
AJProença, Computer Systems & Performance, MEI, UMinho, 2011/12 1

Computing Systems & Performance

MSc Informatics Eng.

2011/12

A.J.Proença

From ILP to Multithreading and Shared Cache
(most slides are borrowed)

AJProença, Computer Systems & Performance, MEI, UMinho, 2011/12 2

Beyond Instruction-Level Parallelism

•  When exploiting ILP, goal is to minimize CPI
! Pipeline CPI =>

•  Ideal pipeline CPI + !
•  Structural stalls + !
•  Data hazard stalls + !
•  Control stalls + !
•  Memory stalls ... cache techniques ..."

! Multiple issue =>
•  find enough parallelism to keep pipeline(s) occupied

! Multithreading =>
•  find ways to keep pipeline(s) occupied

•  Insert data parallelism features (next set of slides)

3 Copyright © 2012, Elsevier Inc. All rights reserved.

Multiple Issue and Static Scheduling

"  To achieve CPI < 1, need to complete
multiple instructions per clock

"  Solutions:
"  statically scheduled superscalar processors
"  VLIW (very long instruction word) processors
"  dynamically scheduled superscalar

processors
M

ultiple Issue and S
tatic S

cheduling

4 Copyright © 2012, Elsevier Inc. All rights reserved.

Multiple Issue

M
ultiple Issue and S

tatic S
cheduling

Chapter 7 — Multicores, Multiprocessors, and Clusters — 5

Multithreading
"  Performing multiple threads of execution in

parallel
"  Replicate registers, PC, etc.
"  Fast switching between threads

"  Fine-grain multithreading
"  Switch threads after each cycle
"  Interleave instruction execution
"  If one thread stalls, others are executed

"  Coarse-grain multithreading
"  Only switch on long stall (e.g., L2-cache miss)
"  Simplifies hardware, but doesn’t hide short stalls

(eg, data hazards)

§7.5 H
ardw

are M
ultithreading

Chapter 7 — Multicores, Multiprocessors, and Clusters — 6

Simultaneous Multithreading
"  In multiple-issue dynamically scheduled

processor
"  Schedule instructions from multiple threads
"  Instructions from independent threads execute

when function units are available
"  Within threads, dependencies handled by

scheduling and register renaming
"  Example: Intel Pentium-4 HT

"  Two threads: duplicated registers, shared
function units and caches

Chapter 7 — Multicores, Multiprocessors, and Clusters — 7

Multithreading Example

Chapter 7 — Multicores, Multiprocessors, and Clusters — 8

Instruction and Data Streams
"  An alternate classification

§7.6 S
IS

D
, M

IM
D

, S
IM

D
, S

P
M

D
, and Vector

Data Streams
Single Multiple

Instruction
Streams

Single SISD:
Intel Pentium 4

SIMD: SSE
instructions of x86

Multiple MISD:
No examples today

MIMD:
Intel Xeon e5345

"  SPMD: Single Program Multiple Data
"  A parallel program on a MIMD computer
"  Conditional code for different processors

9 Copyright © 2012, Elsevier Inc. All rights reserved.

Introduction to multithreading

"  Thread-Level parallelism
"  Have multiple program counters
"  Uses MIMD model
"  Targeted for tightly-coupled shared-memory

multiprocessors
"  For n processors, need n threads
"  Amount of computation assigned to each

thread = grain size
"  Threads can be used for data-level

parallelism, but the overheads may outweigh
the benefit

Introduction

10 Copyright © 2012, Elsevier Inc. All rights reserved.

Types
"  Symmetric multiprocessors

(SMP)
"  Small number of cores
"  Share single memory with

uniform memory latency
"  Distributed shared memory

(DSM)
"  Memory distributed among

processors
"  Non-uniform memory access/

latency (NUMA)
"  Processors connected via

direct (switched) and non-
direct (multi-hop)
interconnection networks

Introduction

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 11

Cache Coherence Problem
"  Suppose two CPU cores share a physical

address space
"  Write-through caches

§5.8 P
arallelism

 and M
em

ory H
ierarchies: C

ache C
oherence

Time
step

Event CPU A’s
cache

CPU B’s
cache

Memory

0 0

1 CPU A reads X 0 0

2 CPU B reads X 0 0 0

3 CPU A writes 1 to X 1 0 1

12 Copyright © 2012, Elsevier Inc. All rights reserved.

Cache Coherence
"  Coherence

"  All reads by any processor must return the most
recently written value

"  Writes to the same location by any two processors are
seen in the same order by all processors

