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A.J.Proença 

Concepts from undegrad Computer Systems (2) 
(most slides are borrowed) 

Chapter 1 — Computer Abstractions and Technology — 2 

Inside the Processor 
!  AMD Barcelona: 4 processor cores 

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 3 

Multilevel On-Chip Caches 
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Intel Nehalem 4-core processor 
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Internal architecture of 
Intel P6 processors 
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Note: "Intel P6" is the common µarch name for PentiumPro, Pentium II & Pentium III, which 
inspired Core and Nehalem 
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•  Parallel execution of 
    several instructions 
–  2 integer (1 can be branch) 
–  1 FP Add 
–  1 FP Multiply or Divide 
–  1 load 
–  1 store 

•  Some instructions require > 1 cycle, but can be pipelined: 

Funct 
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Operation Results 

Execution Unit 

Some capabilities 
of Intel P6 

Instruction Latency  Cycles/Issue 
Load / Store 3 1 
Integer Multiply 4 1 
Integer Divide 36 36 
Double/Single FP Multiply 5 2 
Double/Single FP Add 3 1 
Double/Single FP Divide 38 38 
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•  Procedure to perform addition 
–  compute the sum of all vector elements 
–  store the result in a given memory location 
–  structure and operations on the vector defined by ADT 

•  Metrics 
–  Clock-cycles Per Element, CPE 

void combine4(vec_ptr v, int *dest) 
{ 
  int i; 
  int length = vec_length(v); 
  int *data = get_vec_start(v); 
  int sum = 0; 
  for (i = 0; i < length; i++) 
    sum += data[i]; 
  *dest = sum; 
} 

A detailed example: 
generic & abstract form of combine 

void abstract_combine4(vec_ptr v, data_t *dest) 
{ 
  int i; 
  int length = vec_length(v); 
  data_t *data = get_vec_start(v); 
  data_t t = IDENT; 
  for (i = 0; i < length; i++) 
    t = t OP data[i]; 
  *dest = t; 
} 
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•  Assembly version for combine4 
–  data type: integer ; operation: multiplication 

•  Translating 1st  iteration 

.L24:   # Loop: 
 imull (%eax,%edx,4),%ecx  # t *= data[i] 
 incl  %edx  # i++ 
 cmpl  %esi,%edx  # i:length 
 jl  .L24  # if < goto Loop 

.L24:   
 imull (%eax,%edx,4),%ecx 

 incl  %edx 
 cmpl  %esi,%edx 
 jl  .L24 

load  (%eax,%edx.0,4)! t.1 
imull t.1, %ecx.0   ! %ecx.1 
incl  %edx.0  ! %edx.1 
cmpl  %esi, %edx.1   ! cc.1 
jl  -taken cc.1 

Converting instructions with registers 
into operations with tags 
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•  Operations 
–  vertical axis shows the time the 

instruction is executed 
•  an operation cannot start with its 

operands 
–  time length measures latency 

•  Operands 
–  arcs are only showed for operands 

that are used in the context of the 
execution unit 

cc.1 
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%ecx.0 
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Time!

Visualizing instruction execution in P6:  
1 iteration of the multiplication cycle on combine 

load  (%eax,%edx.0,4  ! t.1 
imull t.1, %ecx.0   ! %ecx.1 
incl  %edx.0  ! %edx.1 
cmpl  %esi, %edx.1   ! cc.1 
jl  -taken cc.1 
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cc.1 

t.1 

load 

%ecx.1 

incl 

cmpl 

jl 

%edx.0 

%edx.1 

%ecx.0 

imull 

• With unlimited 
resources 
– parallel and pipelined 

execution of 
operations at the EU 

– out-of-order and 
speculative execution 

• Performance 
– limitative factor: 

latency of integer 
multiplication 

– CPE: 4.0 

Visualizing instruction execution in P6:  
3 iterations of the same cycle on combine 
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•  With unlimited resources 
•  Performance 

–  it can start a new iteration at each clock cycle 
–  theoretical CPE: 1.0 
–  it requires parallel execution of 4 integer operations 

4 integer ops!

Visualizing instruction execution in P6:  
4 iterations of the addition cycle on combine 
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–  only 2 integer units 
–  some options must be delayed, even if 

the operands are available 
–  priority: execution order in the code 

• Performance 
–  expected CPE: 2.0 

Iterations of the addition cycles:  
analysis with limited resources 
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Optimization 4: 
– merges several (3) 

iterations in a 
single loop cycle 

– reduces cycle 
overhead in loop 
iterations 

– runs the extra work 
at the end 

– CPE: 1.33 

void combine5(vec_ptr v, int *dest) 
{ 
  int length = vec_length(v); 
  int limit = length-2; 
  int *data = get_vec_start(v); 
  int sum = 0; 
  int i; 
  /* junta 3 elem's no mesmo ciclo */ 
  for (i = 0; i < limit; i+=3) { 
    sum += data[i] + data[i+1] 
           + data[i+2]; 
  } 
  /* completa os restantes elem's */ 
  for (; i < length; i++) { 
    sum += data[i]; 
  } 
  *dest = sum; 
} 

Machine dependent optimization techniques:  
loop unroll (1) 
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– loads can be pipelined, 
there are no 
dependencies 

– only a set of loop control 
instructions 

load (%eax,%edx.0,4)  ! t.1a 
iaddl t.1a, %ecx.0c   ! %ecx.1a 
load 4(%eax,%edx.0,4) ! t.1b 
iaddl t.1b, %ecx.1a   ! %ecx.1b 
load 8(%eax,%edx.0,4) ! t.1c 
iaddl t.1c, %ecx.1b   ! %ecx.1c 
iaddl $3,%edx.0       ! %edx.1 
cmpl %esi, %edx.1     ! cc.1 
jl-taken cc.1 

