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Beyond Instruction-Level Parallelism 

•  When exploiting ILP, goal is to minimize CPI 
! Pipeline CPI => 

•  Ideal pipeline CPI +      ! 
•  Structural stalls +       ! 
•  Data hazard stalls +      ! 
•  Control stalls +      ! 
•  Memory stalls ...  cache techniques ...   ! " 

! Multiple issue =>  
•  find enough parallelism to keep pipeline(s) occupied  !  

! Multithreading =>  
•  find ways to keep pipeline(s) occupied     ! 

•  Insert data parallelism features: SIMD... 
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Introduction 

"  SIMD architectures can exploit significant data-
level parallelism for: 
"  matrix-oriented scientific computing 
"  media-oriented image and sound processors 

"  SIMD is more energy efficient than MIMD 
"  only needs to fetch one instruction per data operation 
"  makes SIMD attractive for personal mobile devices 

"  SIMD allows programmer to continue to think 
sequentially 

Introduction 
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SIMD Parallelism 

"  Vector architectures 
"  SIMD extensions 
"  Graphics Processor Units (GPUs) 

"  For x86 processors: 
"  Expected grow: 

 2 more cores/chip/year 
"  SIMD width:  

 2x every 4 years 
"  Potential speedup: 

 SIMD 2x that from MIMD! 

Introduction 
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Vector Architectures 

"  Basic idea: 
"  Read sets of data elements into “vector 

registers” 
"  Operate on those registers 
"  Store the results back into memory 

"  Registers are controlled by the compiler 
"  Used to hide memory latency 
"  Leverage memory bandwidth 

Vector A
rchitectures 
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VMIPS 
"  Example architecture:  VMIPS 

"  Loosely based on Cray-1 
"  Vector registers 

"  Each register holds a 64-element,  
64 bits/element vector 

"  Register file has 16 read ports and  
8 write ports 

"  Vector functional units 
"  Fully pipelined, new op each clock-cycle 
"  Data & control hazards are detected 

"  Vector load-store unit 
"  Fully pipelined 
"  1 word/clock-cycle after initial latency 

"  Scalar registers 
"  32 general-purpose registers 
"  32 floating-point registers 

Vector A
rchitectures 
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VMIPS Instructions 
"  ADDVV.D:  add two vectors 
"  ADDVS.D:  add vector to a scalar 
"  LV/SV:  vector load and vector store from address 

"  Example:  DAXPY 
L.D  F0,a  ; load scalar a 
LV V1,Rx ; load vector X 
MULVS.D V2,V1,F0    ; vector-scalar 
multiply 

LV V3,Ry ; load vector Y 
ADDVV  V4,V2,V3  ; add 
SV Ry,V4 ; store the result 

"  Requires 6 instructions versus almost 600 for MIPS 

Vector A
rchitectures 
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Vector Execution Time 

"  Execution time depends on three factors: 
"  Length of operand vectors 
"  Structural hazards 
"  Data dependencies 

"  VMIPS functional units consume one element 
per clock cycle 
"  Execution time is approximately the vector length 

"  Convoy 
"  Set of vector instructions that could potentially 

execute together in one unit of time, chime 

Vector A
rchitectures 
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Challenges 
"  Start up time 

"  Latency of vector functional unit 
"  Assume the same as Cray-1 

"  Floating-point add => 6 clock cycles 
"  Floating-point multiply => 7 clock cycles 
"  Floating-point divide => 20 clock cycles 
"  Vector load => 12 clock cycles 

"  Improvements: 
"  > 1 element per clock cycle 
"  Non-64 wide vectors 
"  IF statements in vector code 
"  Memory system optimizations to support vector processors 
"  Multiple dimensional matrices 
"  Sparse matrices 
"  Programming a vector computer 

Vector A
rchitectures 
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Multiple Lanes 

"  Element n of vector register A is “hardwired” to element 
n of vector register B 
"  Allows for multiple hardware lanes 

