
AJProença, Computer Systems & Performance, MEI, UMinho, 2011/12 1

Computing Systems & Performance

MSc Informatics Eng.

2011/12

A.J.Proença

Data Parallelism 1 (vector, SIMD ext., GPU)
(most slides are borrowed)

AJProença, Computer Systems & Performance, MEI, UMinho, 2011/12 2

Beyond Instruction-Level Parallelism

•  When exploiting ILP, goal is to minimize CPI
! Pipeline CPI =>

•  Ideal pipeline CPI + !
•  Structural stalls + !
•  Data hazard stalls + !
•  Control stalls + !
•  Memory stalls ... cache techniques ... ! "

! Multiple issue =>
•  find enough parallelism to keep pipeline(s) occupied !

! Multithreading =>
•  find ways to keep pipeline(s) occupied !

•  Insert data parallelism features: SIMD...

3 Copyright © 2012, Elsevier Inc. All rights reserved.

Introduction

"  SIMD architectures can exploit significant data-
level parallelism for:
"  matrix-oriented scientific computing
"  media-oriented image and sound processors

"  SIMD is more energy efficient than MIMD
"  only needs to fetch one instruction per data operation
"  makes SIMD attractive for personal mobile devices

"  SIMD allows programmer to continue to think
sequentially

Introduction

4 Copyright © 2012, Elsevier Inc. All rights reserved.

SIMD Parallelism

"  Vector architectures
"  SIMD extensions
"  Graphics Processor Units (GPUs)

"  For x86 processors:
"  Expected grow:

 2 more cores/chip/year
"  SIMD width:

 2x every 4 years
"  Potential speedup:

 SIMD 2x that from MIMD!

Introduction

5 Copyright © 2012, Elsevier Inc. All rights reserved.

Vector Architectures

"  Basic idea:
"  Read sets of data elements into “vector

registers”
"  Operate on those registers
"  Store the results back into memory

"  Registers are controlled by the compiler
"  Used to hide memory latency
"  Leverage memory bandwidth

Vector A
rchitectures

AJProença, Sistemas de Computação e Desempenho, MInf, UMinho, 2010/11 6

7

Crossbar switches

Copyright © 2012, Elsevier Inc. All rights reserved.

VMIPS
"  Example architecture: VMIPS

"  Loosely based on Cray-1
"  Vector registers

"  Each register holds a 64-element,
64 bits/element vector

"  Register file has 16 read ports and
8 write ports

"  Vector functional units
"  Fully pipelined, new op each clock-cycle
"  Data & control hazards are detected

"  Vector load-store unit
"  Fully pipelined
"  1 word/clock-cycle after initial latency

"  Scalar registers
"  32 general-purpose registers
"  32 floating-point registers

Vector A
rchitectures

8 Copyright © 2012, Elsevier Inc. All rights reserved.

VMIPS Instructions
"  ADDVV.D: add two vectors
"  ADDVS.D: add vector to a scalar
"  LV/SV: vector load and vector store from address

"  Example: DAXPY
L.D F0,a ; load scalar a
LV V1,Rx ; load vector X
MULVS.D V2,V1,F0 ; vector-scalar
multiply

LV V3,Ry ; load vector Y
ADDVV V4,V2,V3 ; add
SV Ry,V4 ; store the result

"  Requires 6 instructions versus almost 600 for MIPS

Vector A
rchitectures

9 Copyright © 2012, Elsevier Inc. All rights reserved.

Vector Execution Time

"  Execution time depends on three factors:
"  Length of operand vectors
"  Structural hazards
"  Data dependencies

"  VMIPS functional units consume one element
per clock cycle
"  Execution time is approximately the vector length

"  Convoy
"  Set of vector instructions that could potentially

execute together in one unit of time, chime

Vector A
rchitectures

10 Copyright © 2012, Elsevier Inc. All rights reserved.

Challenges
"  Start up time

"  Latency of vector functional unit
"  Assume the same as Cray-1

"  Floating-point add => 6 clock cycles
"  Floating-point multiply => 7 clock cycles
"  Floating-point divide => 20 clock cycles
"  Vector load => 12 clock cycles

"  Improvements:
"  > 1 element per clock cycle
"  Non-64 wide vectors
"  IF statements in vector code
"  Memory system optimizations to support vector processors
"  Multiple dimensional matrices
"  Sparse matrices
"  Programming a vector computer

