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Arquitecturas Paralelas 

Estrutura do tema AP 

1.  A evolução das arquitecturas pelo paralelismo 

2.  Multiprocessadores (SMP e MPP) 

3.  Data Parallelism: SIMD, Vector, GPU, … 

4.  Topologias de interligação 
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Performance Summary 

•  Performance depends on 
– Algorithm: affects IC, possibly CPI 
– Programming language: affects IC, CPI 
– Compiler: affects IC, CPI 
–  Instruction set architecture: affects IC, CPI, Tc 

The BIG Picture 
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The Power Wall: 
Power Trends 

•  In CMOS IC technology 

!1000 !30 5V " 1V 
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Reducing Power 

•  Suppose a new CPU has 
–  85% of capacitive load of old CPU 
–  15% voltage and 15% frequency reduction 

•  The power wall 
– We can’t reduce voltage further 
– We can’t remove more heat 

•  How else can we improve performance? 
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The Sea Change:  
The Switch to Multiprocessors 

Constrained by power, instruction-level parallelism, memory latency 

Uniprocessor Performance 
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Multiprocessors 

•  Multicore microprocessors 
– More than one processor per chip 

•  Requires explicitly parallel programming 
– Compare with instruction level parallelism 

•  Hardware executes multiple instructions at once 
•  Hidden from the programmer 

– Hard to do 
•  Programming for performance 
•  Load balancing 
•  Optimizing communication and synchronization 
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Parallelism and Instructions: 
Synchronization 

•  Two processors sharing an area of memory 
–  P1 writes, then P2 reads 
–  Data race if P1 and P2 don’t synchronize 

•  Result depends of order of accesses 

•  Hardware support required 
–  Atomic read/write memory operation 
–  No other access to the location allowed between the read 

and write 
•  Could be a single instruction 

–  E.g., atomic swap of register # memory 
–  Or an atomic pair of instructions 
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Parallelism and Computer Arithmetic: 
Associativity 

•  Parallel programs may interleave operations in 
unexpected orders 
– Assumptions of associativity may fail 

•  Need to validate parallel programs under varying 
degrees of parallelism 
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Parallelism and  
Instruction-Level Parallelism (ILP) 

•  Pipelining: executing multiple instructions in parallel 
•  To increase ILP 

–  Deeper pipeline 
•  Less work per stage ! shorter clock cycle 

–  Multiple issue 
•  Replicate pipeline stages ! multiple pipelines 
•  Start multiple instructions per clock cycle 
•  CPI < 1, so use Instructions Per Cycle (IPC) 
•  E.g., 4GHz 4-way multiple-issue 

–  16 BIPS, peak CPI = 0.25, peak IPC = 4 
•  But dependencies reduce this in practice 
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ILP: Multiple Issue 

•  Static multiple issue 
– Compiler groups instructions into “issue packets” 
– An “issue packet” Specifies multiple concurrent 

operations 
! Very Long Instruction Word (VLIW) 

– Compiler detects and avoids hazards 
•  Dynamic multiple issue (“superscalar” processor) 

– CPU examines instruction stream and chooses 
instructions to issue each cycle 

– Compiler can help by reordering instructions 
– CPU resolves hazards using advanced techniques 

at runtime 
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ILP: Speculation 

•  “Guess” what to do with an instruction 
–  Start operation as soon as possible 
–  Check whether guess was right 

•  If so, complete the operation 
•  If not, roll-back and do the right thing 

•  Common to static and dynamic multiple issue 
•  Examples 

–  Speculate on branch outcome 
•  Roll back if path taken is different 

–  Speculate on load 
•  Avoid load and cache miss delay 
•  Roll back if location is updated 
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ILP: Compiler/Hardware Speculation 

•  Compiler can reorder instructions 
–  e.g., move load before branch 
– Can include “fix-up” instructions to recover from 

incorrect guess 
•  Hardware can look ahead for instructions to 

execute 
– Buffer results until it determines they are actually 

needed 
– Flush buffers on incorrect speculation 
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Measuring Cache Performance 

•  Components of CPU time 
– Program execution cycles 

•  Includes cache hit time 
– Memory stall cycles 

•  Mainly from cache misses 
•  With simplifying assumptions: 
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Multilevel Cache Considerations 

•  Primary cache 
•  Focus on minimizing hit time for a shorter clock cycle 

-  Smaller with smaller block sizes 
•  L-2 cache 

•  Focus on reducing miss rate to reduce the penalty of long 
main memory access times 

•  Larger with larger block sizes 
•  Higher levels of associativity 

•  Hit time has less overall impact 
•  Results 

•  L-1 cache usually smaller than a single cache 
•  L-1 block size smaller than L-2 block size 
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Multilevel On-Chip Caches: 
Intel Nehalem 

