaller than a single cache
•  L-1 block size smaller than L-2 block size

AJProença, Sistemas de Computação e Desempenho, MInf, UMinho, 2010/11 16

Multilevel On-Chip Caches:
Intel Nehalem

Per core: 32KB L1 I-cache, 32KB L1 D-cache, 512KB L2 cache

Intel Nehalem 4-core processor

AJProença, Sistemas de Computação e Desempenho, MInf, UMinho, 2010/11 17

3-Level Cache Organization

Intel Nehalem AMD Opteron X4
L1 caches
(per core)

L1 I-cache: 32KB, 64-byte blocks,
4-way, approx LRU replacement, hit
time n/a
L1 D-cache: 32KB, 64-byte blocks,
8-way, approx LRU replacement,
write-back/allocate, hit time n/a

L1 I-cache: 32KB, 64-byte blocks,
2-way, LRU replacement, hit time 3
cycles
L1 D-cache: 32KB, 64-byte blocks,
2-way, LRU replacement, write-
back/allocate, hit time 9 cycles

L2 unified
cache
(per core)

256KB, 64-byte blocks, 8-way,
approx LRU replacement, write-
back/allocate, hit time n/a

512KB, 64-byte blocks, 16-way,
approx LRU replacement, write-
back/allocate, hit time n/a

L3 unified
cache
(shared)

8MB, 64-byte blocks, 16-way,
replacement n/a, write-back/
allocate, hit time n/a

2MB, 64-byte blocks, 32-way,
replace block shared by fewest
cores, write-back/allocate, hit time
32 cycles

n/a: data not available
AJProença, Sistemas de Computação e Desempenho, MInf, UMinho, 2010/11 18

Measuring Performance: SPEC CPU Benchmark

•  Programs used to measure performance
–  Supposedly typical of actual workload

•  Standard Performance Evaluation Corp (SPEC)
–  Develops benchmarks for CPU, I/O, Web, …

•  SPEC CPU2006
–  Elapsed time to execute a selection of programs

•  Negligible I/O, so focuses on CPU performance
–  Normalize relative to reference machine
–  Summarize as geometric mean of performance ratios

•  CINT2006 (integer) and CFP2006 (floating-point)

AJProença, Sistemas de Computação e Desempenho, MInf, UMinho, 2010/11 19

Measuring Performance:
CINT2006 for Opteron X4 2356 (Barcelona)

Name Description IC!109 CPI Tc (ns) Exec time Ref time SPECratio

perl Interpreted string processing 2,118 0.75 0.40 637 9,777 15.3

bzip2 Block-sorting compression 2,389 0.85 0.40 817 9,650 11.8

gcc GNU C Compiler 1,050 1.72 0.47 24 8,050 11.1

mcf Combinatorial optimization 336 10.00 0.40 1,345 9,120 6.8

go Go game (AI) 1,658 1.09 0.40 721 10,490 14.6

hmmer Search gene sequence 2,783 0.80 0.40 890 9,330 10.5

sjeng Chess game (AI) 2,176 0.96 0.48 37 12,100 14.5

libquantum Quantum computer simulation 1,623 1.61 0.40 1,047 20,720 19.8

h264avc Video compression 3,102 0.80 0.40 993 22,130 22.3

omnetpp Discrete event simulation 587 2.94 0.40 690 6,250 9.1

astar Games/path finding 1,082 1.79 0.40 773 7,020 9.1

xalancbmk XML parsing 1,058 2.70 0.40 1,143 6,900 6.0

Geometric mean 11.7

High cache miss rates

AJProença, Sistemas de Computação e Desempenho, MInf, UMinho, 2010/11 20

Measuring Performance:
CINT2006 for Opteron X4 2356 (Barcelona)

AJProença, Sistemas de Computação e Desempenho, MInf, UMinho, 2010/11 21

Arquitecturas Paralelas

Estrutura do tema AP

1.  A evolução das arquitecturas pelo paralelismo

2.  Multiprocessadores (SMP e MPP)

3.  Data Parallelism: SIMD, Vector, GPU, …

4.  Topologias de interligação

AJProença, Sistemas de Computação e Desempenho, MInf, UMinho, 2010/11 22

Introduction

•  Goal: connecting multiple computers
to get higher performance
– Multiprocessors
– Scalability, availability, power efficiency

•  Job-level (process-level) parallelism
– High throughput for independent jobs

•  Parallel processing program
– Single program run on multiple processors

•  Multicore microprocessors
– Chips with multiple processors (cores)

AJProença, Sistemas de Computação e Desempenho, MInf, UMinho, 2010/11 23

•  Multiprocessor – a computer system with at least two processors

–  Can deliver high throughput for independent jobs via job-level
parallelism or process-level parallelism

–  And improve the run time of a single program that has been
specially crafted to run on a multiprocessor - a parallel processing
program

Processor Processor Processor

Cache Cache Cache

Interconnection Network

Memory I/O

The Big Picture:
Where are We Now?

