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1 – Introduction 
 Materials manifests properties that can be investigated over a wide range of length 
scales: 

Pantelides, S.T., (1994), "Frontiers in computational materials science", Comput. Mater. Sci., 2, 149-155. 

Quantum mechanical methods 

Classical and quantum 
molecular dynamics 

Continuum theoretical 
methods 

Generalised Monte-Carlo 
methods 

Computational techniques 

Microscopic (< 1nm) 

Macroscopic (> 1mm) 

Mesoscopic (1nm – 1mm) 

Describe the regime of discrete 
atoms 

Describe the regime where the 
internal structure of the material is 

suppressed entirely 

Describe the whole range of 
intermediate length scales between 
microscopic and macroscopic scales 

Scales 

1 – Introduction 

!  Atomic-scale calculations, such as quantum molecular dynamics (working for systems with 
thousand of atoms – length scale " 5nm; time scale " ps) and classical molecular dynamics 
(working for systems with hundred million of atoms – length scale " 100nm; time scale " ns) 
describe the properties of local regions. 

!  The properties of nanocomposites, especially electrical and mechanical, are determined by 
the collective properties of the mesoscopic structure. 

!   Generalised Monte-Carlo methods, with input parameters obtained by atomic-scale 
calculations, can provide the collective properties of the mesoscopic structure at time 
mesoscopic structure at time scales that many processes in nanocomposites occur. 

!   By suitable statistical averaging of the mesoscopic properties, one can obtain the 
fundamental laws of continuum theories without any empirical postulates whatever. 

!  We advocate a systematic link from microscopic theories through the mesoscopic regime to 
the macroscopic continuum. Such an approach can form the basis for a first-principles theory 
of electrical and mechanical properties of nanocomposites. 



!  The starting point of any theoretical description of the electronic structure of molecular 
systems is the time-dependent Schrödinger equation. 

!  When the time-dependent inter-particle interactions can be neglected, we can use the 
time-independent Schrödinger equation. 

!  According to quantum mechanics the complete description of the movement of N electrons 
and M nuclei of a system requires the solution of the Schrödinger equation: 

where 
Hamiltonian of the system 

Wave function of the system in a state with energy E 

Electrons coordinates 

Nuclei coordinates 

(1) 

The Schrödinger equation (1) can not be solved without using several 
approximations.  

2.1 – The Schrödinger equation of molecular systems 
2 – Computational quantum mechanical techniques 

2.2.1 – Non-relativistic Hamiltonian 

Neglecting all the relativistic effects (such as spin-orbital and spin-spin interactions), the non-
relativistic Hamiltonian of the  system (in SI units) is given by: 

kinetic energy operator for nuclei 

kinetic energy operator for electrons 

potential energy operator for  electronic replusions 

potential energy operator for nuclear- electronic attractions 

potential energy operator for nuclear repulsions 

position vector, mass e charge of nucleus A 

 position vector, mass and charge of electron i 

(2) 

where 

2 – Computational quantum mechanical techniques 
2.2 – The basic approximations 



(3) 

!  This approximation is based on the fact that MA>>me and, for this reason, electrons move 
much faster than the nuclei. Therefore, the electronic density distribution will be able to adjust 
almost instantaneously to any nuclear motion. 

!  According to the Born-Oppenheimer approximation we can  solve the Schrödinger equation 
for the electrons and consider the nuclei fixed in their mean positions. After the electronic 
problem has been solved, it is possible to consider the motion of the nuclei under the same 
approximation. 

!  Within this approximation, the electronic Hamiltonian (in atomic units) can be written as: 

where 

2 – Computational quantum mechanical techniques 
2.2 – The basic approximations 

2.2.2 – The Born-Oppenheimer approximation 

(4) 

!  Within the Born-Oppenheimer approximation, the electronic wave function of the system, 
for a certain geometric configuration of the nuclei, satisfies the Schrödinger equation 
involving the electronic Hamiltonian 

where 

!  In calculating the internal energy of the system for stationary nuclei we need to add the 
nuclear repulsion energy to the electronic energy: 

(5) 

2 – Computational quantum mechanical techniques 
2.2 – The basic approximations 

2.2.2 – The Born-Oppenheimer approximation 



Each electron is moving in the potential of the nuclei and the average potential of 
the other electrons. 

