
AJProença, Computer Systems & Performance, MEI, UMinho, 2011/12  1 

Computing Systems & Performance 

MSc Informatics Eng. 

2011/12 

A.J.Proença 

Concepts from undegrad Computer Systems (2) 
(most slides are borrowed) 

Chapter 1 — Computer Abstractions and Technology — 2 

Inside the Processor 
!  AMD Barcelona: 4 processor cores 

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 3 

Multilevel On-Chip Caches 

§5.10 R
eal S

tuff: The A
M

D
 O

pteron X
4 and Intel N

ehalem
 Per core: 32KB L1 I-cache, 32KB L1 D-cache, 512KB L2 cache 

Intel Nehalem 4-core processor 

AJProença, Computer Systems & Performance, MEI, UMinho, 2011/12  4 

Internal architecture of 
Intel P6 processors 

Functional 
Units  Integer/ 

Branch 
FP 

Add 
FP 

Mult/Div Load Store 

Instruction 
Cache 

Data 
Cache 

Fetch 
Control 

Instruction 
Decode 

Address 

Instrs. 

Operations 
Prediction OK? 

Data Data 
Addr. Addr. 

General 
Integer 

Operation Results 

Retirement 
Unit 

Register 
File 

Execution Unit 

Instruction Control Unit 

Note: "Intel P6" is the common µarch name for PentiumPro, Pentium II & Pentium III, which 
inspired Core and Nehalem 



AJProença, Computer Systems & Performance, MEI, UMinho, 2011/12  5 

•  Parallel execution of 
    several instructions 
–  2 integer (1 can be branch) 
–  1 FP Add 
–  1 FP Multiply or Divide 
–  1 load 
–  1 store 

•  Some instructions require > 1 cycle, but can be pipelined: 

Funct 
Units  

. 
Integer/ 
Branch 

FP 
Add 

FP 
Mult/Div Load Store 

Data 
Cache 

Data Data 
Addr. Addr. 

General 
Integer 

Operation Results 

Execution Unit 

Some capabilities 
of Intel P6 

Instruction Latency  Cycles/Issue 
Load / Store 3 1 
Integer Multiply 4 1 
Integer Divide 36 36 
Double/Single FP Multiply 5 2 
Double/Single FP Add 3 1 
Double/Single FP Divide 38 38 

AJProença, Computer Systems & Performance, MEI, UMinho, 2011/12  6 

•  Procedure to perform addition 
–  compute the sum of all vector elements 
–  store the result in a given memory location 
–  structure and operations on the vector defined by ADT 

•  Metrics 
–  Clock-cycles Per Element, CPE 

void combine4(vec_ptr v, int *dest) 
{ 
  int i; 
  int length = vec_length(v); 
  int *data = get_vec_start(v); 
  int sum = 0; 
  for (i = 0; i < length; i++) 
    sum += data[i]; 
  *dest = sum; 
} 

A detailed example: 
generic & abstract form of combine 

void abstract_combine4(vec_ptr v, data_t *dest) 
{ 
  int i; 
  int length = vec_length(v); 
  data_t *data = get_vec_start(v); 
  data_t t = IDENT; 
  for (i = 0; i < length; i++) 
    t = t OP data[i]; 
  *dest = t; 
} 

AJProença, Computer Systems & Performance, MEI, UMinho, 2011/12  7 

•  Assembly version for combine4 
–  data type: integer ; operation: multiplication 

•  Translating 1st  iteration 

.L24:   # Loop: 
 imull (%eax,%edx,4),%ecx  # t *= data[i] 
 incl  %edx  # i++ 
 cmpl  %esi,%edx  # i:length 
 jl  .L24  # if < goto Loop 

.L24:   
 imull (%eax,%edx,4),%ecx 

 incl  %edx 
 cmpl  %esi,%edx 
 jl  .L24 

load  (%eax,%edx.0,4)! t.1 
imull t.1, %ecx.0   ! %ecx.1 
incl  %edx.0  ! %edx.1 
cmpl  %esi, %edx.1   ! cc.1 
jl  -taken cc.1 

Converting instructions with registers 
into operations with tags 

AJProença, Computer Systems & Performance, MEI, UMinho, 2011/12  8 

•  Operations 
–  vertical axis shows the time the 

instruction is executed 
•  an operation cannot start with its 

operands 
–  time length measures latency 

•  Operands 
–  arcs are only showed for operands 

that are used in the context of the 
execution unit 

cc.1 

t.1 

load 

%ecx.1 

incl 

cmpl 

jl 

%edx.0 

%edx.1 

%ecx.0 

imull 

Time!