M
ar

y
Ja

ne
 Ir

w
in

 (
w

w
w

.c
se

.p
su

.e
du

/~
m

ji
)

AJProença, Sistemas de Computação e Desempenho, MInf, UMinho, 2010/11 24

Multicores Now Common

•  The power challenge has forced a change in the design of
microprocessors

–  Since 2002 the rate of improvement in the response time of
programs has slowed from a factor of 1.5 per year to less than a
factor of 1.2 per year

•  Today’s microprocessors typically contain more than one core – Chip
Multicore microProcessors (CMPs) – in a single IC

–  The number of cores is expected to double every two years

Product AMD
Barcelona

Intel
Nehalem

IBM Power
6

Sun Niagara
2

Cores per chip 4 4 2 8
Clock rate 2.5 GHz ~2.5 GHz? 4.7 GHz 1.4 GHz
Power 120 W ~100 W? ~100 W? 94 W

M
ar

y
Ja

ne
 Ir

w
in

 (
w

w
w

.c
se

.p
su

.e
du

/~
m

ji
)

AJProença, Sistemas de Computação e Desempenho, MInf, UMinho, 2010/11 25

Encountering Amdahl’s Law

•  Speedup due to enhancement E is

Speedup w/ E = ----------------------
Exec time w/o E
Exec time w/ E

" Suppose that enhancement E accelerates a fraction F
(F <1) of the task by a factor S (S>1) and the remainder
of the task is unaffected

ExTime w/ E = ExTime w/o E " ((1-F) + F/S)
Speedup w/ E = 1 / ((1-F) + F/S)

M
ar

y
Ja

ne
 Ir

w
in

 (
w

w
w

.c
se

.p
su

.e
du

/~
m

ji
)

AJProença, Sistemas de Computação e Desempenho, MInf, UMinho, 2010/11 26

Example 2: Amdahl’s Law

•  Consider summing 10 scalar variables and two 10 by 10
matrices (matrix sum) on 10 processors

Speedup w/ E = 1/(.091 + .909/10) = 1/0.1819 = 5.5
•  What if there are 100 processors ?

Speedup w/ E = 1/(.091 + .909/100) = 1/0.10009 = 10.0

•  What if the matrices are100 by 100 (or 10,010 adds in
total) on 10 processors?

Speedup w/ E = 1/(.001 + .999/10) = 1/0.1009 = 9.9

•  What if there are 100 processors ?
Speedup w/ E = 1/(.001 + .999/100) = 1/0.01099 = 91

Speedup w/ E = 1 / ((1-F) + F/S)

M
ar

y
Ja

ne
 Ir

w
in

 (
w

w
w

.c
se

.p
su

.e
du

/~
m

ji
)

AJProença, Sistemas de Computação e Desempenho, MInf, UMinho, 2010/11 27 AJProença, Sistemas de Computação e Desempenho, MInf, UMinho, 2010/11 28

Scaling

•  To get good speedup on a multiprocessor while keeping
the problem size fixed is harder than getting good
speedup by increasing the size of the problem.

– Strong scaling – when speedup can be achieved on a
multiprocessor without increasing the size of the problem

– Weak scaling – when speedup is achieved on a
multiprocessor by increasing the size of the problem
proportionally to the increase in the number of processors

•  Load balancing is another important factor. Just a single
processor with twice the load of the others cuts the
speedup almost in half

M
ar

y
Ja

ne
 Ir

w
in

 (
w

w
w

.c
se

.p
su

.e
du

/~
m

ji
)

AJProença, Sistemas de Computação e Desempenho, MInf, UMinho, 2010/11 29

Multiprocessor/Clusters Key Questions

•  Q1 – How do they share data?

•  Q2 – How do they coordinate?