According to this approximation, the one-electron wave function, called spin-orbital, is 
given by 

Aditional approximations in the electronic calculations: 
Independent-electron approximation: 

(6) 

Function of electron spatial coordinates 
Function of spin (   or     ) 

The simplest many-electron wave function that satisfies this requirement is the Slater  
determinant of  spin-orbitals 

Pauli exclusion principle 

(7) 

2 – Computational quantum mechanical techniques 
2.3 – Ab initio Molecular Orbital Theories (MO) 

2.3.1 – Obtained from the theory of Hartree-Fock (HF) 

(3) 
(7) 

The electronic energy of the system is given by 

Including equations (3) and (7) in equation (8), we obtain 

 Coulomb integral 
 exchange integral 

where 

and 

(8) 

(9) 

2 – Computational quantum mechanical techniques 
2.3 – Ab initio Molecular Orbital Theories (MO) 

2.3.1 – Obtained from the theory of Hartree-Fock (HF) 



"  In order to obtain the wave function     that minimize the electronic energy of the system, we 
need to use the variational principle  

"  To introduce variations in       , we have to change each spin-orbital,  

Lagrange’s multiplier 

"  We have to minimize the electronic energy with respect to the spin-orbitals                subject to 

the condition that they remained normalized                 . This problem can be solved using the 

Lagrange’s multiplier method and we obtain: 

(10) 

(11) 

2 – Computational quantum mechanical techniques 
2.3 – Ab initio Molecular Orbital Theories (MO) 

2.3.1 – Obtained from the theory of Hartree-Fock (HF) 

(9) (11) 

"  If we include equation (9) in equation (11), we obtain 

"  As         is an arbitrary quantity, then equation (12) leads to the Hartree-Fock equations 

Where the matrix elements associated to the Fock operator,    , are given by 

"  Since                          and comparing the equation (14) with the equation (9), we see that the 

electronic energy of the system can  be written as 

where 

(12) 

(13) 

(14) 

(15) 

2 – Computational quantum mechanical techniques 
2.3 – Ab initio Molecular Orbital Theories (MO) 

2.3.1 – Obtained from the theory of Hartree-Fock (HF) 



"  If we build the molecular orbitals      as a linear combination of the atomic orbitals      , we obtain 

"  The application  of the variational principle to the electronic function, where the molecular 

orbitals     are linear combination of atomic orbitals      and the coefficients are the variational 

parameters, leads to the following system of homogeneous equations  

where 

and 

(16) 

(17) 

2 – Computational quantum mechanical techniques 
2.3 – Ab initio Molecular Orbital Theories (MO) 

2.3.1 – Obtained from the theory of Hartree-Fock (HF) 

"  Since the Hartree-Fock equations are not linear, we have to use the iterative method to 

solve the equations (17) and calculate the coefficients      .  

"  Once we know the values of        and the corresponding density matrix       , the electronic 

energy of the system can be calculated by the expression 

(17) 

(18) 

2 – Computational quantum mechanical techniques 
2.3 – Ab initio Molecular Orbital Theories (MO) 

2.3.1 – Obtained from the theory of Hartree-Fock (HF) 



#  This approximation is based on the fact that the differential overlap                        is 

very small unless           and, consequently the integrals involving these overlaps are 

also very small. 

#  According to this approximation the two-electron integrals which depend on the overlap 

of charge distribution of different orbitals are neglected, so that: 

(29) 

These integrals can not be neglected because they will affect the ability of bonding 
between different atoms in the system. Therefore, these integrals are replaced by semi-
empirical parameters. 

para 

2 – Computational quantum mechanical techniques 
2.4 – Approximations involved in semi-empirical Molecular Orbital Theories 

2.4.1 – The zero-differential overlap approximation 

INPUT: Starting geometry of the molecular system 

Classical Molecular Dynamics (CMD) Quantum Molecular Dynamics (QMD) 

Choose the parameterized 
potential 

Choose the quantum mechanical 
method to be used 

Calculate the internal 
energy 

Solve the Schrodinger 
equation and calculate the 

internal energy with or 
without an applied electric 

and/or force field 

Move the atoms 
during 1fs according 
to Newton equation 

Calculate the atomic forces 

OUTPUT: Internal energy and 
atomic positions at each time-

step 
OUTPUT: Internal energy and atomic positions and 

charges at each time-step, the electronic 
structure and wave function, the dipole moment 

3 – Dynamical relaxation techniques 
3.1 – Quantum and classical molecular dynamics methods 



Ramos, M.M.D., (2002), "Theoretical study of metal-polyimide interfacial properties", Vacuum, 64, 255-260. 
Ramos, M.M.D., Stoneham, A.M., Sutton, A.P., (1993), "Aluminum Polyimide Adhesion", Acta Metall. Mater., 41, 
2105-2111. 

