
AJProença, Computer Systems & Performance, MEI, UMinho, 2011/12 1

Computing Systems & Performance

MSc Informatics Eng.

2011/12

A.J.Proença

Memory Hierarchy
(most slides are borrowed)

2 Copyright © 2012, Elsevier Inc. All rights reserved.

Memory Hierarchy
Introduction

3 Copyright © 2012, Elsevier Inc. All rights reserved.

Memory Hierarchy Design
!  Memory hierarchy design becomes more crucial

with recent multi-core processors:
!  Aggregate peak bandwidth grows with # cores:

!  Intel Core i7 can generate two references per core per clock
!  Four cores and 3.2 GHz clock

!  25.6 *109 64-bit data references/second +
!  12.8 *109 128-bit instruction references
!  = 409.6 GB/s!

!  DRAM bandwidth is only 6% of this (25 GB/s)
!  Requires:

!  Multi-port, pipelined caches
!  Two levels of cache per core
!  Shared third-level cache on chip

Introduction

4 Copyright © 2012, Elsevier Inc. All rights reserved.

Memory Hierarchy Basics
!  When a word is not found in the cache, a miss

occurs:
!  Fetch word from lower level in hierarchy, requiring a

higher latency reference
!  Lower level may be another cache or the main

memory
!  Also fetch the other words contained within the block

!  Takes advantage of spatial locality
!  Place block into cache in any location within its set,

determined by address
!  block address MOD number of sets

Introduction

5 Copyright © 2012, Elsevier Inc. All rights reserved.

Memory Hierarchy Basics
!  n sets => n-way set associative

!  Direct-mapped cache => one block per set
!  Fully associative => one set

!  Writing to cache: two strategies
!  Write-through

!  Immediately update lower levels of hierarchy
!  Write-back

!  Only update lower levels of hierarchy when an updated block
is replaced

!  Both strategies use write buffer to make writes
asynchronous

Introduction

6 Copyright © 2012, Elsevier Inc. All rights reserved.

Memory Hierarchy Basics
!  Miss rate

!  Fraction of cache access that result in a miss

!  Causes of misses
!  Compulsory

!  First reference to a block
!  Capacity

!  Blocks discarded and later retrieved
!  Conflict

!  Program makes repeated references to multiple addresses
from different blocks that map to the same location in the
cache

Introduction

7

!  Note2: speculative and multithreaded processors may
execute other instructions during a miss
!  Reduces performance impact of misses

Copyright © 2012, Elsevier Inc. All rights reserved.

Memory Hierarchy Basics

Introduction CPUexec-time = (CPUclock-cycles + Memstall-cycles) ! Clock cycle time

Memstall-cycles = IC ! Misses ⁄ Instruction ! Miss Penalty

!  Note1: miss rate/penalty are often different for reads and
writes

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 8

Cache Performance Example
!  Given

!  I-cache miss rate = 2%
!  D-cache miss rate = 4%
!  Miss penalty = 100 cycles
!  Base CPI (ideal cache) = 2
!  Load & stores are 36% of instructions

!  Miss cycles per instruction
!  I-cache: 0.02 ! 100 = 2
!  D-cache: 0.36 ! 0.04 ! 100 = 1.44

!  Actual CPI = 2 + 2 + 1.44 = 5.44
!  Ideal CPU is 5.44/2 =2.72 times faster

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 9

Multilevel Caches
!  Primary cache attached to CPU

!  Small, but fast
!  Level-2 cache services misses from

primary cache
!  Larger, slower, but still faster than main

memory
!  Main memory services L-2 cache misses
!  Some high-end systems include L-3 cache

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 10

Multilevel Cache Example
!  Given

!  CPU base CPI = 1, clock rate = 4GHz
!  Miss rate/instruction = 2%
!  Main memory access time = 100ns

!  With just primary cache
!  Miss penalty = 100ns/0.25ns = 400 cycles
!  Effective CPI = 1 + 0.02 ! 400 = 9

!  Now add L-2 cache …

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 11

Example (cont.)
!  Now add L-2 cache

!  Access time = 5ns
!  Global miss rate to main memory = 0.5%

!  Primary miss with L-2 hit
!  Penalty = 5ns/0.25ns = 20 cycles

!  Primary miss with L-2 miss
!  Extra penalty = 500 cycles

!  CPI = 1 + 0.02 ! 20 + 0.005 ! 400 = 3.4
!  Performance ratio = 9/3.4 = 2.6

12 Copyright © 2012, Elsevier Inc. All rights reserved.

Memory Hierarchy Basics
!  Six basic cache optimizations:

!  Larger block size
!  Reduces compulsory misses
!  Increases capacity and conflict misses, increases miss penalty

!  Larger total cache capacity to reduce miss rate
!  Increases hit time, increases power consumption

!  Higher associativity
!  Reduces conflict misses
!  Increases hit time, increases power consumption

!  Multilevel caches to reduce miss penalty
!  Reduces overall memory access time

!  Giving priority to read misses over writes
!  Reduces miss penalty

!  Avoiding address translation in cache indexing
!  Reduces hit time

Introduction

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 13

3-Level Cache Organization
Intel Nehalem AMD Opteron X4

L1 caches
(per core)

L1 I-cache: 32KB, 64-byte
blocks, 4-way, approx LRU
replacement, hit time n/a
L1 D-cache: 32KB, 64-byte
blocks, 8-way, approx LRU
replacement, write-back/
allocate, hit time n/a

L1 I-cache: 32KB, 64-byte
blocks, 2-way, LRU
replacement, hit time 3 cycles
L1 D-cache: 32KB, 64-byte
blocks, 2-way, LRU
replacement, write-back/
allocate, hit time 9 cycles