•  Q3 – How scalable is the architecture?
 How many processors can be supported?

M
ar

y
Ja

ne
 Ir

w
in

 (
w

w
w

.c
se

.p
su

.e
du

/~
m

ji
)

AJProença, Sistemas de Computação e Desempenho, MInf, UMinho, 2010/11 30

Shared Memory Multiprocessor (SMP)

•  Q1 – Single address space shared by all processors
•  Q2 – Processors coordinate/communicate through shared

variables in memory (via loads and stores)
– Use of shared data must be coordinated via synchronization

primitives (locks) that allow access to data to only one
processor at a time

•  They come in two styles
– Uniform memory access (UMA) multiprocessors
– Nonuniform memory access (NUMA) multiprocessors

"  Programming NUMAs are harder

"  But NUMAs can scale to larger sizes and have lower
latency to local memory

M
ar

y
Ja

ne
 Ir

w
in

 (
w

w
w

.c
se

.p
su

.e
du

/~
m

ji
)

AJProença, Sistemas de Computação e Desempenho, MInf, UMinho, 2010/11 31

Summing 100,000 Numbers on 100 Proc. SMP

sum[Pn] = 0;
for (i = 1000*Pn; i< 1000*(Pn+1); i = i + 1)
 sum[Pn] = sum[Pn] + A[i];

"  Processors start by running a loop that sums their subset of
vector A numbers (vectors A and sum are shared variables, Pn is
the processor’s number, i is a private variable)

"  The processors then coordinate in adding together the partial
sums (half is a private variable initialized to 100 (the number
of processors)) – reduction

repeat
 synch(); /*synchronize first
 if (half%2 != 0 && Pn == 0)
 sum[0] = sum[0] + sum[half-1];
 half = half/2
 if (Pn<half) sum[Pn] = sum[Pn] + sum[Pn+half]

until (half == 1); /*final sum in sum[0]

M
ar

y
Ja

ne
 Ir

w
in

 (
w

w
w

.c
se

.p
su

.e
du

/~
m

ji
)

AJProença, Sistemas de Computação e Desempenho, MInf, UMinho, 2010/11 32

An Example with 10 Processors

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9

sum[P0] sum[P1] sum[P2] sum[P3] sum[P4] sum[P5] sum[P6] sum[P7] sum[P8] sum[P9]

P0

P0 P1 P2 P3 P4

half = 10

half = 5

P1 half = 2

P0 half = 1

M
ar

y
Ja

ne
 Ir

w
in

 (
w

w
w

.c
se

.p
su

.e
du

/~
m

ji
)

AJProença, Sistemas de Computação e Desempenho, MInf, UMinho, 2010/11 33

Process Synchronization

•  Need to be able to coordinate processes working on a
common task

•  Lock variables (semaphores) are used to coordinate or
synchronize processes

•  Need an architecture-supported arbitration mechanism to
decide which processor gets access to the lock variable

– Single bus provides arbitration mechanism, since the bus
is the only path to memory – the processor that gets the
bus wins

•  Need an architecture-supported operation that locks the
variable

–  Locking can be done via an atomic swap operation

M
ar

y
Ja

ne
 Ir

w
in

 (
w

w
w

.c
se

.p
su

.e
du

/~
m

ji
)

AJProença, Sistemas de Computação e Desempenho, MInf, UMinho, 2010/11 34

Locality and Parallelism

Proc
Cache

L2 Cache

L3 Cache

Memory

Conventional
Storage Hierarchy

Proc
Cache

L2 Cache

L3 Cache

Memory

Proc
Cache

L2 Cache

L3 Cache

Memory

potential
interconnects

AJProença, Sistemas de Computação e Desempenho, MInf, UMinho, 2010/11 35

Message Passing Multiprocessors (MPP)

•  Each processor has its own private address space
•  Q1 – Processors share data by explicitly sending and

receiving information (message passing)
•  Q2 – Coordination is built into message passing

primitives (message send and message receive)

Processor Processor Processor

Cache Cache Cache

Interconnection Network

Memory Memory Memory

M
ar

y
Ja

ne
 Ir

w
in

 (
w

w
w

.c
se

.p
su

.e
du

/~
m

ji
)

CSE431 Chapter 7A.36 Irwin, PSU, 2008

Summing 100,000 Numbers on 100 Proc. MPP

sum = 0;
for (i = 0; i<1000; i = i + 1)
 sum = sum + Al[i]; /* sum local array subset