Effects of CNDO parametrization in the results obtained for Al 

Experimental results: 
The deposition of metal atoms on PMDA-ODA substrates 
revealed changes in XPS  and HREELS line profiles 
associated with the carbonyl group of polyimide, which 
were attributed to metal bonding at carbonyl site.  

System studied: 

Results obtained: 

+ # Cu 

$ # Cr 

O # Al 

% # Ni 

O # Semi-empirical 
application of HF 

$ # Semi-empirical 
application of DFT 

3 – Dynamical relaxation techniques 
3.1 – Quantum and classical molecular dynamics methods 

3.1.1 – Examples of application of QMD: adhesion between metals and polymers 

Ramos, M.M.D., Correia, H.M.G., Lanceros-Mendez, S., (2005), "Atomistic modelling of processes involved in poling 
of PVDF", Comput. Mater. Sci., 33, 230-236. 

Induced by: e 

Strands of PVDF with 
inverted monomers 

X 

Z 

Y 

3 – Dynamical relaxation techniques 
3.1 – Quantum and classical molecular dynamics methods 

3.1.1 – Examples of application of QMD: Transformation of !-PVDF in "-PVDF 



Charge density map for liquid silicon 
at four different times.   

Chelikowsky, J.R., Binggeli, N., (1994), "Doing materials science with a supercomputer: on the road to 1000 atom 
systems", Comput. Mater. Sci., 2, 111-126. 

3 – Dynamical relaxation techniques 
3.1 – Quantum and classical molecular dynamics methods 

3.1.1 – Examples of application of QMD: the effect of temperature on charge density 
distribution 

Charge density map for crystalline silicon. 
This map correspond to a (110) plane in 
the 64-atom simulation cell. The charge is 
normalized to 256 electrons in the unit 
cell. The atoms are shown by the black 
dots. 

Noy, A., Park, H.G., Fornasiero, F., Holt, J.K., Grigoropoulos, C.P., Bakajin, O., (2007), "Nanofluidics in carbon 
nanotubes", Nano Today, 2, 22-29. 

3 – Dynamical relaxation techniques 
3.1 – Quantum and classical molecular dynamics methods 

3.1.1 – Examples of application of CMD: simulations of ion and water transport in 
charged CNTs 

MD simulations of the ion transport in CNTs.  
(a)  Snapshot of water molecules and K+ ions in 

a negatively charged (5,5) CNT.  
(b)  (b) Snapshot of water molecules and Cl– 

ions in a positively charged (6,6) nanotube 

 MD simulations of water and 
proton transport in CNTs 



Vashishta, P., Kalia, R.K., de Leeuw, S.W., Greenwell, D.L., Nakano, A., Jin, W., Yu, J., Bi, L., Li, W., (1994), "Computer 
simulation of materials using parallel architectures", Comput. Mater. Sci., 2, 180-208. 

3 – Dynamical relaxation techniques 
3.1 – Quantum and classical molecular dynamics methods 

3.1.1 – Examples of application of CMD: time evolution of porous Silica glasses at 
different densities and temperatures 

(a) 2.2, (b) 1.6, (c) 0.8, (d) 0.4, (e) 0.2 and (f) 0.1g/cm3 prepared at 300K, and (g) 0.2 
and (h) 0.1g/cm3 prepared at 1000K. Lines represent SI–O bonds.  

4 – Monte Carlo modelling 

4 

 If you cannot do the direct dynamics, you can use statistical mechanics instead. 

You consider a macroscopic state as a collection of 
microscopic states that you could fluctuate in between 

The probability for each of these microscopic states is proportional to e–".Ei 

and "= 1 /kT. 

where the partition function Q is defined as the sum of the un-
normalized probality terms: 

The partition function Q is is hard to find since it implies we have to 
sum over all configurations. 