L2 unified
cache
(per core)

256KB, 64-byte blocks, 8-way,
approx LRU replacement, write-
back/allocate, hit time n/a

512KB, 64-byte blocks, 16-way,
approx LRU replacement, write-
back/allocate, hit time n/a

L3 unified
cache
(shared)

8MB, 64-byte blocks, 16-way,
replacement n/a, write-back/
allocate, hit time n/a

2MB, 64-byte blocks, 32-way,
replace block shared by fewest
cores, write-back/allocate, hit
time 32 cycles

n/a: data not available

Multilevel On-Chip Caches

Intel Nehalem 4-core processor

Per core: 32KB L1 I-cache, 32KB L1 D-cache, 512KB L2 cache

AJProença, Computer Systems & Performance, MEI, UMinho, 2011/12 15

Ten Advanced Optimizations

!  Reducing the hit time
!  small & simple first-level caches
!  way-prediction

!  Increase cache bandwidth
!  pipelined cache access
!  nonblocking caches
!  multibanked caches

!  Reducing the miss penalty
!  critical word first
!  merging write buffers

!  Reducing the miss rate
!  compiler optimizations

!  Reducing the miss penalty or miss rate via parallelism
!  hardware prefetching of instructions and data
!  compiler-controlled prefetching

16 Copyright © 2012, Elsevier Inc. All rights reserved.

1. Small and simple 1st level caches

!  Small and simple first level caches
!  Critical timing path:

!  addressing tag memory, then
!  comparing tags, then
!  selecting correct set

!  Direct-mapped caches can overlap tag compare and
transmission of data

!  Lower associativity reduces power because fewer
cache lines are accessed

A
dvanced O

ptim
izations

17 Copyright © 2012, Elsevier Inc. All rights reserved.

L1 Size and Associativity

Access time vs. size and associativity

A
dvanced O

ptim
izations

18 Copyright © 2012, Elsevier Inc. All rights reserved.

L1 Size and Associativity

Energy per read vs. size and associativity

A
dvanced O

ptim
izations

19 Copyright © 2012, Elsevier Inc. All rights reserved.

2. Way Prediction

!  To improve hit time, predict the way to pre-set
mux
!  Mis-prediction gives longer hit time
!  Prediction accuracy

!  > 90% for two-way
!  > 80% for four-way
!  I-cache has better accuracy than D-cache

!  First used on MIPS R10000 in mid-90s
!  Used on ARM Cortex-A8

!  Extend to predict block as well
!  “Way selection”
!  Increases mis-prediction penalty

A
dvanced O

ptim
izations

20 Copyright © 2012, Elsevier Inc. All rights reserved.

3. Pipelining Cache

!  Pipeline cache access to improve bandwidth
!  Examples:

!  Pentium: 1 cycle
!  Pentium Pro – Pentium III: 2 cycles
!  Pentium 4 – Core i7: 4 cycles

!  Increases branch mis-prediction penalty
!  Makes it easier to increase associativity

A
dvanced O

ptim
izations

21 Copyright © 2012, Elsevier Inc. All rights reserved.

4. Nonblocking Caches

!  Allow hits before
previous misses
complete
!  “Hit under miss”
!  “Hit under multiple

miss”
!  L2 must support this
!  In general,

processors can hide
L1 miss penalty but
not L2 miss penalty

A
dvanced O

ptim
izations

22 Copyright © 2012, Elsevier Inc. All rights reserved.

5. Multibanked Caches

!  Organize cache as independent banks to
support simultaneous access
!  ARM Cortex-A8 supports 1-4 banks for L2
!  Intel i7 supports 4 banks for L1 and 8 banks for L2

!  Interleave banks according to block address

A
dvanced O

ptim
izations

23 Copyright © 2012, Elsevier Inc. All rights reserved.

6. Critical Word First, Early Restart

!  Critical word first
!  Request missed word from memory first
!  Send it to the processor as soon as it arrives

!  Early restart
!  Request words in normal order
!  Send missed work to the processor as soon as it

arrives

!  Effectiveness of these strategies depends on
block size and likelihood of another access to
the portion of the block that has not yet been
fetched

A
dvanced O

ptim
izations

24 Copyright © 2012, Elsevier Inc. All rights reserved.

7. Merging Write Buffer

!  When storing to a block that is already pending in the
write buffer, update write buffer

!  Reduces stalls due to full write buffer
!  Do not apply to I/O addresses

A
dvanced O

ptim
izations

No write
buffering

Write buffering

25 Copyright © 2012, Elsevier Inc. All rights reserved.

8. Compiler Optimizations

!  Loop Interchange
!  Swap nested loops to access memory in

sequential order

!  Blocking
!  Instead of accessing entire rows or columns,

subdivide matrices into blocks
!  Requires more memory accesses but improves

locality of accesses

A
dvanced O

ptim
izations

26 Copyright © 2012, Elsevier Inc. All rights reserved.

9. Hardware Prefetching

!  Fetch two blocks on miss (include next
sequential block)

A
dvanced O

ptim
izations

Pentium 4 Pre-fetching

27 Copyright © 2012, Elsevier Inc. All rights reserved.

10. Compiler Prefetching

!  Insert prefetch instructions before data is
needed

!  Non-faulting: prefetch doesn’t cause
exceptions

!  Register prefetch
!  Loads data into register

!  Cache prefetch
!  Loads data into cache

!  Combine with loop unrolling and software
pipelining

A
dvanced O

ptim
izations

28 Copyright © 2012, Elsevier Inc. All rights reserved.

Summary

A
dvanced O

ptim
izations

