Memory Hierarchy

Memory
i o

Disk

Computing Systems & Performance

uononpo.|

5.
AN

CPU

memory

MSc Informatics Eng.

Register Level 1 Level 2 Level 3 Memory reference
reference Cache Cache Cache reference
reference reference reference
Size: 1000 bytes 64 KB 256 KB 2-4MB 4-16 GB 4-16TB
Speed: 300 ps 1ns 3-10ns 10-20ns 50-100 ns 5-10 ms
20 1 1 /1 2 (a) Memory hierarchy for server
A.J.Proencga Memory
o bus Memo Storage |
K \ K
L L FLASH
" memory
Register Level 1 Level 2 Memory
reference Cache Cache reference reference
reference reference
H Size: 500 bytes 64 KB 256 KB 256-512MB 4-8GB
Memory HlerarChy Speed: 500 ps 2ns 10-20ns 50-100 ns 25-50 us

(b) Memory hierarchy for a personal mobile device

(most slides are borrowed)

AJProenga, Computer Systems & Performance, MEI, UMinho, 2011/12

Memory Hierarchy Design Memory Hierarchy Basics

=
=
o
a
=
o
=
o
S

uononposu|

= Memory hierarchy design becomes more crucial = When a word is not found in the cache, a miss

with recent multi-core processors: OCCurs:
= Aggregate peak bandwidth grows with # cores: = Fetch word from lower level in hierarchy, requiring a

= Intel Core i7 can generate two references per core per clock higher latency reference
= Four cores and 3.2 GHz clock = Lower level may be another cache or the main

= 25.6 *10° 64-bit data references/second + memory
= 12.8 *10°128-bit instruction references = Also fetch the other words contained within the block
= =409.6 GB/S_! . . . = Takes advantage of spatial locality

. DRAM bandwidth is only 6% of this (25 GB/s) = Place block into cache in any location within its set,

= Requires: determined by address

= block address MOD number of sets

= Multi-port, pipelined caches
= Two levels of cache per core
= Shared third-level cache on chip

Memory Hierarchy Basics

» n sets => n-way set associative
» Direct-mapped cache => one block per set
s Fully associative => one set

= Writing to cache: two strategies

= Write-through
= Immediately update lower levels of hierarchy

s Write-back

= Only update lower levels of hierarchy when an updated block

is replaced
= Both strategies use write buffer to make writes
asynchronous

uononpo.|

Memory Hierarchy Basics

uononpo.|

= Miss rate
= Fraction of cache access that result in a miss

s Causes of misses

= Compulsory
= First reference to a block
= Capacity
= Blocks discarded and later retrieved
= Conflict
= Program makes repeated references to multiple addresses

from different blocks that map to the same location in the
cache

Memory Hierarchy Basics

CPU

exec-time (CPUclock—cycles + Memstall—cycles) x Clock cycle time

Memgg; ycies = IC * Misses/ Instruction x Miss Penalty

Misses Miss rate X Memory accesses . Memory accesses
= = Miss rate X —————

Instruction Instruction count Instruction

= Note1: miss rate/penalty are often different for reads and
writes

Average memory access time = Hit time + Miss rate X Miss penalty

= Note2: speculative and multithreaded processors may
execute other instructions during a miss
= Reduces performance impact of misses

uononposu|

Cache Performance Example

Given

« |-cache miss rate = 2%

« D-cache miss rate = 4%

= Miss penalty = 100 cycles

= Base CPI (ideal cache) = 2

« Load & stores are 36% of instructions
Miss cycles per instruction

« |I-cache: 0.02 x 100 = 2

« D-cache: 0.36 x 0.04 x 100 = 1.44
Actual CPI=2+2+1.44=5.44

= ldeal CPU is 5.44/2 =2.72 times faster

‘) \ J Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 8

| Multilevel Caches

‘ Primary cache attached to CPU
Small, but fast

Level-2 cache services misses from
primary cache

Larger, slower, but still faster than main
memory

Main memory services L-2 cache misses
Some high-end systems include L-3 cache

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 9

| Example (cont.)

‘ Now add L-2 cache

Access time = 5ns

Global miss rate to main memory = 0.5%
Primary miss with L-2 hit

Penalty = 5ns/0.25ns = 20 cycles
Primary miss with L-2 miss

Extra penalty = 500 cycles
CPI=1+0.02x20+0.005%x400=34
Performance ratio = 9/3.4 = 2.6

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 11

| Multilevel Cache Example

l Given
CPU base CPI =1, clock rate = 4GHz
Miss rate/instruction = 2%
Main memory access time = 100ns
With just primary cache
Miss penalty = 100ns/0.25ns = 400 cycles
Effective CPI =1+ 0.02 x 400 =9

Now add L-2 cache ...