4 – Monte Carlo modelling 

4 

In general we can write the time evolution of the probability of finding a 
state using the “Master equation “, 

This is a restricted class of master equation as the configuration or probability 
at time t+1 only depends on the probability at time t. Processes of this type are 
called Markov systems. 

One way to fulfill this equation is to require detailed balance, i.e., the net 
probability flux between every pair of states in equilibrium is zero, 

4.1  – Monte Carlo modelling. Metropolis sampling. 



4.1  – Kinetic Monte Carlo modelling. 

In a MC simulation, we may count the simulation steps. However, the foundation 
of the method lies in equilibrium statistical physics. Once equilibrium is reached, 
time has no physical meaning.  

In order to address kinetics, i.e. to make a statement how fast a system reaches 
equilibrium, we need to go beyond that, and take into account for the role of time. 

To do that, we need to 
provide as input the rates of 
all relevant individual 
processes.  

The best way for getting 
values for the individual rates 
is by performing molecular 
dynamics simulations, 
possibly with first-principles 
electronic structure methods. 

4.1  – Kinetic Monte Carlo modelling. 

Flow chart for the process-type list algorithm. 



4.2 – Kinetic Monte Carlo modelling: a case study 
4.2.1 – Motivation: the effects of molecular arrangement and properties on the 
functioning of single-layer polymer-based devices 

Active Component  
(Semiconducting Polymer) 

Substrate 
Cathode (LiF/Al) 

Anode (ITO/PEDOT:PSS) 

Domains with Oriented Chains 

A B 

C 

D 

Polymer Morphology: 
  Limit Cases: A – Amorphous; B – Chain Packing; C – Chain Alignment; D – General Case 

4 

Experimental results: 

Mesoscopic 
modelling is needed 

Jain SC et al, “Conducting Organic Materials and Devices”, vol. , Academic Press (2007) . 
Dover D., “An Introduction to polymer physics”, Cambridge University Press (2002) 

4.2 – Electronic Processes Considered in the Mesoscopic Modelling of the case study 
(Polymer Diodes) 

EF 

EF 

E 

1. Charge Injection (Collection). 2. Intermolecular Charge Transport (Charge Hopping). 

3. Intramolecular Charge Transport. 4. Charge Recombination. 

#e 

#h 

Model Axis 

Barbosa, H.M.C., (2009), “Study the Factors That Influence the Eficiency of Organic Electronic Devices by 
Computational Simulation”, PhD thesis, Universidade do Minho, Braga, 2009. 

4.2 – Kinetic Monte Carlo modelling: a case study 



4.2.3 – Mesoscopic model of the polymer film 

The mesoscopic structure of the polymer film is 

built using a generalised Monte Carlo method, 

which creates the long polymer chains as a 

sequence of self-avoiding straight conjugated 

segments, taken from a Gaussian distribution 

of lengths, separated by kinks. 

Stoneham, A.M., Ramos, M.M.D., Almeida, A.M., Correia, H.M.G., Ribeiro, R.M., Ness, H., Fisher, A.J., (2002), 
"Understanding electron flow in conducting polymer films: injection, mobility, recombination and 
mesostructure", J. Phys.-Condes. Matter, 14, 9877-9898. 

4.2 – Kinetic Monte Carlo modelling: a case study 

4.2.4 – Mesoscopic model and simulation of charge injection and transport in the 
polymer film 

!  Charge (electron or hole) injection occurs by hopping from an electrode position, chosen 
randomly to the polymer strand monomer with the greatest hopping probability. 

!  After charge injection occurs, it moves along the polymer strand (intra-molecular charge 
transport) to the most energetically favourable position during the time given by 

where: 

 d - distance that the charge moves along the polymer strand 

 µ - charge mobility along the polymer strand 

 Ep - the strength of the local electric field along the molecular axis 

Pereira, A., Barbosa, H.M.C., Correia, H.M.G., Marques, L., Ramos, M.M.D., (2010), "Theoretical study of the 
influence of salt doping in the functioning of OLEDs", Journal of Materials Chemistry, 20, 9470-9475. 

