Computer aided design of thermoplastic profile forming tools

J. M. Nóbrega and O. S. Carneiro

《 × *I3N/IPC –Institute for Polymers and Composites Department of Polymer Engineering University of Minho Portugal*

mnobrega@dep.uminho.pt / olgasc@dep.uminho.pt

Introduction - Profile Extrusion

Introduction - Profile Extrusion

Outline

- Problem Statement
- Flow Distribution Optimisation
- Flow Balance Strategies
- Optimisation
- Length vs Thickness Optimisation
- Conclusion
- Calibrators
 - Problem Statement
 - System Behaviour
 - Optimisation Methodology
 - Case Study
 - Conclusion
- Conclusion
- Ongoing Work

Extrusion Dies – *Problem Statement*

Unbalanced

Balanced

~~

Extrusion run

Numerical Velocity contours

Modification of the controllable geometrical parameters until the optimum is reached

Modification of the controllable geometrical parameters until the optimum is reached

Progressive mesh refinements

Á		

Cells along Thickness	Number of Cells	Time [h:m:s]
2	15 496	0:00:36
4	92 248	0:12:15
6	272 220	1:12:17
8	593 928	4:28:36
10	688 024	6:43:42

PIV / 2.4 GHz

Modification of the controllable geometrical parameters until the optimum is reached

Equations to Solve

Conservation of mass:

$$\frac{\partial \rho u_j}{\partial x_j} = 0$$

Conservation of linear momentum:

$$\frac{\partial \rho u_i}{\partial t} + \frac{\partial \rho u_j u_i}{\partial x_j} = -\frac{\partial p}{\partial x_i} + \frac{\partial \tau_{ij}}{\partial x_j}$$

Conservation of energy:

$$\frac{\partial \rho cT}{\partial t} + \frac{\partial \rho cu_i T}{\partial x_i} = \frac{\partial}{\partial x_i} \left(k \frac{\partial T}{\partial x_i} \right) + \tau_{ij} \frac{\partial u_i}{\partial x_j}$$

Constitutive equation (Gen. Newtonian):

$$\tau_{ij} = \eta\left(\dot{\gamma}\right) \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i}\right)$$

Modification of the controllable geometrical parameters until the optimum is reached

Equations to Solve

Conservation of mass:

$$\frac{\partial \rho u_j}{\partial x_j} = 0$$

Conservation of linear momentum:

$$\frac{\partial \rho u_i}{\partial t} + \frac{\partial \rho u_j u_i}{\partial x_j} = -\frac{\partial p}{\partial x_i} + \frac{\partial \tau_{ij}}{\partial x_j}$$

Conservation of energy:

$$\frac{\partial \rho cT}{\partial t} + \frac{\partial \rho cu_i T}{\partial x_i} = \frac{\partial}{\partial x_i} \left(k \frac{\partial T}{\partial x_i} \right) + \tau_{ij} \frac{\partial u_i}{\partial x_j}$$

Constitutive equation (viscoelastic):

$$\tau_{ij} + \lambda \left(\frac{\partial \tau_{ij}}{\partial t} + \frac{\partial \left(u_k \tau_{ij} \right)}{\partial x_k} \right) = \eta_p \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) + \lambda \left(\tau_{jk} \frac{\partial u_i}{\partial x_k} + \tau_{ik} \frac{\partial u_j}{\partial x_k} \right)$$

Modification of the controllable geometrical parameters until the optimum is reached

parameters until the optimum is reached

SIMPLEX Method (SM)

Experimental Method (EM)

Extrusion Dies – Flow Balance Strategies

《 子

~~

Initial flow channel dimensions

ES	1	2	3	4	5	6
t _i [mm]	2.0	2.5	2.5	3.0	2.0	4.0
L _i [mm]	30.0	37.5	37.5	45.0	30.0	60.0
L _i /t _i	15.0	15.0	15.0	15.0	15.0	15.0

Constitutive equation

$$\eta(\dot{\gamma}, T) = F(\dot{\gamma} \times H(T))H(T)$$

$$F(\dot{\gamma}) = \eta_{\infty} + \frac{\eta_0 - \eta_{\infty}}{\left(1 + (\lambda\dot{\gamma})^2\right)^{\frac{1-n}{2}}} \quad H(T) = \exp\left[\alpha\left(\frac{1}{T} - \frac{1}{T_{\alpha}}\right)\right]$$

Mesh

Operating and thermal boundary conditions

Flow rate	20 kg/h
Melt inlet temperature	230 °C
Outer die walls temperature	230 °C
Inner (mandrel) die walls	Adiabatic