Visualizing instruction execution in P6:  
1 iteration of the multiplication cycle on combine 

load  (%eax,%edx.0,4  ! t.1 
imull t.1, %ecx.0   ! %ecx.1 
incl  %edx.0  ! %edx.1 
cmpl  %esi, %edx.1   ! cc.1 
jl  -taken cc.1 



AJProença, Computer Systems & Performance, MEI, UMinho, 2011/12  9 

cc.1 

t.1 

load 

%ecx.1 

incl 

cmpl 

jl 

%edx.0 

%edx.1 

%ecx.0 

imull 

• With unlimited 
resources 
– parallel and pipelined 

execution of 
operations at the EU 

– out-of-order and 
speculative execution 

• Performance 
– limitative factor: 

latency of integer 
multiplication 

– CPE: 4.0 

Visualizing instruction execution in P6:  
3 iterations of the same cycle on combine 

AJProença, Computer Systems & Performance, MEI, UMinho, 2011/12  10 

•  With unlimited resources 
•  Performance 

–  it can start a new iteration at each clock cycle 
–  theoretical CPE: 1.0 
–  it requires parallel execution of 4 integer operations 

4 integer ops!

Visualizing instruction execution in P6:  
4 iterations of the addition cycle on combine 

AJProença, Computer Systems & Performance, MEI, UMinho, 2011/12  11 

–  only 2 integer units 
–  some options must be delayed, even if 

the operands are available 
–  priority: execution order in the code 

• Performance 
–  expected CPE: 2.0 

Iterations of the addition cycles:  
analysis with limited resources 

AJProença, Computer Systems & Performance, MEI, UMinho, 2011/12  12 

Optimization 4: 
– merges several (3) 

iterations in a 
single loop cycle 

– reduces cycle 
overhead in loop 
iterations 

– runs the extra work 
at the end 

– CPE: 1.33 

void combine5(vec_ptr v, int *dest) 
{ 
  int length = vec_length(v); 
  int limit = length-2; 
  int *data = get_vec_start(v); 
  int sum = 0; 
  int i; 
  /* junta 3 elem's no mesmo ciclo */ 
  for (i = 0; i < limit; i+=3) { 
    sum += data[i] + data[i+1] 
           + data[i+2]; 
  } 
  /* completa os restantes elem's */ 
  for (; i < length; i++) { 
    sum += data[i]; 
  } 
  *dest = sum; 
} 

Machine dependent optimization techniques:  
loop unroll (1) 



AJProença, Computer Systems & Performance, MEI, UMinho, 2011/12  13 

– loads can be pipelined, 
there are no 
dependencies 

– only a set of loop control 
instructions 

load (%eax,%edx.0,4)  ! t.1a 
iaddl t.1a, %ecx.0c   ! %ecx.1a 
load 4(%eax,%edx.0,4) ! t.1b 
iaddl t.1b, %ecx.1a   ! %ecx.1b 
load 8(%eax,%edx.0,4) ! t.1c 
iaddl t.1c, %ecx.1b   ! %ecx.1c 
iaddl $3,%edx.0       ! %edx.1 
cmpl %esi, %edx.1     ! cc.1 
jl-taken cc.1 

Time!

%edx.0 

%edx.1 

%ecx.0c 

cc.1 

t.1a 

%ecx.i +1 

addl 

cmpl 

jl 

addl 

%ecx.1c 

addl 

addl 

t.1b 

t.1c 

%ecx.1a 

%ecx.1b 

load 

load 

load 

Machine dependent optimization techniques:  
loop unroll (2) 

AJProença, Computer Systems & Performance, MEI, UMinho, 2011/12  14 

•  Estimated performance 
–  each iteration complete in 3 cycles 
–  should lead to CPE: 1.0 

•  Measured performance 
–  CPE: 1.33 
–  1 iteration for each 4 cycles 

Machine dependent optimization techniques:  
loop unroll (3) 

AJProença, Computer Systems & Performance, MEI, UMinho, 2011/12  15 

–   only improves the integer addition 
•  remaining cases are limited to the unit latency 

–  result does not linearly improve with the degree of unroll 
•  subtle effects determine the exact allocation of operations 

Degree of Unroll 1 2 3 4 8 16 

Integer Addition 2.00 1.50 1.33 1.50 1.25 1.06 

Integer Product 4.00 

fp Addition 3.00 

fp Product 5.00 

Machine dependent optimization techniques:  
loop unroll (4) 

CPE value for several cases of loop unroll:  

AJProença, Computer Systems & Performance, MEI, UMinho, 2011/12  16 

•  the computation… 
 ((((((((((((1 * x0) * x1) * 
x2) * x3) * x4) * x5) * x6) * 
x7) * x8) * x9) * x10) * x11) 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

… the performance 
– N elements, D cycles/operation 
– N*D cycles  

Machine dependent optimization techniques:  
sequential computation versus… 

Sequential computation versus ... 



AJProença, Computer Systems & Performance, MEI, UMinho, 2011/12  17 

•  the computation… 
((((((1 * x0) * x2) * x4) * 
    * x6) * x8) * x10) * 
((((((1 * x1) * x3) * x5) *                               
  * x7) * x9) * x11) 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

… the performance 
– N elements, D cycles/
op 
– (N/2+1)*D cycles  
– improvement ~2x 

Machine dependent optimization techniques:  
… versus parallel computation 

Sequential ... versus parallel computation! 