4.2 – Kinetic Monte Carlo modelling: a case study 



4.2.4 – Mesoscopic model and simulation of charge injection and transport in the 
polymer film 

!  After the intra-molecular charge transport occurs, it can hop to a monomer in a neighbouring 
strand or to one of the electrodes. 

!  The hopping rates for charge injection/collection from/by the electrode and intermolecular charge 
transport  are given by  

wo – the attempt-to-jump frequency 
! – the angle between the electric force vector on the charge and the jumping vector 
Rij – the jumping distance between hopping site i and j 
Ro – minimum inter-strand distance given by the atomistic calculations 
KB - the Boltzmann constant 
T - the simulation temperature 
Eiij - energetic barrier that the charge has to overcome during the jump (taking into account the 
electron affinity and ionization potential given by the atomistic calculations and the effect of the 
local electric field) 

where: 

Pereira, A., Barbosa, H.M.C., Correia, H.M.G., Marques, L., Ramos, M.M.D., (2010), "Theoretical study of the 
influence of salt doping in the functioning of OLEDs", Journal of Materials Chemistry, 20, 9470-9475. 

4.2 – Kinetic Monte Carlo modelling: a case study 

4.4 – Mesoscopic model and simulation of charge injection and transport in the polymer 
film 

!  The hopping probability is defined by 

and for each charge the only hopping process that takes place is the one with the 
greatest hopping probability  if that probability is larger than 10-5. 

!  The time of occurrence of all charge hopping processes is given by 

where     is a random number uniformly distributed between 0 and 1. 

!  Charge recombination occurs whenever two charges of opposite sign meet on the same 
polymer strand if the local electric field does not prevent it.  

!  The electronic process with the smallest time of occurrence takes place at each computer 
iteration 

Pereira, A., Barbosa, H.M.C., Correia, H.M.G., Marques, L., Ramos, M.M.D., (2010), "Theoretical study of the 
influence of salt doping in the functioning of OLEDs", Journal of Materials Chemistry, 20, 9470-9475. 

4.2 – Kinetic Monte Carlo modelling: a case study 



5 – Particle methods for kinetic equations. 

Boltzmann transport equation . 

5.1 - Particle Simulation approach 

• Particle simulation techniques attempt to model 
many-body systems by solving the equations of 
motion of a set of particles . 

• Tracking particle trajectories enables us to explore 
physical effects which are inaccessible to other 
modeling techniques. 

• The method employs the fundamental equations 
without much approximation, allowing it to retain 
most of the physics. 



5.1 - Particle Simulation approach 

5.1 - Particle Simulation approach 
• The severe limitations: the number of arithmetic operations 
required in the force evaluation scales as Np2 . 

• In a 1D simulation the interaction between 2 particles requires 
approximately 10 floating point operations. 

• For a code running for Nt timesteps, the force evaluation 
requires roughly 10*Nt*Np2/2 floating point operations. 

• On one processor of a PentiumIV CPU, which has a clock 
speed of 0.25 nanoseconds, a 2000 time-step calculation using 
a modest 5x106 particles would last more than 13 days. 

• This approach is proper for a system with a small (<106) 
particle number. 

• Otherwise, we need to reduce the scaling of the operation 
count in the force evaluation below order Np2 . 



5.1 Particle Simulation approach 
• Tree Code – the key idea is to replace the particle–particle 
interactions by particle–cluster interactions. The scaling of the 
operation count in the force evaluation below order Np ln Np. 

Refer to : J. Barnes and P. Hut, “A hierarchical O(N logN) force-calculation algorithm,” 
Nature, vol. 324, pp. 446–449, 1986. 

• Particle-Mesh Technique – the key idea is to replace the particle–
particle interactions by particle–mesh interactions.  

A numerical mesh is added to more effectively compute the forces 
acting on particles. 

The force equation is replaced with an evaluation based on continuum 
representations of the charge density and electric field. (Cloud-in-Cell 
or Particle-in-Cell) 

Particle-In-Cell plus Monte Carlo: 
Full cycle, one time step  

Particle  In Cell with Monte Carlo collisions 



5.2 Particle In Cell 

For an electrostatic case, if $p!t ≦ 2, the leap frog scheme is 
stable. 

5.2 Particle In Cell 



5.2 – Particle In Cell 

5.2 - Particle In Cell 