Vector A
rchitectures

11 Copyright © 2012, Elsevier Inc. All rights reserved.

Multiple Lanes

"  Element n of vector register A is “hardwired” to element
n of vector register B
"  Allows for multiple hardware lanes

Vector A
rchitectures

12 Copyright © 2012, Elsevier Inc. All rights reserved.

Vector Length Register

"  Handling vector length not known at compile time
"  Use Vector Length Register (VLR)
"  Use strip mining for vectors over the maximum length:

low = 0;
VL = (n % MVL); /*find odd-size piece using modulo op % */
for (j = 0; j <= (n/MVL); j=j+1) { /*outer loop*/
 for (i = low; i < (low+VL); i=i+1) /*runs for length VL*/
 Y[i] = a * X[i] + Y[i] ; /*main operation*/
 low = low + VL; /*start of next vector*/
 VL = MVL; /*reset the length to maximum vector length*/

}

Vector A
rchitectures

13 Copyright © 2012, Elsevier Inc. All rights reserved.

Vector Mask Registers
"  Handling IF statements in Vector Loops:

 for (i = 0; i < 64; i=i+1)
 if (X[i] != 0)
 X[i] = X[i] – Y[i];

"  Use vector mask register to “disable” elements:
 LV V1,Rx ;load vector X into V1
 LV V2,Ry ;load vector Y
 L.D F0,#0 ;load FP zero into F0
 SNEVS.D V1,F0 ;sets VM(i) to 1 if V1(i)!=F0
 SUBVV.D V1,V1,V2 ;subtract under vector mask
 SV Rx,V1 ;store the result in X

"  GFLOPS rate decreases!

Vector A
rchitectures

14 Copyright © 2012, Elsevier Inc. All rights reserved.

Memory Banks

"  Memory system must be designed to support high
bandwidth for vector loads and stores

"  Spread accesses across multiple banks
"  Control bank addresses independently
"  Load or store non sequential words
"  Support multiple vector processors sharing the same memory

"  Example (Cray T932):
"  32 processors, each generating 4 loads and 2 stores per cycle
"  Processor cycle time is 2.167 ns, SRAM cycle time is 15 ns
"  How many memory banks needed?

Vector A
rchitectures

15 Copyright © 2012, Elsevier Inc. All rights reserved.

Stride
"  Handling multidimensional arrays in Vector Architectures:
 for (i = 0; i < 100; i=i+1) {
 for (j = 0; j < 100; j=j+1) {
 A[i][j] = 0.0;
 for (k = 0; k < 100; k=k+1)
 A[i][j] = A[i][j] + B[i][k] * D[k][j];
 }
 }

"  Must vectorize multiplication of rows of B with columns of D
"  Use non-unit stride (in VMIPS: load/store vector with stride)
"  Bank conflict (stall) occurs when the same bank is hit faster than

bank busy time:
"  #banks / Least_Common_Multiple (stride, #banks) < bank busy time

Vector A
rchitectures

16 Copyright © 2012, Elsevier Inc. All rights reserved.

Scatter-Gather

"  Handling sparse matrices in Vector Architectures:
 for (i = 0; i < n; i=i+1)
 A[K[i]] = A[K[i]] + C[M[i]];

"  Use index vector:
 LV Vk, Rk ;load K
 LVI Va, (Ra+Vk) ;load A[K[]]
 LV Vm, Rm ;load M
 LVI Vc, (Rc+Vm) ;load C[M[]]
 ADDVV.D Va, Va, Vc ;add them
 SVI (Ra+Vk), Va ;store A[K[]]

Vector A
rchitectures

AJProença, Sistemas de Computação e Desempenho, MInf, UMinho, 2010/11 17 AJProença, Sistemas de Computação e Desempenho, MInf, UMinho, 2010/11 18

19 Copyright © 2012, Elsevier Inc. All rights reserved.

SIMD Extensions

"  Media applications operate on data types
narrower than the native word size
"  Example: disconnect carry chains to “partition”

adder

"  Limitations, compared to vector instructions:
"  Number of data operands encoded into op code
"  No sophisticated addressing modes (strided, scatter-

gather)
"  No mask registers

S
IM

D
 Instruction S

et E
xtensions for M

ultim
edia

20 Copyright © 2012, Elsevier Inc. All rights reserved.

SIMD Implementations

"  Implementations:
"  Intel MMX (1996)

"  Eight 8-bit integer ops or four 16-bit integer ops

"  Streaming SIMD Extensions (SSE) (1999)
"  Eight 16-bit integer ops
"  Four 32-bit integer/fp ops or two 64-bit integer/fp ops