AJProença, Computer Systems & Performance, MEI, UMinho, 2011/12  18 

Sequential ... versus parallel! 

Optimization 5: 
– accumulate in 2 

different products 
• can be in parallel, if 

OP is associative! 
– merge at the end 

– Performance 
– CPE: 2.0 
– improvement 2x 

Machine dependent optimization techniques:  
loop unroll with parallelism (1) 

void combine6(vec_ptr v, int *dest) 
{ 
  int length = vec_length(v); 
  int limit = length-1; 
  int *data = get_vec_start(v); 
  int x0 = 1; 
  int x1 = 1; 
  int i; 
  /* junta 2 elem's de cada vez */ 
  for (i = 0; i < limit; i+=2) { 
    x0 *= data[i]; 
    x1 *= data[i+1]; 
  } 
  /* completa os restantes elem's */ 
  for (; i < length; i++) { 
    x0 *= data[i]; 
  } 
  *dest = x0 * x1; 
} 

AJProença, Computer Systems & Performance, MEI, UMinho, 2011/12  19 

–  each product at the inner 
cycle does not depend from 
the other one… 

–  so, they can be pipelined 
–  known as iteration splitting 

load (%eax,%edx.0,4)  ! t.1a 
imull t.1a, %ecx.0    ! %ecx.1 
load 4(%eax,%edx.0,4) ! t.1b 
imull t.1b, %ebx.0    ! %ebx.1 
iaddl $2,%edx.0       ! %edx.1 
cmpl %esi, %edx.1     ! cc.1 
jl-taken cc.1 

Time!

%edx.1 

%ecx.0 

%ebx.0 

cc.1 

t.1a 

imull 

%ecx.1 

addl 

cmpl 

jl 

%edx.0 

imull 

%ebx.1 

t.1b 

load 

load 

Machine dependent optimization techniques:  
loop unroll with parallelism (2) 

AJProença, Computer Systems & Performance, MEI, UMinho, 2011/12  20 

 Estimated performance 
–  the multiply unit is kept 

busy with 2 simultaneous 
operations 

–  CPE: 2.0 

Machine dependent optimization techniques:  
loop unroll with parallelism (3) 



AJProença, Computer Systems & Performance, MEI, UMinho, 2011/12  21 

Code optimization techniques:  
comparative analyses of combine 

AJProença, Computer Systems & Performance, MEI, UMinho, 2011/12  22 

•  It requires a lot of registers! 
–  to save results from add/multip 
–  only 6 integer registers in IA32 

•  also used as pointers, loop control, … 
–  8 fp registers 
–  when registers aren’t enough, temp's are pushed to the stack 

•  cuts performance gains 
(see assembly in integer product with 8x unroll & 8x parallelism) 

–  re-naming registers is not enough 
•  it is not possible to reference more operands than those at the 

instruction set 
•  … main drawback at the IA32 instruction set 

•  Operations to parallelize must be associative! 
–  fp add & multipl in a computer is not associative! 

•  (3.14+1e20)-1e20  not always the same as 3.14+(1e20-1e20)… 

Code optimization:  
ILP limitations 

AJProença, Computer Systems & Performance, MEI, UMinho, 2011/12  23 

• combine 
–  integer multiplication 
–  8x unroll & 8x parallelism 
–  7 local variables share 1 

register (%edi) 
•  note the stack accesses 
•  performance improvement 
is compromised... 

•  consequence: register 
spilling 

.L165: 
 imull (%eax),%ecx 
 movl -4(%ebp),%edi 
 imull 4(%eax),%edi 
 movl %edi,-4(%ebp) 
 movl -8(%ebp),%edi 
 imull 8(%eax),%edi 
 movl %edi,-8(%ebp) 
 movl -12(%ebp),%edi 
 imull 12(%eax),%edi 
 movl %edi,-12(%ebp) 
 movl -16(%ebp),%edi 
 imull 16(%eax),%edi 
 movl %edi,-16(%ebp) 
… 
 addl $32,%eax 
 addl $8,%edx 
 cmpl -32(%ebp),%edx 
 jl .L165 

Limitation of parallelism:  
not enough registers 

AJProença, Computer Systems & Performance, MEI, UMinho, 2011/12  24 

Last week homework 

The problem: 
•  To identify all AMD and Intel processor microarchitecures from Hammer and Core till 

the latest releases, and build a table with: 
–  # pipeline stages, # simultaneous threads, degree of superscalarity, vector 

support , # cores, type/speed of interconnectors,… 
•  To identify the CPU generations at the SeARCH cluster 

Expected table headings: 

Example of a CPU generation at the cluster: 

5ª: Clovertown E5345 (4c, Core w/o HT, 2x4MB L2, 65nm, 2.33GHz) 

µArch Name Year Pipeline Stages Issue Width Vector Support Cores Interface 