"  Consistency
"  When a written value will be returned by a read
"  If a processor writes location A followed by location B,

any processor that sees the new value of B must also
see the new value of A

C
entralized S

hared-M
em

ory A
rchitectures

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 13

Cache Coherence Protocols
"  Operations performed by caches in

multiprocessors to ensure coherence
"  Migration of data to local caches

"  Reduces bandwidth for shared memory
"  Replication of read-shared data

"  Reduces contention for access

"  Snooping protocols
"  Each cache monitors bus reads/writes

"  Directory-based protocols
"  Caches and memory record sharing status of

blocks in a directory
14 Copyright © 2012, Elsevier Inc. All rights reserved.

Snoopy Coherence Protocols
"  Write invalidate

"  On write, invalidate all other copies
"  Use bus itself to serialize

"  Write cannot complete until bus access is obtained

"  Write update
"  On write, update all copies

C
entralized S

hared-M
em

ory A
rchitectures

15 Copyright © 2012, Elsevier Inc. All rights reserved.

Snoopy Coherence Protocols

"  Locating an item when a read miss occurs
"  In write-back cache, the updated value must

be sent to the requesting processor

"  Cache lines marked as shared or
exclusive/modified
"  Only writes to shared lines need an invalidate

broadcast
"  After this, the line is marked as exclusive

C
entralized S

hared-M
em

ory A
rchitectures

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 16

Invalidating Snooping Protocols
"  Cache gets exclusive access to a block

when it is to be written
"  Broadcasts an invalidate message on the bus
"  Subsequent read in another cache misses

"  Owning cache supplies updated value

CPU activity Bus activity CPU A’s
cache

CPU B’s
cache

Memory

0
CPU A reads X Cache miss for X 0 0
CPU B reads X Cache miss for X 0 0 0
CPU A writes 1 to X Invalidate for X 1 0
CPU B read X Cache miss for X 1 1 1

17 Copyright © 2012, Elsevier Inc. All rights reserved.

Snoopy Coherence Protocols

C
entralized S

hared-M
em

ory A
rchitectures

18 Copyright © 2012, Elsevier Inc. All rights reserved.

Snoopy Coherence Protocols
C

entralized S
hared-M

em
ory A

rchitectures

19 Copyright © 2012, Elsevier Inc. All rights reserved.

Snoopy Coherence Protocols

"  Complications for the basic MSI protocol:
"  Operations are not atomic

"  E.g. detect miss, acquire bus, receive a response
"  Creates possibility of deadlock and races
"  One solution: processor that sends invalidate can

hold bus until other processors receive the
invalidate

"  Extensions:
"  Add exclusive state to indicate clean block in

only one cache (MESI protocol)
"  Prevents needing to write invalidate on a write

"  Owned state

C
entralized S

hared-M
em

ory A
rchitectures

AJProença, Computer Systems & Performance, MEI, UMinho, 2011/12 20

Reading suggestions (from CAQA 5th Ed)

•  Concepts and challenges in ILP: section 3.1

•  Exploiting ILP w/ multiple issue & static scheduling: 3.7

•  Exploiting ILP w/ dyn sched, multiple issue & specul: 3.8

•  Multithread: exploiting TLP on uniprocessors: 3.12

•  Multiprocessor cache coherence and
snooping coherence protocol with example: 5.2

•  Basics on directory-based cache coherence: 5.4

•  Models of memory consistency: 5.6

•  A tutorial by Sarita Ave & K. Gharachorloo (see link at website)