" Start by distributing 1000 elements of vector A to each of
the local memories and summing each subset in parallel

" The processors then coordinate in adding together the sub
sums (Pn is the number of processors, send(x,y) sends
value y to processor x, and receive() receives a value)
half = 100;
limit = 100;
repeat
 half = (half+1)/2; /*dividing line
 if (Pn>= half && Pn<limit) send(Pn-half,sum);
 if (Pn<(limit/2)) sum = sum + receive();
 limit = half;
until (half == 1); /*final sum in P0’s sum

CSE431 Chapter 7A.37 Irwin, PSU, 2008

An Example with 10 Processors

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9

P0 P1 P2 P3 P4

half = 10

half = 5

half = 3

half = 2

sum sum sum sum sum sum sum sum sum sum

send

receive

P0 P1 P2

limit = 10

limit = 5

limit = 3

limit = 2

half = 1

P0 P1

P0

send

receive

send

receive

send

receive

CSE431 Chapter 7A.38 Irwin, PSU, 2008

Pros and Cons of Message Passing
" Message sending and receiving is much slower than

addition, for example
" But message passing multiprocessors and much easier

for hardware designers to design
!  Don’t have to worry about cache coherency for example

" The advantage for programmers is that communication is
explicit, so there are fewer “performance surprises” than
with the implicit communication in cache-coherent SMPs.
!  Message passing standard MPI-2 (www.mpi-forum.org)

" However, its harder to port a sequential program to a
message passing multiprocessor since every
communication must be identified in advance.
!  With cache-coherent shared memory the hardware figures out

what data needs to be communicated

CSE431 Chapter 7A.39 Irwin, PSU, 2008

Multithreading on A Chip
" Find a way to “hide” true data dependency stalls, cache

miss stalls, and branch stalls by finding instructions (from
other process threads) that are independent of those
stalling instructions

" Hardware multithreading – increase the utilization of
resources on a chip by allowing multiple processes
(threads) to share the functional units of a single
processor
!  Processor must duplicate the state hardware for each thread – a

separate register file, PC, instruction buffer, and store buffer for
each thread

!  The caches, TLBs, BHT, BTB, RUU can be shared (although the
miss rates may increase if they are not sized accordingly)

!  The memory can be shared through virtual memory mechanisms
!  Hardware must support efficient thread context switching

AJProença, Sistemas de Computação e Desempenho, MInf, UMinho, 2010/11 40

Multithreading

•  Performing multiple threads of execution in parallel
–  Replicate registers, PC, etc.
–  Fast switching between threads

•  Fine-grain multithreading
–  Switch threads after each cycle
–  Interleave instruction execution
–  If one thread stalls, others are executed

•  Coarse-grain multithreading
–  Only switch on long stall (e.g., L2-cache miss)
–  Simplifies hardware, but doesn’t hide short stalls (eg,

data hazards)

AJProença, Sistemas de Computação e Desempenho, MInf, UMinho, 2010/11 41

Simultaneous Multithreading

•  In multiple-issue dynamically scheduled
processor
– Schedule instructions from multiple threads
–  Instructions from independent threads execute

when function units are available
– Within threads, dependencies handled by

scheduling and register renaming
•  Example: Intel Pentium-4 HT (Hyper-Threading)

– Two threads: duplicated registers, shared function
units and caches

CSE431 Chapter 7A.42 Irwin, PSU, 2008

Threading on a 4-way SS Processor Example

Thread A Thread B

Thread C Thread D

Tim
e "

Issue slots "
SMT Fine MT Coarse MT

AJProença, Sistemas de Computação e Desempenho, MInf, UMinho, 2010/11 43

Future of Multithreading

•  Will it survive? In what form?
•  Power considerations ! simplified

microarchitectures
– Simpler forms of multithreading

•  Tolerating cache-miss latency
– Thread switch may be most effective

•  Multiple simple cores might share resources
more effectively

CSE431 Chapter 7A.44 Irwin, PSU, 2008

Review: Multiprocessor Basics

of Proc
Communication
model

Message passing 8 to 2048
Shared
address

NUMA 8 to 256
UMA 2 to 64

Physical
connection

Network 8 to 256
Bus 2 to 36

" Q1 – How do they share data?

" Q2 – How do they coordinate?

" Q3 – How scalable is the architecture? How many
 processors?