Per core: 32KB L1 I-cache, 32KB L1 D-cache, 512KB L2 cache 

Intel Nehalem 4-core processor 
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3-Level Cache Organization 

Intel Nehalem AMD Opteron X4 
L1 caches 
(per core) 

L1 I-cache: 32KB, 64-byte blocks, 
4-way, approx LRU replacement, hit 
time n/a 
L1 D-cache: 32KB, 64-byte blocks, 
8-way, approx LRU replacement, 
write-back/allocate, hit time n/a 

L1 I-cache: 32KB, 64-byte blocks, 
2-way, LRU replacement, hit time 3 
cycles 
L1 D-cache: 32KB, 64-byte blocks, 
2-way, LRU replacement, write-
back/allocate, hit time 9 cycles 

L2 unified 
cache 
(per core) 

256KB, 64-byte blocks, 8-way, 
approx LRU replacement, write-
back/allocate, hit time n/a 

512KB, 64-byte blocks, 16-way, 
approx LRU replacement, write-
back/allocate, hit time n/a 

L3 unified 
cache 
(shared) 

8MB, 64-byte blocks, 16-way, 
replacement n/a, write-back/
allocate, hit time n/a 

2MB, 64-byte blocks, 32-way, 
replace block shared by fewest 
cores, write-back/allocate, hit time 
32 cycles 

n/a: data not available 
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Measuring Performance: SPEC CPU Benchmark 

•  Programs used to measure performance 
–  Supposedly typical of actual workload 

•  Standard Performance Evaluation Corp (SPEC) 
–  Develops benchmarks for CPU, I/O, Web, … 

•  SPEC CPU2006 
–  Elapsed time to execute a selection of programs 

•  Negligible I/O, so focuses on CPU performance 
–  Normalize relative to reference machine 
–  Summarize as geometric mean of performance ratios 

•  CINT2006 (integer) and CFP2006 (floating-point) 
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Measuring Performance: 
CINT2006 for Opteron X4 2356 (Barcelona) 

Name Description IC!109 CPI Tc (ns) Exec time Ref time SPECratio 

perl Interpreted string processing 2,118 0.75 0.40 637 9,777 15.3 

bzip2 Block-sorting compression 2,389 0.85 0.40 817 9,650 11.8 

gcc GNU C Compiler 1,050 1.72 0.47 24 8,050 11.1 

mcf Combinatorial optimization 336 10.00 0.40 1,345 9,120 6.8 

go Go game (AI) 1,658 1.09 0.40 721 10,490 14.6 

hmmer Search gene sequence 2,783 0.80 0.40 890 9,330 10.5 

sjeng Chess game (AI) 2,176 0.96 0.48 37 12,100 14.5 

libquantum Quantum computer simulation 1,623 1.61 0.40 1,047 20,720 19.8 

h264avc Video compression 3,102 0.80 0.40 993 22,130 22.3 

omnetpp Discrete event simulation 587 2.94 0.40 690 6,250 9.1 

astar Games/path finding 1,082 1.79 0.40 773 7,020 9.1 

xalancbmk XML parsing 1,058 2.70 0.40 1,143 6,900 6.0 

Geometric mean 11.7 

High cache miss rates 
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Measuring Performance: 
CINT2006 for Opteron X4 2356 (Barcelona) 
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Arquitecturas Paralelas 

Estrutura do tema AP 

1.  A evolução das arquitecturas pelo paralelismo 

2.  Multiprocessadores (SMP e MPP) 

3.  Data Parallelism: SIMD, Vector, GPU, … 

4.  Topologias de interligação 
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Introduction 

•  Goal: connecting multiple computers 
to get higher performance 
– Multiprocessors 
– Scalability, availability, power efficiency 

•  Job-level (process-level) parallelism 
– High throughput for independent jobs 

•  Parallel processing program 
– Single program run on multiple processors 

•  Multicore microprocessors 
– Chips with multiple processors (cores) 
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•  Multiprocessor – a computer system with at least two processors 

–  Can deliver high throughput for independent jobs via job-level 
parallelism or process-level parallelism 

–  And improve the run time of a single program that has been 
specially crafted to run on a multiprocessor - a parallel processing 
program 

Processor Processor Processor 

Cache Cache Cache 

Interconnection Network 

Memory I/O 

The Big Picture: 
Where are We Now? 
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Multicores Now Common 

•  The power challenge has forced a change in the design of 
microprocessors 

–  Since 2002 the rate of improvement in the response time of 
programs has slowed from a factor of 1.5 per year to less than a 
factor of 1.2 per year 

•  Today’s microprocessors typically contain more than one core – Chip 
Multicore microProcessors (CMPs) – in a single IC 

