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= Memory hierarchy design becomes more crucial = When a word is not found in the cache, a miss

with recent multi-core processors: OCCurs:
= Aggregate peak bandwidth grows with # cores: = Fetch word from lower level in hierarchy, requiring a

= Intel Core i7 can generate two references per core per clock higher latency reference
= Four cores and 3.2 GHz clock = Lower level may be another cache or the main

= 25.6 *10° 64-bit data references/second + memory
= 12.8 *10°128-bit instruction references = Also fetch the other words contained within the block
= =409.6 GB/S_! . . . = Takes advantage of spatial locality

. DRAM bandwidth is only 6% of this (25 GB/s) = Place block into cache in any location within its set,

= Requires: determined by address

= block address MOD number of sets

= Multi-port, pipelined caches
= Two levels of cache per core
= Shared third-level cache on chip




Memory Hierarchy Basics

» n sets => n-way set associative
» Direct-mapped cache => one block per set
s Fully associative => one set

= Writing to cache: two strategies

= Write-through
= Immediately update lower levels of hierarchy

s Write-back

= Only update lower levels of hierarchy when an updated block

is replaced
= Both strategies use write buffer to make writes
asynchronous
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Memory Hierarchy Basics
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= Miss rate
= Fraction of cache access that result in a miss

s Causes of misses

= Compulsory
= First reference to a block
= Capacity
= Blocks discarded and later retrieved
= Conflict
= Program makes repeated references to multiple addresses

from different blocks that map to the same location in the
cache

Memory Hierarchy Basics

CPU

exec-time (CPUclock—cycles + Memstall—cycles) x Clock cycle time

Memgg; ycies = IC * Misses/ Instruction x Miss Penalty

Misses Miss rate X Memory accesses . Memory accesses
= = Miss rate X —————

Instruction Instruction count Instruction

= Note1: miss rate/penalty are often different for reads and
writes

Average memory access time = Hit time + Miss rate X Miss penalty

= Note2: speculative and multithreaded processors may
execute other instructions during a miss
= Reduces performance impact of misses
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Cache Performance Example

Given

« |-cache miss rate = 2%

« D-cache miss rate = 4%

= Miss penalty = 100 cycles

= Base CPI (ideal cache) = 2

« Load & stores are 36% of instructions
Miss cycles per instruction

« |I-cache: 0.02 x 100 = 2

« D-cache: 0.36 x 0.04 x 100 = 1.44
Actual CPI=2+2+1.44=5.44

= ldeal CPU is 5.44/2 =2.72 times faster
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| Multilevel Caches

‘ Primary cache attached to CPU
Small, but fast

Level-2 cache services misses from
primary cache

Larger, slower, but still faster than main
memory

Main memory services L-2 cache misses
Some high-end systems include L-3 cache

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 9

| Example (cont.)

‘ Now add L-2 cache

Access time = 5ns

Global miss rate to main memory = 0.5%
Primary miss with L-2 hit

Penalty = 5ns/0.25ns = 20 cycles
Primary miss with L-2 miss

Extra penalty = 500 cycles
CPI=1+0.02x20+0.005%x400=34
Performance ratio = 9/3.4 = 2.6
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| Multilevel Cache Example

l Given
CPU base CPI =1, clock rate = 4GHz
Miss rate/instruction = 2%
Main memory access time = 100ns
With just primary cache
Miss penalty = 100ns/0.25ns = 400 cycles
Effective CPI =1+ 0.02 x 400 =9

Now add L-2 cache ...
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| Memory Hierarchy Basics
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= Six basic cache optimizations:

= Larger block size
=« Reduces compulsory misses
= Increases capacity and conflict misses, increases miss penalty
= Larger total cache capacity to reduce miss rate
= Increases hit time, increases power consumption
= Higher associativity
= Reduces conflict misses
= Increases hit time, increases power consumption
= Multilevel caches to reduce miss penalty
= Reduces overall memory access time
= Giving priority to read misses over writes
=« Reduces miss penalty
= Avoiding address translation in cache indexing
= Reduces hit time




3-Level Cache Organization

Multilevel On-Chip Caches

Intel Nehalem AMD Opteron X4
Intel Nehalem 4-core processor

L1 caches |L1 I-cache: 32KB, 64-byte L1 I-cache: 32KB, 64-byte
(per core) blocks, 4-way, approx LRU blocks, 2-way, LRU

replacement, hit time n/a replacement, hit time 3 cycles

L1 D-cache: 32KB, 64-byte L1 D-cache: 32KB, 64-byte g

blocks, 8-way, approx LRU blocks, 2-way, LRU £

replacement, write-back/ replacement, write-back/ é

allocate, hit time n/a allocate, hit time 9 cycles ¥
L2 unified 256KB, 64-byte blocks, 8-way, | 512KB, 64-byte blocks, 16-way, é’
cache approx LRU replacement, write- | approx LRU replacement, write-
(per core) back/allocate, hit time n/a back/allocate, hit time n/a
L3unified | 8MB, 64-byte blocks, 16-way, | 2MB, 64-byte blocks, 32-way, : 2 S
cache replacement n/a, write-back/ replace block shared by fewest = M"B' e o o S:M()Bf ia
(shared) allocate, hit time n/a cores, write-back/allocate, hit |ecache S Hcather IS [ cache

time 32 cycles = - el L LI

n/a: data not available
Per core: 32KB L1 |-cache, 32KB L1 D-cache, 512KB L2 cache
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1. Small and simple 1st level caches

