Computing Systems & Performance Beyond Instruction-Level Parallelism

O 5.
AN NN

* When exploiting ILP, goal is to minimize CPI
MSc Informatics Eng. > Pipeline CPI =>

* Ideal pipeline CPI + ¢
« Structural stalls + 4
2011/12 * Data hazard stalls + v
« Control stalls + 4
* Memory stalls ... cache techniques ...
> Multiple issue =>
« find enough parallelism to keep pipeline(s) occupied
> Multithreading =>
« find ways to keep pipeline(s) occupied
* Insert data parallelism features (next set of siides)

A.J.Proencga

From ILP to Multithreading and Shared Cache

(most slides are borrowed)

AJProenga, Computer Systems & Performance, MEI, UMinho, 2011/12 1 AJProenga, Computer Systems & Performance, MEI, UMinho, 2011/12 2

Multiple Issue and Static Scheduling = Multiple Issue =
[©) [©)
7 a
i = Issue Hazard Distinguishing =
u TO aCh Ieve C P I < 1 ’ n eed to CO m p I ete g Common name structure detection Scheduling characteristic Examples g
8. Superscalar Dynamic Hardware Static In-order execution Mostly in the 8.

multiple instructions per clock b y y
w (static) embedded space: (7))
15 MIPS and ARM, 151
g‘- including the ARM g
wn Coretex A8)
1 . Q Superscalar Dynamic Hardware ~ Dynamic Some out-of-order None at the present Q
u S O | u tl O n S " g (dynamic) execution, but no g
. E— speculation E.
u Statl ca I Iy SCh ed u Ied Su pe rsca I ar p rocessors = Superscalar Dynamic Hardware ~ Dynamic with ~ Out-of-order execution Intel Core i3, 15, i7; 5
. . «Q (speculative) speculation with speculation AMD Phenom: IBM «Q

= VLIW (very long instruction word) processors Pover 7

VLIW/LIW Static Primarily Static All hazards determined Most examples are in
H software and indicated by compiler signal processing,
u dynamlca”y SChedUIed Superscalar (often implicitly) such as the TI Cox
p rocessors EPIC Primarilystatic Primarily Mostly static All hazards determined Itanium
software and indicated explicitly

by the compiler

| Multithreading

| Performing multiple threads of execution in

parallel

Replicate registers, PC, etc.

Fast switching between threads
Fine-grain multithreading

Switch threads after each cycle

Interleave instruction execution

If one thread stalls, others are executed
Coarse-grain multithreading

Only switch on long stall (e.g., L2-cache miss)

Simplifies hardware, but doesn’t hide short stalls
(eg, data hazards)

Chapter 7 — Multicores, Multiprocessors, and Clusters — 5

| Multithreading Example

Issue slots —
Thread A Thread B Thread C Thread D

[| | | [L]
[| [1]
Time [N |]
[|] [| [||
HEEEE B =
EEEE EEN
[[|
|]|
(]]
Issue slots —
Coarse MT Fine MT SMT
Time [| | [1 1 1|
HEE HEEE
HEN HEN HEN
[| | HEEN
EEEE = ||
| || L 1]
==- || [1 |
1 1 []
[| HEE u
[[

Chapter 7 — Multicores, Multiprocessors, and Clusters — 7

| Simultaneous Multithreading

| In multiple-issue dynamically scheduled
processor
Schedule instructions from multiple threads

Instructions from independent threads execute
when function units are available

Within threads, dependencies handled by
scheduling and register renaming

Example: Intel Pentium-4 HT

Two threads: duplicated registers, shared
function units and caches

Chapter 7 — Multicores, Multiprocessors, and Clusters — 6

| Instruction and Data Streams

| An alternate classification

Data Streams

Single Multiple
Instruction | Single SISD: SIMD: SSE
Streams Intel Pentium 4 instructions of x86
Multiple | MISD: MIMD:
No examples today | Intel Xeon €5345

SPMD: Single Program Multiple Data
A parallel program on a MIMD computer
Conditional code for different processors

Chapter 7 — Multicores, Multiprocessors, and Clusters — 8

Introduction to multithreading & Types g
S S
o =
= Thread-Level parallelism - ?SVI\TFr)r;etric multiprocessors 2
= Have multiple program counters + Small number of cores e || e
» Uses MIMD model = Sh'?re single men|1c;ry with
. unirorm memory latency
- Lﬂ%gtii;g;g?shﬂy_coupled shared-memory = Distributed shared memory
(DSM)
m For n processors, need n threads . g”::g‘;g;{o?‘:“‘b“ted among
» Amount of Computation assigned to each = Non-uniform memory access/ ~ ("%" " " (e
thread = grain size latency (NUMA) | % -9:. 5 % -ﬁ?:.
= Processors connected via [o)
= Threads can be used for data-level ggrec: (swilttc_;r;]ed) and non-
’E)haer?)lfr?esg’:’ but the overheads may outweigh direct (Multihop) e

(@)
@
Cache Coherence Problem Cache Coherence 5
s
(0]
Suppose two CPU cores share a physical = Coherence §
address space = All reads by any processor must return the most §
- Write-through caches recently written value =
= Writes to the same location by any two processors are §
Time | Event CPUAs | CPUB’s Memory seen in the same order by all processors =
step cache cache 5
0 0 = Consistency g
1 | CPUAreads X 0 0 = When a written value will be returned by a read §