–  The number of cores is expected to double every two years 

Product AMD 
Barcelona 

Intel 
Nehalem 

IBM Power  
6 

Sun Niagara 
2 

Cores per chip 4 4 2 8 
Clock rate 2.5 GHz ~2.5 GHz? 4.7 GHz 1.4 GHz 
Power 120 W ~100 W? ~100 W? 94 W 
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Encountering Amdahl’s Law 

•  Speedup due to enhancement E is 

Speedup w/ E =  ----------------------   
Exec time w/o E 
Exec time w/ E  

" Suppose that enhancement E accelerates a fraction F   
(F <1) of the task by a factor S (S>1) and the remainder 
of the task is unaffected 

ExTime w/ E  =  ExTime w/o E  "  ((1-F) + F/S)  
Speedup w/ E =   1 / ((1-F) + F/S) 

M
ar

y 
Ja

ne
 Ir

w
in

 ( 
w

w
w

.c
se

.p
su

.e
du

/~
m

ji 
) 

AJProença, Sistemas de Computação e Desempenho, MInf, UMinho, 2010/11  26 

Example 2: Amdahl’s Law 

•  Consider summing 10 scalar variables and two 10 by 10 
matrices (matrix sum) on 10 processors 

Speedup w/ E  =  1/(.091 + .909/10)  =  1/0.1819 = 5.5 
•  What if there are 100 processors ? 

Speedup w/ E  =  1/(.091 + .909/100) = 1/0.10009 = 10.0 

•  What if the matrices are100 by 100 (or 10,010 adds in 
total) on 10 processors? 

Speedup w/ E  =  1/(.001 + .999/10)  =  1/0.1009 = 9.9 

•  What if there are 100 processors ? 
Speedup w/ E  =  1/(.001 + .999/100) = 1/0.01099 = 91 

Speedup w/ E =   1 / ((1-F) + F/S) 
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Scaling 

•  To get good speedup on a multiprocessor while keeping 
the problem size fixed is harder than getting good 
speedup by increasing the size of the problem. 

– Strong scaling – when speedup can be achieved on a 
multiprocessor without increasing the size of the problem 

– Weak scaling – when speedup is achieved on a 
multiprocessor by increasing the size of the problem 
proportionally to the increase in the number of processors 

•  Load balancing is another important factor.  Just a single 
processor with twice the load of the others cuts the 
speedup almost in half 
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Multiprocessor/Clusters Key Questions 

•  Q1 – How do they share data? 

•  Q2 – How do they coordinate? 

•  Q3 – How scalable is the architecture?   
   How many processors can be supported? 
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Shared Memory Multiprocessor (SMP) 

•  Q1 – Single address space shared by all processors 
•  Q2 – Processors coordinate/communicate through shared 

variables in memory (via loads and stores) 
– Use of shared data must be coordinated via synchronization 

primitives (locks) that allow access to data to only one 
processor at a time 

•  They come in two styles 
– Uniform memory access (UMA) multiprocessors 
– Nonuniform memory access (NUMA) multiprocessors 

"  Programming NUMAs are harder 

"  But NUMAs can scale to larger sizes and have lower 
latency to local memory 
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Summing 100,000 Numbers on 100 Proc. SMP 

sum[Pn] = 0; 
for (i = 1000*Pn; i< 1000*(Pn+1); i = i + 1) 
 sum[Pn] = sum[Pn] + A[i]; 

"  Processors start by running a loop that sums their subset of 
vector A numbers (vectors A and sum are shared variables, Pn is 
the processor’s number, i is a private variable) 

"  The processors then coordinate in adding together the partial 
sums (half is a private variable initialized to 100 (the number 
of processors)) – reduction 

repeat 
 synch();    /*synchronize first 
 if (half%2 != 0 && Pn == 0) 
  sum[0] = sum[0] + sum[half-1]; 
 half = half/2 
 if (Pn<half) sum[Pn] = sum[Pn] + sum[Pn+half] 

until (half == 1);  /*final sum in sum[0] 
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An Example with 10 Processors 

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 

sum[P0] sum[P1] sum[P2] sum[P3] sum[P4] sum[P5] sum[P6] sum[P7] sum[P8] sum[P9] 

P0 

P0 P1 P2 P3 P4 

half = 10 

half = 5 

P1 half = 2 

P0 half = 1 
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Process Synchronization 

•  Need to be able to coordinate processes working on a 
common task 

•  Lock variables (semaphores) are used to coordinate or 
synchronize processes 

•  Need an architecture-supported arbitration mechanism to 
decide which processor gets access to the lock variable 

– Single bus provides arbitration mechanism, since the bus 
is the only path to memory – the processor that gets the 
bus wins 

•  Need an architecture-supported operation that locks the 
variable 

–  Locking can be done via an atomic swap operation 
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Locality and Parallelism 