Time!
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Machine dependent optimization techniques:  
loop unroll (2) 
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•  Estimated performance 
–  each iteration complete in 3 cycles 
–  should lead to CPE: 1.0 

•  Measured performance 
–  CPE: 1.33 
–  1 iteration for each 4 cycles 

Machine dependent optimization techniques:  
loop unroll (3) 
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–   only improves the integer addition 
•  remaining cases are limited to the unit latency 

–  result does not linearly improve with the degree of unroll 
•  subtle effects determine the exact allocation of operations 

Degree of Unroll 1 2 3 4 8 16 

Integer Addition 2.00 1.50 1.33 1.50 1.25 1.06 

Integer Product 4.00 

fp Addition 3.00 

fp Product 5.00 

Machine dependent optimization techniques:  
loop unroll (4) 

CPE value for several cases of loop unroll:  
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•  the computation… 
 ((((((((((((1 * x0) * x1) * 
x2) * x3) * x4) * x5) * x6) * 
x7) * x8) * x9) * x10) * x11) 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

… the performance 
– N elements, D cycles/operation 
– N*D cycles  

Machine dependent optimization techniques:  
sequential computation versus… 

Sequential computation versus ... 
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•  the computation… 
((((((1 * x0) * x2) * x4) * 
    * x6) * x8) * x10) * 
((((((1 * x1) * x3) * x5) *                               
  * x7) * x9) * x11) 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

… the performance 
– N elements, D cycles/
op 
– (N/2+1)*D cycles  
– improvement ~2x 

Machine dependent optimization techniques:  
… versus parallel computation 

Sequential ... versus parallel computation! 
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Sequential ... versus parallel! 

Optimization 5: 
– accumulate in 2 

different products 
• can be in parallel, if 

OP is associative! 
– merge at the end 

– Performance 
– CPE: 2.0 
– improvement 2x 

Machine dependent optimization techniques:  
loop unroll with parallelism (1) 

void combine6(vec_ptr v, int *dest) 
{ 
  int length = vec_length(v); 
  int limit = length-1; 
  int *data = get_vec_start(v); 
  int x0 = 1; 
  int x1 = 1; 
  int i; 
  /* junta 2 elem's de cada vez */ 
  for (i = 0; i < limit; i+=2) { 
    x0 *= data[i]; 
    x1 *= data[i+1]; 
  } 
  /* completa os restantes elem's */ 
  for (; i < length; i++) { 
    x0 *= data[i]; 
  } 
  *dest = x0 * x1; 
} 
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–  each product at the inner 
cycle does not depend from 
the other one… 

–  so, they can be pipelined 
–  known as iteration splitting 

load (%eax,%edx.0,4)  ! t.1a 
imull t.1a, %ecx.0    ! %ecx.1 
load 4(%eax,%edx.0,4) ! t.1b 
imull t.1b, %ebx.0    ! %ebx.1 
iaddl $2,%edx.0       ! %edx.1 
cmpl %esi, %edx.1     ! cc.1 
jl-taken cc.1 

Time!
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%ebx.0 
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Machine dependent optimization techniques:  
loop unroll with parallelism (2) 

AJProença, Computer Systems & Performance, MEI, UMinho, 2011/12  20 

 Estimated performance 
–  the multiply unit is kept 

busy with 2 simultaneous 
operations 

–  CPE: 2.0 

Machine dependent optimization techniques:  
loop unroll with parallelism (3) 
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Code optimization techniques:  
comparative analyses of combine 
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•  It requires a lot of registers! 
–  to save results from add/multip 
–  only 6 integer registers in IA32 

•  also used as pointers, loop control, … 
–  8 fp registers 
–  when registers aren’t enough, temp's are pushed to the stack 

•  cuts performance gains 
(see assembly in integer product with 8x unroll & 8x parallelism) 

–  re-naming registers is not enough 
•  it is not possible to reference more operands than those at the 

instruction set 
•  … main drawback at the IA32 instruction set 

•  Operations to parallelize must be associative! 
–  fp add & multipl in a computer is not associative! 

•  (3.14+1e20)-1e20  not always the same as 3.14+(1e20-1e20)… 

Code optimization:  
ILP limitations 
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• combine 
–  integer multiplication 
–  8x unroll & 8x parallelism 
–  7 local variables share 1 

register (%edi) 
•  note the stack accesses 
•  performance improvement 
is compromised... 

•  consequence: register 
spilling 

.L165: 
 imull (%eax),%ecx 
 movl -4(%ebp),%edi 
 imull 4(%eax),%edi 
 movl %edi,-4(%ebp) 
 movl -8(%ebp),%edi 
 imull 8(%eax),%edi 
 movl %edi,-8(%ebp) 
 movl -12(%ebp),%edi 
 imull 12(%eax),%edi 
 movl %edi,-12(%ebp) 
 movl -16(%ebp),%edi 
 imull 16(%eax),%edi 
 movl %edi,-16(%ebp) 
… 
 addl $32,%eax 
 addl $8,%edx 
 cmpl -32(%ebp),%edx 
 jl .L165 

Limitation of parallelism:  
not enough registers 
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Last week homework 

The problem: 
•  To identify all AMD and Intel processor microarchitecures from Hammer and Core till 

the latest releases, and build a table with: 
–  # pipeline stages, # simultaneous threads, degree of superscalarity, vector 

support , # cores, type/speed of interconnectors,… 
•  To identify the CPU generations at the SeARCH cluster 

Expected table headings: 

Example of a CPU generation at the cluster: 

5ª: Clovertown E5345 (4c, Core w/o HT, 2x4MB L2, 65nm, 2.33GHz) 

µArch Name Year Pipeline Stages Issue Width Vector Support Cores Interface 