"  Advanced Vector Extensions (2010)
"  Four 64-bit integer/fp ops

"  Operands must be in consecutive and aligned
memory locations

S
IM

D
 Instruction S

et E
xtensions for M

ultim
edia

AJProença, Computer Systems & Performance, MEI, UMinho, 2011/12 21

A Brief History of x86 SIMD

22 Copyright © 2012, Elsevier Inc. All rights reserved.

Example SIMD Code
"  Example DAXPY:

 L.D F0,a ;load scalar a
 MOV F1, F0 ;copy a into F1 for SIMD MUL
 MOV F2, F0 ;copy a into F2 for SIMD MUL
 MOV F3, F0 ;copy a into F3 for SIMD MUL
 DADDIU R4,Rx,#512 ;last address to load

Loop:
 L.4D F4,0[Rx] ;load X[i], X[i+1], X[i+2], X[i+3]
 MUL.4D F4,F4,F0 ;a!X[i],a!X[i+1],a!X[i+2],a!X[i+3]
 L.4D F8,0[Ry] ;load Y[i], Y[i+1], Y[i+2], Y[i+3]
 ADD.4D F8,F8,F4 ;a!X[i]+Y[i], ..., a!X[i+3]+Y[i+3]
 S.4D 0[Ry],F8 ;store into Y[i],Y[i+1],Y[i+2],Y[i+3]
 DADDIU Rx,Rx,#32 ;increment index to X
 DADDIU Ry,Ry,#32 ;increment index to Y
 DSUBU R20,R4,Rx ;compute bound
 BNEZ R20,Loop ;check if done

S
IM

D
 Instruction S

et E
xtensions for M

ultim
edia

23 Copyright © 2012, Elsevier Inc. All rights reserved.

Graphical Processing Units

"  Question to GPU architects:
"  Given the hardware invested to do graphics well,

how can we supplement it to improve the performance
of a wider range of applications?

"  Key ideas:
"  Heterogeneous execution model

"  CPU is the host, GPU is the device

"  Develop a C-like programming language for GPU
"  Unify all forms of GPU parallelism as CUDA_thread
"  Programming model follows SIMT:

“Single Instruction Multiple Thread ”

G
raphical P

rocessing U
nits

AJProença, Computer Systems & Performance, MEI, UMinho, 2011/12 24

Classifying GPUs

•  Don’t fit nicely into SIMD/MIMD model
– Conditional execution in a thread allows an

illusion of MIMD
•  But with performance degredation
•  Need to write general purpose code with care

Static: Discovered
at Compile Time

Dynamic: Discovered
at Runtime

Instruction-Level
Parallelism

VLIW Superscalar

Data-Level
Parallelism

SIMD or Vector GPU device

AJProença, Computer Systems & Performance, MEI, UMinho, 2011/12 25

Performance gap between
GPUs and CPUs

AJProença, Computer Systems & Performance, MEI, UMinho, 2011/12 26

!"#$%&'%#%()*+,%

•  Is a core an ALU?
– ATI claims 800 streaming processors!!

•  5 way VLIW * 16 way SIMD * 10 “SIMD cores”

•  Is a core a SIMD vector unit?
– NVidia claims 512 streaming processors!!

•  32 way SIMD * 16 “multiprocessors”
–  To match ATI, they could count another factor of 2 for dual-issue

•  In these slides, we use core consistent with the CPU world
– Superscalar, VLIW, SIMD are part of a core’s architecture, not the #cores

27 Copyright © 2012, Elsevier Inc. All rights reserved.

NVIDIA GPU Architecture

"  Similarities to vector machines:
"  Works well with data-level parallel problems
"  Scatter-gather transfers
"  Mask registers
"  Large register files

"  Differences:
"  No scalar processor
"  Uses multithreading to hide memory latency
"  Has many functional units, as opposed to a few

deeply pipelined units like a vector processor

G
raphical P

rocessing U
nits

AJProença, Computer Systems & Performance, MEI, UMinho, 2011/12 28

•  Compute Unified Device Architecture
•  CUDA is a recent programming model, designed for

–  Manycore architectures
–  Wide SIMD parallelism
–  Scalability

•  CUDA provides:
–  A thread abstraction to deal with SIMD
–  Synchr. & data sharing between small groups of threads

•  CUDA programs are written in C with extensions
•  OpenCL inspired by CUDA, but hw & sw vendor neutral

–  Programming model essentially identical