《 木

DielNI – Initial trial

Optimizations performed

DieL – Length optimisation
DieT – Thickness optimisation
DieLS – Length optimisation + Flow separators

DieL

DieT

DieLS

DieIni

DieL

The factors considered can be divided in two different groups:

i) processing conditions: V, T_w
ii) melt rheological properties: n

The experiments (simulations) performed were defined by a statistics Taguchi technique, considering three levels for each factor

Extrusion Dies - Length vs Thickness Optimisation

~~

Extrusion Dies - Length vs Thickness Optimisation

Extrusion Dies - Length vs Thickness Optimisation

※ 字

Extrusion Die	ES1	ES2	ES3	ES4	ES5	ES6
DieINI	6.20	3.72	3.39	2.18	7.46	1.00
DieL	1.08	1.15	1.03	1.12	1.15	1.00
DieT	1.68	1.38	1.33	1.24	1.56	1.00

- Length control is difficult to apply in geometries with different flow restrictions and leads to dies with higher sensitivity to processing conditions than thickness control;
- Flow separators had a positive effect in the flow distribution but affect negatively in the die sensitivity;
- Thickness optimised dies produce extrudates that have higher propensity to distort.

Calibrators – *Problem Statement*

Calibrators - Pre-processor

~~

Calibrators – *Numerical boundary conditions*

Polymer

$$\frac{\partial}{\partial x} \left(k_p \frac{\partial T_p}{\partial x} \right) + \frac{\partial}{\partial y} \left(k_p \frac{\partial T_p}{\partial y} \right) + \frac{\partial}{\partial z} \left(k_p \frac{\partial T_p}{\partial z} \right) - \rho_p c_p \frac{\partial}{\partial z} \left(w T_p \right) = 0$$

Calibrator

$$\frac{\partial}{\partial x} \left(k_c \frac{\partial Tc}{\partial x} \right) + \frac{\partial}{\partial y} \left(k_c \frac{\partial T_c}{\partial y} \right) + \frac{\partial}{\partial z} \left(k_c \frac{\partial Tc}{\partial z} \right) = 0$$

Polymer-calibrator interface

Contact Resistance

$$k_{c} \left(\frac{\partial T_{c}}{\partial n} \right)_{\text{interface}} = -k_{p} \left(\frac{\partial T_{p}}{\partial n} \right)_{\text{interface}} = h_{i} \left(T_{p} - T_{c} \right)_{\text{interface}}$$

Calibrators - *Typical result*

3D Temperature field calculation (FVM)

Influence of boundary conditions, process and geometrical parameters on the system performance (in terms of average temperature and temperature uniformity)

Conclusion:

In general

Exceptions

米

~~

붉

~~

~

Influence of the cooling units and annealing zones lengths and cooling fluid temperature on the system performance

Influence of Length Distribution LCi and Dij

LCi	LC1	LC2	LC3	Dij	D12	D23
	[mm]	[mm]	[mm]		[mm]	[mm]
→	600	-	-		-	-
→	300	300	-	→	240	-
→	200	200	200	→	120	120
→	200	200	200	7	60	180
→	200	200	200		180	60
<u>></u>	300	200	100	→	120	120
	100	200	300	→	120	120
<u>></u>	300	200	100		180	60
<u>></u>	300	200	100	7	60	180
~	100	200	300		180	60
	100	200	300	7	60	180

 Σ LCi (600 mm), Σ D (240 mm) (system length = 850 mm)

LCi	LC1	LC2	LC3	Dij	D12	D23	I	$\overline{\overline{T}}$		_	$\sigma_{_T}$	
	[mm]	[mm]	[mm]		[mm]	[mm]		[°C]	[%]		[°C]	[%]
→	600	-	-		-	-		84.9	0.0%		16.6	0.0%
→	300	300	-	→	240	-		80.3	-5.5%		15.2	-8.6%
→	200	200	200	→	120	120		79.2	-6.7%		14.5	-12.6%
→	200	200	200	7	60	180		79.5	-6.4%		14.5	-13.1%
→	200	200	200		180	60		79.4	-6.5%		14.8	-10.8%
N	300	200	100	→	120	120		79.5	-6.4%		13.0	-22.1%
7	100	200	300	→	120	120		79.4	-6.5%		15.1	-9.3%
	300	200	100		180	60		79.6	-6.3%		13.8	-17.3%
N	300	200	100	7	60	180		79.9	-5.9%		12.6	-24.3%
71	100	200	300		180	60		7 9. 7	-6.1%		15.2	-8.4%
	100	200	300	7	60	180		79.5	-6.3%		15.1	-9.4%

 Σ LCi (600 mm), Σ D (240 mm) (system length = 850 mm)