Vector A
rchitectures 
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Vector Length Register 

"  Handling vector length not known at compile time 
"  Use Vector Length Register (VLR) 
"  Use strip mining for vectors over the maximum length: 

low = 0; 
VL = (n % MVL); /*find odd-size piece using modulo op % */ 
for (j = 0; j <= (n/MVL); j=j+1) { /*outer loop*/ 
 for (i = low; i < (low+VL); i=i+1) /*runs for length VL*/ 
  Y[i] = a * X[i] + Y[i] ; /*main operation*/ 
 low = low + VL; /*start of next vector*/ 
 VL = MVL; /*reset the length to maximum vector length*/ 

} 

Vector A
rchitectures 
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Vector Mask Registers 
"  Handling IF statements in Vector Loops: 

 for (i = 0; i < 64; i=i+1) 
    if (X[i] != 0) 
   X[i] = X[i] – Y[i]; 

"  Use vector mask register to “disable” elements: 
 LV   V1,Rx  ;load vector X into V1 
 LV   V2,Ry  ;load vector Y 
 L.D  F0,#0  ;load FP zero into F0 
 SNEVS.D  V1,F0  ;sets VM(i) to 1 if V1(i)!=F0 
 SUBVV.D  V1,V1,V2  ;subtract under vector mask 
 SV   Rx,V1  ;store the result in X 

"  GFLOPS rate decreases! 

Vector A
rchitectures 
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Memory Banks 

"  Memory system must be designed to support high 
bandwidth for vector loads and stores 

"  Spread accesses across multiple banks 
"  Control bank addresses independently 
"  Load or store non sequential words 
"  Support multiple vector processors sharing the same memory 

"  Example (Cray T932): 
"  32 processors, each generating 4 loads and 2 stores per cycle 
"  Processor cycle time is 2.167 ns, SRAM cycle time is 15 ns 
"  How many memory banks needed? 

Vector A
rchitectures 

15 Copyright © 2012, Elsevier Inc. All rights reserved. 

Stride 
"  Handling multidimensional arrays in Vector Architectures: 
 for (i = 0; i < 100; i=i+1) { 
  for (j = 0; j < 100; j=j+1) { 
  A[i][j] = 0.0; 
  for (k = 0; k < 100; k=k+1) 
     A[i][j] = A[i][j] + B[i][k] * D[k][j]; 
  } 
 } 

"  Must vectorize multiplication of rows of B with columns of D 
"  Use non-unit stride (in VMIPS: load/store vector with stride) 
"  Bank conflict (stall) occurs when the same bank is hit faster than 

bank busy time: 
"  #banks / Least_Common_Multiple (stride, #banks) < bank busy time 

Vector A
rchitectures 
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Scatter-Gather 

"  Handling sparse matrices in Vector Architectures: 
 for (i = 0; i < n; i=i+1) 
  A[K[i]] = A[K[i]] + C[M[i]]; 

"  Use index vector: 
 LV  Vk, Rk   ;load K 
 LVI  Va, (Ra+Vk)  ;load A[K[]] 
 LV  Vm, Rm   ;load M 
 LVI  Vc, (Rc+Vm)  ;load C[M[]] 
 ADDVV.D Va, Va, Vc  ;add them 
 SVI  (Ra+Vk), Va  ;store A[K[]] 

Vector A
rchitectures 
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SIMD Extensions 

"  Media applications operate on data types 
narrower than the native word size 
"  Example:  disconnect carry chains to “partition” 

adder 

"  Limitations, compared to vector instructions: 
"  Number of data operands encoded into op code 
"  No sophisticated addressing modes (strided, scatter-

gather) 
"  No mask registers 
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SIMD Implementations 

"  Implementations: 
"  Intel MMX (1996) 

"  Eight 8-bit integer ops or four 16-bit integer ops 

"  Streaming SIMD Extensions (SSE) (1999) 
"  Eight 16-bit integer ops 
"  Four 32-bit integer/fp ops or two 64-bit integer/fp ops 