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 10

| Memory Hierarchy Basics

uononpo.U|

= Six basic cache optimizations:

= Larger block size
=« Reduces compulsory misses
= Increases capacity and conflict misses, increases miss penalty
= Larger total cache capacity to reduce miss rate
= Increases hit time, increases power consumption
= Higher associativity
= Reduces conflict misses
= Increases hit time, increases power consumption
= Multilevel caches to reduce miss penalty
= Reduces overall memory access time
= Giving priority to read misses over writes
=« Reduces miss penalty
= Avoiding address translation in cache indexing
= Reduces hit time

3-Level Cache Organization

Multilevel On-Chip Caches

Intel Nehalem AMD Opteron X4
Intel Nehalem 4-core processor

L1 caches |L1 I-cache: 32KB, 64-byte L1 I-cache: 32KB, 64-byte
(per core) blocks, 4-way, approx LRU blocks, 2-way, LRU

replacement, hit time n/a replacement, hit time 3 cycles

L1 D-cache: 32KB, 64-byte L1 D-cache: 32KB, 64-byte g

blocks, 8-way, approx LRU blocks, 2-way, LRU £

replacement, write-back/ replacement, write-back/ é

allocate, hit time n/a allocate, hit time 9 cycles ¥
L2 unified 256KB, 64-byte blocks, 8-way, | 512KB, 64-byte blocks, 16-way, é’
cache approx LRU replacement, write- | approx LRU replacement, write-
(per core) back/allocate, hit time n/a back/allocate, hit time n/a
L3unified | 8MB, 64-byte blocks, 16-way, | 2MB, 64-byte blocks, 32-way, : 2 S
cache replacement n/a, write-back/ replace block shared by fewest = M"B' e o o S:M()Bf ia
(shared) allocate, hit time n/a cores, write-back/allocate, hit |ecache S Hcather IS [cache

time 32 cycles = - el L LI

n/a: data not available
Per core: 32KB L1 |-cache, 32KB L1 D-cache, 512KB L2 cache

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 13 7

1. Small and simple 1st level caches

Ten Advanced Optimizations |

= Small and simple first level caches

= Critical timing path:
= addressing tag memory, then
= comparing tags, then
= selecting correct set
= Direct-mapped caches can overlap tag compare and
transmission of data
= Lower associativity reduces power because fewer
cache lines are accessed

= Reducing the hit time
= small & simple first-level caches
= way-prediction
Increase cache bandwidth
= pipelined cache access
= nonblocking caches
= multibanked caches

Reducing the miss penalty
= critical word first
= merging write buffers
= Reducing the miss rate
= compiler optimizations
Reducing the miss penalty or miss rate via parallelism
= hardware prefetching of instructions and data
= compiler-controlled prefetching

suoneziwndQ pasueApy

AJProenga, Computer Systems & Performance, MEI, UMinho, 2011/12 15

. PP > . PP >
| L1 Size and Associativity 3 | L1 Size and Associativity 3
=J >
| 4 | 3
900+ m 1-way o 2-wa 057 -way -wa)
g g
800 5 : =
%’ 0.4 %
g 7007) 3 2
E g 3. 0.351 g
§ 600 - 7 ° 7
2 g 034
5 500 c
g- 3 0.25
2 0 g 02
% 8007 % 0.15
2 2004 E 0.1
100 0.05
16KB 32KB 64 KB 128 KB 256 KB o 16 KB 32 KB 64 KB 128 KB 256 KB
Cache size Cache size
Access time vs. size and associativity Energy per read vs. size and associativity

| 3. Pipelining Cache

| 2. way Prediction

= Pipeline cache access to improve bandwidth

= Examples:
= Pentium: 1 cycle
= Pentium Pro — Pentium Ill: 2 cycles
= Pentium 4 — Core i7: 4 cycles

= To improve hit time, predict the way to pre-set
mux
= Mis-prediction gives longer hit time
= Prediction accuracy
= > 90% for two-way
= > 80% for four-way
= |-cache has better accuracy than D-cache

s First used on MIPS R10000 in mid-90s
= Used on ARM Cortex-A8
= Extend to predict block as well
= “Way selection”
= Increases mis-prediction penalty

suoieziwndQ pasueApy
suoneziwndo pasueApy

= Increases branch mis-prediction penalty
» Makes it easier to increase associativity

4. Nonblocking Caches

= Allow hits before N e
previous misses o0 i N T o mies |
complete oo # ¥

= “Hit under miss” 2 0% H/'*:J/

= “Hit under multiple 2 o -

miss” g 50% A"(‘/y\l Q.‘*\‘___\

= L2 must SUpport this ’6: 0% M\ / \/\/_/\
= In general, £ oo i =

processors can hide 20% o .

