
MI – Projecto Integrado (Computação Paralela Distribuída) 2010/11

Performance evaluation of a cluster tile
(a single node)

Alberto José Proença & João Garcia Barbosa

--

1. Context
Consider the SeARCH cluster, with several heterogeneous computing nodes, each node containing several
independent number-crunching elements (aka processing-elements or computing cores), all accessing a
single-address-space shared memory.

This training exercise for the larger UCE project will focus on performance evaluation issues related to a
single node.

At least 8 generations of Intel Xeon chips are populating the current 77 nodes in this cluster; each node with
at least 2 CPU sockets and 1GB RAM per core. This training exercise will only consider the following nodes:
(i) with 2x quad-core Xeon-Nehalem devices (i5520) and (ii) with 2x dodeca-core Opteron (AMD 6174).

Three generations of accelerating FP devices (gpGPU) are also in the cluster. However, CUDA environment
only supports two and this training exercise will only consider the newer Fermi devices, which are in nodes
with dodeca-core Opteron (Tesla C2050)

Several metrics to present the results are available (e.g., CPI, CPE, MFLOP), but only the last one will be
used to present and discuss the results. Students should comment this.

The problem to be used to evaluate the individual performance of the nodes is the matrix multiplication
function known as xGEMM, within a range of pre-defined sizes. This training exercise further focus this
operation by limiting it to only one GEMM function (DP operations): C=AxB, where A, B and C are squared
matrices.

Several algorithms can be explored to improve performance, but this is outside the scope of topics covered
during the 1st semester of this UCE. So, this training exercise supplies a less naive multi-threaded program
(code listing below; file ompMM_main.c available through CPD/PI website), and each student will develop
one variation of this algorithm that explores the block multiplication approach.

2. Action
To limit the extremely wide range of available options to select the experimental settings to evaluate the
performance of such multiplication function in a cluster node, the overall training exercise will be divided into
3 scenarios with some constraints:

• target: to produce an individual report (max. 15-page) to deliver on Jan-24, 10h00, and present a 30
minute oral communication on Jan-25;

• aims: to measure GEMM performance on 3 scenarios, and to analyse, specify and fully characterize
the scenarios with a critical evaluation of the measured results;

• constraints:

• for each scenario, consider only 3 multi-threaded program codes, related to, (i) the number
of available EM64T cores in the node, (ii) half that value, and (iii) double that value;

• the scalar coefficients in the GEMM operation are 1.0;

• in the 3 scenarios, the 2nd must use the BLAS library (either for the EM64T or for the GPU),
the 3rd must use the GPU (without any math library).

Perform_ Eval_Cluster_Node - 2 –

3. Individual Tasks
a) For each hardware platform evaluate the Peak Theoretical Performance in MFLOPS

b) Options for Scenario A (using both i5520 and AMD 6174, no BLAS, no Fermi)
i. Compiler: gcc

Vector Extensions: SSE3
Core allocation: all cores, no distinction, # threads related to # cores

ii. Compiler: gcc
Vector Extensions: SSE3
Core allocation: explore core affinity for 4 & 8 threads

iii. Compiler: icc
Vector Extensions: SSE3
Core allocation: all cores, no distinction, # threads related to # cores

iv. Compiler: icc
Vector Extensions: SSE4.1
Core allocation: explore core affinity for 8 & 16 threads

c) Options for Scenario B (with the library BLAS)
i. CPU: i5520

Compiler/switches: gcc or icc
Library: BLAS at Intel MKL

ii. CPU: i5520
Compiler/switches: gcc or icc
Library: BLAS in GoToBLAS

iii. CPU: AMD 6174 + Fermi
Compiler/switches: gcc or icc
Library: BLAS GoToBLAS or IMKL + CUBLAS

d) Options for Scenario C (with Fermi, no libraries)
i. CPU/GPU: multiplication only in Fermi

Compiler: gcc or icc
Techniques: explore loop unroll

ii. CPU/GPU: multiplication in both CPU & Fermi
Compiler: gcc or icc
Techniques: explore loop unroll

e) Graphics for all scenarios:
i. x axis: # rows at each square matrix;

y axis: performance in MFLOPS/GFLOPS
ii. Contents: at least 6 functions, relating # threads (# cores), w/-w/o BLAS, w/-w/o GPU

f) Task for extra points: assess and eventually install and use PerfExpert, a new performance
bottleneck diagnosis tool for HPC application writers, which automatically evaluates the core, chip,
and node-level performance.

g) Specific task options to be allocated to each student: by email.

Perform_ Eval_Cluster_Node - 3 –

Code listing of ompMM_main.c :

#include <omp.h>
#include <stdlib.h>
#include <stdio.h>
#include <time.h>

#define N 2048

void initMatrix(float* A) {

#pragma omp parallel for
 for (int ii=0; ii<N; ii++)
 for (int jj=0; jj<N; jj++)
 A[ii*N+jj] = (float)rand()/(float)RAND_MAX;

}

void clearMatrix(float* A) {

#pragma omp parallel for
 for (int ii=0; ii<N; ii++)
 for (int jj=0; jj<N; jj++)
 A[ii*N+jj] = 0.0;

}

void printMatrix(float* A) {
 for (int ii=0; ii<N; ii++)
 for (int jj=0; jj<N; jj++)
 printf("%f\t",A[ii*N+jj]);
}

void thrMM(float* A, float* B, float* C) {

 // Note: OpenMP allows
 // more robust workload distribution among threads
 // assign threads to specific cores (affinity)

 #pragma omp parallel for
 for (int ii=0; ii<N; ii++) {
 for (int kk=0; kk<N; kk++) {
 float r = A[ii*N+kk];
 for (int jj=0; jj<N; jj++) {
 C[ii*N+jj] += r * B[kk*N+ii];
 }
 }
 }
}

int main (int argc, const char * argv[]) {

 float *A = (float*)malloc(sizeof(float)*N*N);
 float *B = (float*)malloc(sizeof(float)*N*N);
 float *C = (float*)malloc(sizeof(float)*N*N);

 // The #threads should be dynamically set and commented
 omp_set_num_threads(2);

 initMatrix(A);
 initMatrix(B);
 initMatrix(C);

 //Be carefull with time measuring (avg?????)
 double start = omp_get_wtime();
 for (int i=0; i<5; i++) {
 thrMM(A, B, C);
 }
 double end = omp_get_wtime();

 //Use a more adequate metric to measure performance
 printf("Avg. time: %f\n",(end-start)/5);
}