2 | CPUB reads X 0 0 0 = If a processor writes location A followed by location B,

; any processor that sees the new value of B must also

3 |CPUAwrites 1to X 1 0 1 see the new value of A

M [4 Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 11

(@)
(]
| Cache Coherence Protocols _Iﬁoopy Coherence Protocols =
N
]] . . . g
Operations performed by caches in = Write invalidate _ 7
multiprocessors to ensure coherence = On write, invalidate all other copies 2
Migration of data to local caches = Use bus itself to serialize 5
Reduces bandwidth for shared memory « Write cannot complete until bus access is obtained §
Repllcatlon Of read-Shared data Processor activity Bus activity profet::;er’z’zg;che procceos:toerrl‘;’:g;che merﬁz:‘;elgzzginx §
Reduces contention for access 0 g
Snooping protocols oo sl X o forx 0 ; 0 3
Each Cache monitors bus reads/writes ::‘m);‘cssorA\mlcsn] Invalidation for X 1 0
. Processor B reads X Cache miss for X 1 1 1
Directory-based protocols
Caches and memory record sharing status of = Write update
blocks in a directory = On write, update all copies

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 13

l Snoopy Coherence Protocols

= Locating an item when a read miss occurs

= In write-back cache, the updated value must
be sent to the requesting processor

| Invalidating Snooping Protocols

Cache gets exclusive access to a block
when it is to be written
Broadcasts an invalidate message on the bus

Subsequent read in another cache misses

= Cache lines marked as shared or Owning cache supplies updated value

exclusive/modified

SaINno8lIyoly AloWs|\-paieys pazijesjue)

CPU activity Bus activity CPU As CPUB’s Memory
. . . . cache cache
= Only writes to shared lines need an invalidate 5
broadcagt L . CPU Areads X Cache miss for X 0 0
= After this, the line is marked as exclusive CPU B reads X Cache miss for X 0 0 0
CPU A writes 1 to X | Invalidate for X 1 0
CPUB read X Cache miss for X 1 1 1

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 16

Snoopy Coherence Protocols Snoopy Coherence Protocols

State of
addressed Type of
Request Source cacheblock cache action Function and explanation

CPU read hit

Write miss for this block
Read hit Processor Shared or Normal hit Read data in local cache. Invalidate for
modified (r:: : I:rﬁy) this block Shared
Read miss Processor Invalid Normal miss Place read miss on bus. Place read miss on bus (read only)
Read miss Processor Shared Replacement Address conflict miss: place read miss on bus. CPU
Read miss Processor Modified Replacement Address conflict miss: write-back block, then place read miss on :;:: Z?g
bus. miss

Place read
miss on bus

Write hit ~ Processor Modified Normal hit ~ Write data in local cache.

Place write
miss on bus

Write hit ~ Processor Shared Coherence Place invalidate on bus. These operations are often called
upgrade or ownership misses, since they do not fetch the data but

abort memory
access

Write-back block;

SIN)08)IY0IY AIOWS\-PaIBYS PazIenus)
S81Nj08]Iyaly Alows|\-paleys pazijenuad

only change the state. Write miss
- N n N N - for this block
Write miss Processor Invalid Normal miss Place write miss on bus. Read miss
for this block C
: . N . . . Cache state transitions ache state transitions based
Write miss Processor Shared Replacement Address conflict miss: place write miss on bus. Exclusive e o GPU Exclusive on fequests from the bus

(read/write)

Write miss Processor Modified Replacement Address conflict miss: write-back block, then place write miss on (read/write)

bus. CPU write miss
Read miss Bus Shared No action Allow shared cache or memory to service read miss.
Write-back cache block
Read miss Bus Modified Coherence Attempt to share data: place cache block on bus and change state Place write miss on bus
to shared. CPU write hit
- " —— CPU read hit
Invalidate Bus Shared Coherence Attempt to write shared block: invalidate the block.
Write miss Bus Shared Coherence Attempt to write shared block; invalidate the cache block.
Write miss Bus Modified Coherence Attempt to write block that is exclusive elsewhere: write-back the

cache block and make its state invalid in the local cache.

Snoo Coherence Protocols Reading suggestions (from CAQA 5t Ed)

s Complications for the basic MSI protocol:

= Operations are not atomic
= E.g. detect miss, acquire bus, receive a response
= Creates possibility of deadlock and races

= One solution: processor that sends invalidate can
hold bus until other processors receive the
invalidate

m Extensions:

= Add exclusive state to indicate clean block in , _ _
only one cache (MESI protocol) » Basics on directory-based cache coherence: 54

= Prevents needing to write invalidate on a write * Models of memory consistency: 5.6
= Owned state « A tutorial by Sarita Ave & K. Gharachorloo (see link at website)

» Concepts and challenges in ILP: section 3.1
» Exploiting ILP w/ multiple issue & static scheduling: 3.7
» Exploiting ILP w/ dyn sched, multiple issue & specul: 3.8
* Multithread: exploiting TLP on uniprocessors: 3.12

» Multiprocessor cache coherence and
snooping coherence protocol with example: 5.2

(@)
()
=]
=
O
i
@
o
[%2]
=r
[
=
®
=
<
(]
3
o
<
>
(@]
=L
=
[0]
Q
=3
S
=]
(0]
(7]

AJProenga, Computer Systems & Performance, MEI, UMinho, 2011/12 20