Ten Advanced Optimizations |

= Small and simple first level caches

= Critical timing path:
= addressing tag memory, then
= comparing tags, then
= selecting correct set
= Direct-mapped caches can overlap tag compare and
transmission of data
= Lower associativity reduces power because fewer
cache lines are accessed

= Reducing the hit time
= small & simple first-level caches
= way-prediction
Increase cache bandwidth
= pipelined cache access
= nonblocking caches
= multibanked caches

Reducing the miss penalty
= critical word first
= merging write buffers
= Reducing the miss rate
= compiler optimizations
Reducing the miss penalty or miss rate via parallelism
= hardware prefetching of instructions and data
= compiler-controlled prefetching
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| 3. Pipelining Cache

| 2. way Prediction

= Pipeline cache access to improve bandwidth

= Examples:
= Pentium: 1 cycle
= Pentium Pro — Pentium Ill: 2 cycles
= Pentium 4 — Core i7: 4 cycles

= To improve hit time, predict the way to pre-set
mux
= Mis-prediction gives longer hit time
= Prediction accuracy
= > 90% for two-way
= > 80% for four-way
= |-cache has better accuracy than D-cache

s First used on MIPS R10000 in mid-90s
= Used on ARM Cortex-A8
= Extend to predict block as well
= “Way selection”
= Increases mis-prediction penalty
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= Increases branch mis-prediction penalty
» Makes it easier to increase associativity




4. Nonblocking Caches

= Allow hits before N e
previous misses o0 i N T o mies |
complete oo # ¥

= “Hit under miss” 2 0% H/'\*:J/

= “Hit under multiple 2 o -

miss” g 50% A"(‘/y\l Q.‘*\‘___\
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6. Critical Word First, Early Restart

» Critical word first

= Request missed word from memory first

= Send it to the processor as soon as it arrives
» Early restart

= Request words in normal order

= Send missed work to the processor as soon as it
arrives

» Effectiveness of these strategies depends on
block size and likelihood of another access to
the portion of the block that has not yet been
fetched
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5. Multibanked Caches

= Organize cache as independent banks to
support simultaneous access
= ARM Cortex-A8 supports 1-4 banks for L2
= Intel i7 supports 4 banks for L1 and 8 banks for L2

» Interleave banks according to block address

Block

Block
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0

Block
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1
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2
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Figure 2.6 Four-way interleaved cache banks using block addressing. Assuming 64
bytes per blocks, each of these addresses would be multiplied by 64 to get byte
addressing.

| 7. Merging Write Buffer

= When storing to a block that is already pending in the
write buffer, update write buffer

= Reduces stalls due to full write buffer
= Do not apply to I/O addresses

Write address v v \ \
100 1 | Mem[100] | 0 0 0
[ 108 | 1 | Mem[108] | 0 0 0
W 1 | Mem[116] | 0 [ 0
[ves [+ | memirea] o 0 0
T

Write address  V v \ \
100 1 | Mem[100] | 1 | Mem[108] | 1 | Mem[116] [ 1 | Mem[124]
] 0 0 0 0
] 0 0 0 0
] 0 0 0 0
“—

No write
buffering

Write buffering
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| 8. Compiler Optimizations : | 9. Hardware Prefetching z
| i i
= Loop Interchange g = Fetch two blocks on miss (include next g
= Swap nested loops to access memory in = sequential block) 3
sequential order §' 220 %’
@ 2.00 4 1.97 @
= Blocking N
» Instead of accessing entire rows or columns, 2 '
subdivide matrices into blocks é e » 2
= Requires more memory accesses but improves g e = W
locality of accesses o) 110 e 120 121
10 gap  mcf  fam3d wupwise galgel facerec swim  applu lucas mgrid equake
SPECint2000 SPEC1p2000

Pentium 4 Pre-fetching

10.C iler Prefetchin g g
mpltier rFr 2 2
| - Lompiléer Freretching 5 Summary 5
3 3
I 8 Hit Band- Miss Miss Power Hardware cost/ o
. . . Technique time width penalty rate consumption complexity Comment
» Insert prefetch instructions before data is 2 . —— =
= Small and simple + - + 0 Trivial; widely used =
need ed 3 caches 3
. N Way-predicting caches + + 1 Used in Pentium 4 N
. ’ Q )
= Non-faulting: prefetch doesn’t cause = Pipelined cache access ¥ T Wadely wsed =
exce pt| ons 7 Nonblocking caches ¥ + 3 Widely used 2
Banked caches + + 1 Used in L2 of both i7 and
Cortex-A8
. Critical word first + 2 Widely used
» Register prefetch and carly restart
. . Merging write buffer + 1 Widely used with write
» Loads data into register through
Compiler techniques to + 0 Software is a challenge, but
| | Ca Ch e p refetch reduce cache misses many compilers handle
. common linear algebra
» Loads data into cache calenlations
Hardware prefetching + + - 2 instr., Most provide prefetch
of instructions and data 3 data instructions; modern high-
. . . end processors also .
= Combine with loop unrolling and software automatially prefetch in
pl pe | | n | n g Compiler-controlled + + 3 Needs nonblocking cache:
prefetching possible instruction overhead:

in many CPUs