~~

Influence of cooling fluid temperature TCi

10°C <= TCi <= 26°C

~~

	TCi	TC1 [°C]	TC2 [°C]	TC3 [°C]	[°C]	$\overline{T}_{[\%]}$	[°C]	• [%]
Die Calibrator 1	→	18	-	-	84.9	-	16.6	-
	→	18	18	18	79.2	-6.7%	14.5	-12.6%
	→	10	10	10	74.4	-12.3%	15.3	-8.2%
Die Calibrator 1 Calibrator 2 Calibrator 3	→	26	26	26	83.9	-1.1%	13.8	-17.0%
→ LCi + → Dii	2	26	18	10	78.0	-8.1%	16.0	-3.6%
	7	10	18	26	80.3	-5.4%	13.0	-21.7%
	→	18	18	18	79.9	-5.9%	12.6	-24.3%
Calibrator 3	→	10	10	10	75.2	-11.4%	13.2	-20.7%
Die Calibrator 1 Calibrator 2	→	26	26	26	84.6	-0.4%	12.0	-28.0%
<u> </u>	<u>></u>	26	18	10	80.2	-5.5%	14.1	-15.5%
	7	10	18	26	79.5	-6.3%	11.1	-33.1%

~~

10°C <= TCi <= 26°C

《 字

Calibrators - Optimisation Methodology

Calibrators - Optimisation Methodology

Temperature uniformity

$$\sigma_T = \sqrt{\frac{\sum_{i=1}^{n_f} (T_i - \overline{T})^2 A_i}{A_T}}$$

$$\overline{T} = \frac{\sum_{i=1}^{n_f} T_i A_i}{A_T}$$

$$F_{obj} = K \left| \overline{T} - T_{s} \right| + \boldsymbol{\sigma}_{T}$$

where:

$$\begin{cases} \overline{T} \le T_s \Longrightarrow K = 0\\ \overline{T} > T_s \Longrightarrow K = 1000 \end{cases}$$

Calibrators - Optimisation Methodology

Optimisation algorithm Non-linear SIMPLEX method

Restrictions:

- Number of calibration/cooling units <= 3
- Total calibration length (Σ LCi) <= 600 mm
- Total system length ($\Sigma LCi + \Sigma Dij + 10$) <= 850 mm
- Cooling Fluid Temperature TCi ∈ [10°C,26°C]

General conditions for the simulations

Processing conditions

 $v_p = 2 \text{ m/min}$ $T_m = 180 \text{ °C}$ $T_f = 18 \text{ °C}$ $T_s = 80 \text{ °C}$

<u>Materials Properties</u> $K_p = 0.18$ W/mK $K_c = 14$ W/mK $\rho_p = 1400$ kg/m³ $C_p = 1000$ J/kgK

Boundary conditions

Annealing zones: free convection and radiation Polymer-calibrator interface: contact resistance $(h_i = 425 \text{ W/m}^2\text{K})$

Geometry

%

TC1 = 10°C

Calibrator 2

 $TC2 = 26^{\circ}C$

Cooling systems with
 ascending cooling units lengths
 descending annealing zone lengths
 ascending cooling fluid temperatures
 seem to have the best performance.

- The developed optimisation methodologies both for extrusion dies and calibrators were able to improve automatically the system performance;
- The optimisation methodologies are under development;
- The employment of numerical analysis allows a deeper insight of the process.

- Implementation of the wall Slip and free-surface boundary conditions (L.L. Ferrás, PhD project);
- Development of unstructured numerical modelling code (N.D. Gonçalves, PhD project);
- Implementation of viscoelastic constitutive equations in an unstructured modelling code (S. Reddy, MSc Eurheo project);
- Prediction of thermal induced stresses in calibration in OpenFOAM (S. Reddy, Research Project);
- Development of high order interpolation schemes (B. Gubuz, FCT Research Project);

- Development of multiscale modelling approaches (S.T. Mould + S.P. Pereira, PhD Project);
- Development of SPH numerical modelling code (D.F. Cordeiro, PhD/Cooperation Project);
- Development of FSI methodologies for the design of extrusion dies in OpenFOAM (M.R. Moosavi, Postdoctoral project);
- Modelling the cooling stage in profile extrusion using OpenFOAM (R. Ananth, PhD project);

 Numerical code paralelization on GPU (S.P. Pereira, FCT Research Project);

~~

 Numerical code paralelization on GPU (S.P. Pereira, FCT Research Project);

A colouring scheme was used to avoid race conditions

 Numerical code paralelization on GPU (S.P. Pereira, FCT Research Project);

 Numerical code paralelization on GPU (S.P. Pereira, FCT Research Project);

Lid Driven Cavity Flow – Speed Up