Proc 
Cache 

L2 Cache 

L3 Cache 

Memory 

Conventional  
Storage Hierarchy 

Proc 
Cache 

L2 Cache 

L3 Cache 

Memory 

Proc 
Cache 

L2 Cache 

L3 Cache 

Memory 

potential 
interconnects 
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Message Passing Multiprocessors (MPP) 

•  Each processor has its own private address space 
•  Q1 – Processors share data by explicitly sending and 

receiving information (message passing) 
•  Q2 – Coordination is built into message passing 

primitives (message send and message receive) 

Processor Processor Processor 

Cache Cache Cache 

Interconnection Network 

Memory Memory Memory 
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Summing 100,000 Numbers on 100 Proc. MPP 

sum = 0; 
for (i = 0; i<1000; i = i + 1) 
 sum = sum + Al[i];  /* sum local array subset 

" Start by distributing 1000 elements of vector A to each of 
the local memories and summing each subset in parallel 

" The processors then coordinate in adding together the sub 
sums (Pn is the number of processors, send(x,y) sends 
value y to processor x, and receive() receives a value) 
half = 100; 
limit = 100; 
repeat 
 half = (half+1)/2;  /*dividing line 
  if (Pn>= half && Pn<limit) send(Pn-half,sum); 
  if (Pn<(limit/2)) sum = sum + receive(); 
  limit = half; 
until (half == 1);  /*final sum in P0’s sum 
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An Example with 10 Processors 

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 

P0 P1 P2 P3 P4 

half = 10 

half = 5 

half = 3 

half = 2 

sum sum sum sum sum sum sum sum sum sum 

send 

receive 

P0 P1 P2 

limit = 10 

limit = 5 

limit = 3 

limit = 2 

half = 1 

P0 P1 

P0 

send 

receive 

send 

receive 

send 

receive 
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Pros and Cons of Message Passing 
" Message sending and receiving is much slower than 

addition, for example 
" But message passing multiprocessors and much easier 

for hardware designers to design 
!  Don’t have to worry about cache coherency for example 

" The advantage for programmers is that communication is 
explicit, so there are fewer “performance surprises” than 
with the implicit communication in cache-coherent SMPs. 
!  Message passing standard MPI-2 (www.mpi-forum.org ) 

" However, its harder to port a sequential program to a 
message passing multiprocessor since every 
communication must be identified in advance. 
!  With cache-coherent shared memory the hardware figures out 

what data needs to be communicated 
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Multithreading on A Chip 
" Find a way to “hide” true data dependency stalls, cache 

miss stalls, and branch stalls by finding instructions (from 
other process threads) that are independent of those 
stalling instructions  

" Hardware multithreading – increase the utilization of 
resources on a chip by allowing multiple processes 
(threads) to share the functional units of a single 
processor 
!  Processor must duplicate the state hardware for each thread – a 

separate register file, PC, instruction buffer, and store buffer for 
each thread 

!  The caches, TLBs, BHT, BTB, RUU can be shared (although the 
miss rates may increase if they are not sized accordingly) 

!  The memory can be shared through virtual memory mechanisms 
!  Hardware must support efficient thread context switching 
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Multithreading 

•  Performing multiple threads of execution in parallel 
–  Replicate registers, PC, etc. 
–  Fast switching between threads 

•  Fine-grain multithreading 
–  Switch threads after each cycle 
–  Interleave instruction execution 
–  If one thread stalls, others are executed 

•  Coarse-grain multithreading 
–  Only switch on long stall (e.g., L2-cache miss) 
–  Simplifies hardware, but doesn’t hide short stalls (eg, 

data hazards) 
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Simultaneous Multithreading 

•  In multiple-issue dynamically scheduled 
processor 
– Schedule instructions from multiple threads 
–  Instructions from independent threads execute 

when function units are available 
– Within threads, dependencies handled by 

scheduling and register renaming 
•  Example: Intel Pentium-4 HT (Hyper-Threading) 

– Two threads: duplicated registers, shared function 
units and caches 
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Threading on a 4-way SS Processor Example 

Thread A Thread B 

Thread C Thread D 

Tim
e  "

 

Issue slots  " 
SMT Fine MT Coarse MT 
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Future of Multithreading 

•  Will it survive? In what form? 
•  Power considerations ! simplified 

microarchitectures 
– Simpler forms of multithreading 

•  Tolerating cache-miss latency 
– Thread switch may be most effective 

•  Multiple simple cores might share resources 
more effectively 
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Review:  Multiprocessor Basics 

# of Proc 
Communication 
model 

Message passing 8 to 2048 
Shared 
address 

NUMA 8 to 256 
UMA 2 to 64 

Physical 
connection 

Network 8 to 256 
Bus 2 to 36 

" Q1 – How do they share data? 

" Q2 – How do they coordinate? 

" Q3 – How scalable is the architecture?  How many   
 processors? 