"  Advanced Vector Extensions (2010) 
"  Four 64-bit integer/fp ops 

"  Operands must be in consecutive and aligned 
memory locations 
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A Brief History of x86 SIMD 
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Example SIMD Code 
"  Example DAXPY: 

 L.D  F0,a  ;load scalar a 
 MOV  F1, F0  ;copy a into F1 for SIMD MUL 
 MOV  F2, F0  ;copy a into F2 for SIMD MUL 
 MOV  F3, F0  ;copy a into F3 for SIMD MUL 
 DADDIU  R4,Rx,#512 ;last address to load 

Loop:   
 L.4D  F4,0[Rx]  ;load X[i], X[i+1], X[i+2], X[i+3] 
 MUL.4D  F4,F4,F0  ;a!X[i],a!X[i+1],a!X[i+2],a!X[i+3] 
 L.4D  F8,0[Ry]  ;load Y[i], Y[i+1], Y[i+2], Y[i+3] 
 ADD.4D  F8,F8,F4  ;a!X[i]+Y[i], ..., a!X[i+3]+Y[i+3] 
 S.4D  0[Ry],F8   ;store into Y[i],Y[i+1],Y[i+2],Y[i+3] 
 DADDIU  Rx,Rx,#32  ;increment index to X 
 DADDIU  Ry,Ry,#32  ;increment index to Y 
 DSUBU  R20,R4,Rx  ;compute bound 
 BNEZ  R20,Loop  ;check if done 
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Graphical Processing Units 

"  Question to GPU architects: 
"  Given the hardware invested to do graphics well,  

how can we supplement it to improve the performance 
of a wider range of applications? 

"  Key ideas: 
"  Heterogeneous execution model 

"  CPU is the host, GPU is the device 

"  Develop a C-like programming language for GPU 
"  Unify all forms of GPU parallelism as CUDA_thread 
"  Programming model follows SIMT: 

“Single Instruction Multiple Thread ” 

G
raphical P

rocessing U
nits 

AJProença, Computer Systems & Performance, MEI, UMinho, 2011/12  24 

Classifying GPUs 

•  Don’t fit nicely into SIMD/MIMD model 
– Conditional execution in a thread allows an 

illusion of MIMD 
•  But with performance degredation 
•  Need to write general purpose code with care 

Static: Discovered 
at Compile Time 

Dynamic: Discovered 
at Runtime 

Instruction-Level 
Parallelism 

VLIW Superscalar 

Data-Level 
Parallelism 

SIMD or Vector GPU device 
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Performance gap between 
GPUs and CPUs 
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•  Is a core an ALU?  
– ATI claims 800 streaming processors!! 

•  5 way VLIW * 16 way SIMD * 10 “SIMD cores” 

•  Is a core a SIMD vector unit? 
– NVidia claims 512 streaming processors!! 

•  32 way SIMD * 16 “multiprocessors”  
–  To match ATI, they could count another factor of 2 for dual-issue 

•  In these slides, we use core consistent with the CPU world 
– Superscalar, VLIW, SIMD are part of a core’s architecture, not the #cores 
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NVIDIA GPU Architecture 

"  Similarities to vector machines: 
"  Works well with data-level parallel problems 
"  Scatter-gather transfers 
"  Mask registers 
"  Large register files 

"  Differences: 
"  No scalar processor 
"  Uses multithreading to hide memory latency 
"  Has many functional units, as opposed to a few 

deeply pipelined units like a vector processor 
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•  Compute Unified Device Architecture 
•  CUDA is a recent programming model, designed for 

–  Manycore architectures 
–  Wide SIMD parallelism 
–  Scalability 

•  CUDA provides: 
–  A thread abstraction to deal with SIMD 
–  Synchr. & data sharing between small groups of threads 

•  CUDA programs are written in C with extensions 
•  OpenCL inspired by CUDA, but hw & sw vendor neutral 

–  Programming model essentially identical 