L1 miss penalty but 0%

not L2 miss penalty v§@$§*%§§“fv§’ﬁ 7 SR

N4 &

6. Critical Word First, Early Restart

» Critical word first

= Request missed word from memory first

= Send it to the processor as soon as it arrives
» Early restart

= Request words in normal order

= Send missed work to the processor as soon as it
arrives

» Effectiveness of these strategies depends on
block size and likelihood of another access to
the portion of the block that has not yet been
fetched

suoneziwndQ pasueApy

suoieziwndQ pasueApy

5. Multibanked Caches

= Organize cache as independent banks to
support simultaneous access
= ARM Cortex-A8 supports 1-4 banks for L2
= Intel i7 supports 4 banks for L1 and 8 banks for L2

» Interleave banks according to block address

Block

Block

address Bank 0
0

Block
address Bank 1
1

address Bank 2
2

Block
address Bank 3
3

4

5

6

7

8

9

10

"

12

13

14

15

Figure 2.6 Four-way interleaved cache banks using block addressing. Assuming 64
bytes per blocks, each of these addresses would be multiplied by 64 to get byte
addressing.

| 7. Merging Write Buffer

= When storing to a block that is already pending in the
write buffer, update write buffer

= Reduces stalls due to full write buffer
= Do not apply to I/O addresses

Write address v v \ \
100 1 | Mem[100] | 0 0 0
[108 | 1 | Mem[108] | 0 0 0
W 1 | Mem[116] | 0 [0
[ves [+ | memirea] o 0 0
T

Write address V v \ \
100 1 | Mem[100] | 1 | Mem[108] | 1 | Mem[116] [1 | Mem[124]
] 0 0 0 0
] 0 0 0 0
] 0 0 0 0
“—

No write
buffering

Write buffering

suoneziwndQ paoueApy

suoneziwndo pasueApy

| 8. Compiler Optimizations : | 9. Hardware Prefetching z
| i i
= Loop Interchange g = Fetch two blocks on miss (include next g
= Swap nested loops to access memory in = sequential block) 3
sequential order §' 220 %’
@ 2.00 4 1.97 @
= Blocking N
» Instead of accessing entire rows or columns, 2 '
subdivide matrices into blocks é e » 2
= Requires more memory accesses but improves g e = W
locality of accesses o) 110 e 120 121
10 gap mcf fam3d wupwise galgel facerec swim applu lucas mgrid equake
SPECint2000 SPEC1p2000

Pentium 4 Pre-fetching

10.C iler Prefetchin g g
mpltier rFr 2 2
| - Lompiléer Freretching 5 Summary 5
3 3
I 8 Hit Band- Miss Miss Power Hardware cost/ o
. . . Technique time width penalty rate consumption complexity Comment
» Insert prefetch instructions before data is 2 . —— =
= Small and simple + - + 0 Trivial; widely used =
need ed 3 caches 3
. N Way-predicting caches + + 1 Used in Pentium 4 N
. ’ Q)
= Non-faulting: prefetch doesn’t cause = Pipelined cache access ¥ T Wadely wsed =
exce pt| ons 7 Nonblocking caches ¥ + 3 Widely used 2
Banked caches + + 1 Used in L2 of both i7 and
Cortex-A8
. Critical word first + 2 Widely used
» Register prefetch and carly restart
. . Merging write buffer + 1 Widely used with write
» Loads data into register through
Compiler techniques to + 0 Software is a challenge, but
| | Ca Ch e p refetch reduce cache misses many compilers handle
. common linear algebra
» Loads data into cache calenlations
Hardware prefetching + + - 2 instr., Most provide prefetch
of instructions and data 3 data instructions; modern high-
. . . end processors also .
= Combine with loop unrolling and software automatially prefetch in
pl pe | | n | n g Compiler-controlled + + 3 Needs nonblocking cache:
prefetching possible instruction overhead:

in many CPUs

