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Beyond Instruction-Level Parallelism 

•  When exploiting ILP, goal is to minimize CPI 
! Pipeline CPI => 

•  Ideal pipeline CPI +  ! 
•  Structural stalls +   ! 
•  Data hazard stalls +  ! 
•  Control stalls +  ! 
•  Memory stalls ...  cache techniques ..." 

! Multiple issue =>  
•  find enough parallelism to keep pipeline(s) occupied 

! Multithreading =>  
•  find ways to keep pipeline(s) occupied 

•  Insert data parallelism features (next set of slides) 
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Multiple Issue and Static Scheduling 

"  To achieve CPI < 1, need to complete 
multiple instructions per clock 

"  Solutions: 
"  statically scheduled superscalar processors 
"  VLIW (very long instruction word) processors 
"  dynamically scheduled superscalar 

processors 
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Multithreading 
"  Performing multiple threads of execution in 

parallel 
"  Replicate registers, PC, etc. 
"  Fast switching between threads 

"  Fine-grain multithreading 
"  Switch threads after each cycle 
"  Interleave instruction execution 
"  If one thread stalls, others are executed 

"  Coarse-grain multithreading 
"  Only switch on long stall (e.g., L2-cache miss) 
"  Simplifies hardware, but doesn’t hide short stalls 

(eg, data hazards) 
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Simultaneous Multithreading 
"  In multiple-issue dynamically scheduled 

processor 
"  Schedule instructions from multiple threads 
"  Instructions from independent threads execute 

when function units are available 
"  Within threads, dependencies handled by 

scheduling and register renaming 
"  Example: Intel Pentium-4 HT 

"  Two threads: duplicated registers, shared 
function units and caches 
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Multithreading Example 
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Instruction and Data Streams 
"  An alternate classification 
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Data Streams 
Single Multiple 

Instruction 
Streams 

Single SISD: 
Intel Pentium 4 

SIMD: SSE 
instructions of x86 

Multiple MISD: 
No examples today 

MIMD: 
Intel Xeon e5345 

"  SPMD: Single Program Multiple Data 
"  A parallel program on a MIMD computer 
"  Conditional code for different processors 
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Introduction to multithreading 

"  Thread-Level parallelism 
"  Have multiple program counters 
"  Uses MIMD model 
"  Targeted for tightly-coupled shared-memory 

multiprocessors 
"  For n processors, need n threads 
"  Amount of computation assigned to each 

thread = grain size 
"  Threads can be used for data-level 

parallelism, but the overheads may outweigh 
the benefit 

Introduction 
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Types 
"  Symmetric multiprocessors 

(SMP) 
"  Small number of cores 
"  Share single memory with 

uniform memory latency 
"  Distributed shared memory 

(DSM) 
"  Memory distributed among 

processors 
"  Non-uniform memory access/

latency (NUMA) 
"  Processors connected via 

direct (switched) and non-
direct (multi-hop) 
interconnection networks 

Introduction 
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Cache Coherence Problem 
"  Suppose two CPU cores share a physical 

address space 
"  Write-through caches 
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Time 
step 

Event CPU A’s 
cache 

CPU B’s 
cache 

Memory 

0 0 

1 CPU A reads X 0 0 

2 CPU B reads X 0 0 0 

3 CPU A writes 1 to X 1 0 1 
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Cache Coherence 
"  Coherence 

"  All reads by any processor must return the most 
recently written value 

"  Writes to the same location by any two processors are 
seen in the same order by all processors 

"  Consistency 
"  When a written value will be returned by a read 
"  If a processor writes location A followed by location B, 

any processor that sees the new value of B must also 
see the new value of A 
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Cache Coherence Protocols 
"  Operations performed by caches in 

multiprocessors to ensure coherence 
"  Migration of data to local caches 

"  Reduces bandwidth for shared memory 
"  Replication of read-shared data 

"  Reduces contention for access 

"  Snooping protocols 
"  Each cache monitors bus reads/writes 

"  Directory-based protocols 
"  Caches and memory record sharing status of 

blocks in a directory 
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Snoopy Coherence Protocols 
"  Write invalidate 

"  On write, invalidate all other copies 
"  Use bus itself to serialize 

"  Write cannot complete until bus access is obtained 

"  Write update 
"  On write, update all copies 
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Snoopy Coherence Protocols 

"  Locating an item when a read miss occurs 
"  In write-back cache, the updated value must 

be sent to the requesting processor 

"  Cache lines marked as shared or 
exclusive/modified 
"  Only writes to shared lines need an invalidate 

broadcast 
"  After this, the line is marked as exclusive 
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Invalidating Snooping Protocols 
"  Cache gets exclusive access to a block 

when it is to be written 
"  Broadcasts an invalidate message on the bus 
"  Subsequent read in another cache misses 

"  Owning cache supplies updated value 

CPU activity Bus activity CPU A’s 
cache 

CPU B’s 
cache 

Memory 

0 
CPU A reads X Cache miss for X 0 0 
CPU B reads X Cache miss for X 0 0 0 
CPU A writes 1 to X Invalidate for X 1 0 
CPU B read X Cache miss for X 1 1 1 
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Snoopy Coherence Protocols 
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Snoopy Coherence Protocols 
C

entralized S
hared-M

em
ory A

rchitectures 

19 Copyright © 2012, Elsevier Inc. All rights reserved. 

Snoopy Coherence Protocols 

"  Complications for the basic MSI protocol: 
"  Operations are not atomic 

"  E.g. detect miss, acquire bus, receive a response 
"  Creates possibility of deadlock and races 
"  One solution:  processor that sends invalidate can 

hold bus until other processors receive the 
invalidate 

"  Extensions: 
"  Add exclusive state to indicate clean block in 

only one cache (MESI protocol) 
"  Prevents needing to write invalidate on a write 

"  Owned state 
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Reading suggestions (from CAQA 5th Ed) 

•  Concepts and challenges in ILP:                    section  3.1 

•  Exploiting ILP w/ multiple issue & static scheduling:  3.7 

•  Exploiting ILP w/ dyn sched, multiple issue & specul: 3.8 

•  Multithread: exploiting TLP on uniprocessors:  3.12 

•  Multiprocessor cache coherence and  
snooping coherence protocol with example:  5.2 

•  Basics on directory-based cache coherence:  5.4 

•  Models of memory consistency:  5.6 

•  A tutorial by Sarita Ave & K. Gharachorloo (see link at website) 


