INCREASING THE REALISM OF MOLECULAR DYNAMICS SIMULATIONS: INCORPORATION OF FAST ELECTROSTATIC CALCULATIONS USING GPU DEVICES

NUNO MICAELO

Molecular Modelling and Simulation Lab, Minho University www.simulation.quimica.uminho.pt

Objective

- Increase de realism of molecular simulations (MS). How?
 - Include new physical models not yet present on the molecular modelling software.
 - We compromise the accuracy of our simulations due to the "poor" computational performance (algorithms/ hardware)
 - MS limitations:
 - Length of the simulations
 - System size

Molecular simulations. What is it?

□ Use of a physical model to simulate reality

Increasing the realism of MS with new physical models

- □ Simulations are far from being perfect
- New physical models can be incorporated in the simulations with a cost in computational time
- □ Tradeoffs:

Incorporation of pH effects in MS

- □ pH is a measure of the acidity/basicity of a medium
- Blood pH is 7.4. A slight change of pH can be fatal (many diseases are related to a change 0.5 pH units)
- □ pH effects are not included in simulations! Why?
 - Require the calculation of the electrostatic potential using the Poisson-Boltzmann (PB) equation.
 - The PB equation must be calculated hundreds to million of times in a typical MS simulation.

Incorporation of pH effects in MS

A prototype of MS simulations using pH effects have been developed and validated (Baptista, 2009).

How to overcome this computational problem. Challenges.

- Develop and implement and efficient resolution of the 3D Poisson-Boltzmann (PB) equation using GPU.
- □ Why calculate PB in GPU?
 - Massive matrix operations
 - Opportunity to develop parallel algorithms with local and shared memory paradigms
 - Literature have been focused on 2D problems. Ours is 3D (more data, more complex, more challenging).
 - Cooperative use of CPU and GPU

GPU 3D Poisson-Boltzmann applications

Application of PB equation in molecular modelling

studies:

🗖 pH

Protein stability

- Protein function
- Drug Design
- Drug properties
- Bioengineering

GPU 3D Poisson-Boltzmann applications

- Application of PB equation in molecular modelling studies:
 - 🗖 pH
 - Protein stability
 - Protein function
 - Drug Design
 - Drug properties
 - Bioengineering

GPU 3D Poisson-Boltzmann applications

Application of PB equation in molecular modelling

- studies:
- 🗖 pH
- Protein stability
- Protein function
- Drug Design
- Drug properties
- Bioengineering

GPU 3D Poisson-Boltzmann applications

□ Application of PB equation in molecular modelling

studies:

- 🗖 pH
- Protein stability
- Protein function
- Drug Design
- Drug properties
- Bioengineering

PB equation

- The electrostatic potential at position r is the result of the molecule atomic charges and solvent
- □ Poisson equation:

$$\nabla \cdot \varepsilon(\mathbf{r}) \nabla \phi(\mathbf{r}) = -4\pi \rho(\mathbf{r})$$

- $\Box \phi(r)$: potential at position **r**
- \Box ϵ (r): dielectric constant at position **r**
- $\square \rho(\mathbf{r})$: charge density at positon **r**

PB equation

The Poisson-Boltzmann equation includes the effect of ions in solution

 $\nabla \cdot \epsilon(\mathbf{r}) \nabla \phi(\mathbf{r}) = -4\pi \rho(\mathbf{r}) + \lambda(\mathbf{r}) \kappa^{-2} \phi(\mathbf{r})$

 $\kappa^{-2} = \epsilon \kappa^2 = \frac{8\pi e^2 N_a I}{k_{\rm B} T}$

 \Box λ (r): 1 if solvent, 0 if solute.

Electrostatic potential calculation using the Poisson equation (2D)

 \square Poisson equation solution for a Ω 2D space

 \square Uniform grid is used to discretize the Ω space into Ωh

Electrostatic potential calculation using the Poisson equation

- The Poisson equation can be solved using the successive over-relaxation (SOR) algorithm
- SOR is an iterative method for solving partial differential equations
- □ The Poisson equation has the general form of:

$$\frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} + \frac{\partial^2 \mathbf{u}}{\partial \mathbf{y}^2} + \frac{\partial^2 \mathbf{u}}{\partial \mathbf{z}^2} = -\frac{\rho}{\varepsilon}$$

Electrostatic potential calculation using the Poisson equation (2D)

 The approximation of the second-derivatives by the second-order central differences on Ωh leads to a set of n×n×n algebraic equations of the type:

$$\begin{aligned} u_{i,j-1} + u_{i,j+1} + u_{i-1,j} + u_{i+1,j} - 4u_{i,j1} &= h^2 f_{i,j} \\ \text{for } i,j,k &= 2,3, n-1 \\ \hline u: \text{ potential} \\ \hline h: \text{ grid spacing} \\ \hline f_{i,j} &= \rho_{i,j} / \epsilon_{i,j} \\ \hline n: \text{ grid size} \end{aligned}$$

Electrostatic potential calculation using the Poisson equation (2D)

- The SOR method generates a sequence of approximations u(k), k = 1,2,3, ... n to the solution until a convergence factor is satisfied or a maximum number of iterations is reached.
- The approximation u(k+1) at the (k+1) iteration is computed using the results u(k) obtained in the kth iteration and the most recent values at nodes (i-1,j) and (i,j-1), thus, for each (i,j) node and ω ≠ 0, is given by:

Electrostatic potential calculation using the Poisson equation (2D)

Electrostatic potential calculation using the Poisson equation (2D)

$$u_{i,j}^{(k+1)} = u_{i,j}^{(k)} + \frac{\omega}{4} \Big(u_{i,j-1}^{(k+1)} + u_{i,j+1}^{(k)} + u_{i-1,j}^{(k+1)} + u_{i+1,j}^{(k)} - 4u_{i,j}^{(k)} - h^2 f_{i,j} \Big)$$

- Where u at node (i,j) of (k+1)th iteration relies on the values of the four neighboring nodes, (i,j+1) and (i-1,j) of the previous kth iteration and, (i-1,j) and (i,j-1) recently calculated nodes of the current iteration
- \square Optimal values of ω lies in (0,2) and determines the speed of convergence

Electrostatic potential calculation using the Poisson equation (2D)

Parallel Red-Black ordering technique

Electrostatic potential calculation using the Poisson equation

Our problem is in 3D!
Massive data
Massive calculations

Electrostatic potential calculation using the Poisson equation

The red nodes are calculated in phase 1 and are given by:

$$\boldsymbol{u}_{i,j,z}^{(k+1)} = \boldsymbol{u}_{i,j,z}^{(k)} + \frac{\omega}{6} \Big(\boldsymbol{u}_{i,j-1,z}^{(k)} + \boldsymbol{u}_{i,j+1,z}^{(k)} + \boldsymbol{u}_{i-1,j,z}^{(k)} + \boldsymbol{u}_{i+1,j,z}^{(k)} + \boldsymbol{u}_{i,j,z-1}^{(k)} + \boldsymbol{u}_{i,j,z+1}^{(k)} - 6\boldsymbol{u}_{i,j,z}^{(k)} - h^3 \boldsymbol{f}_{i,j,z} \Big)$$

□ and in phase 2 the black nodes are given by:

 $\begin{aligned} & \underset{i,j,z}{\text{Previously calculated red nodes}} \\ u_{i,j,z}^{(k+1)} = u_{i,j,z}^{(k)} + \frac{\omega}{6} \Big(u_{i,j+1,z}^{(k+1)} + u_{i,j+1,z}^{(k+1)} + u_{i+1,j,z}^{(k+1)} + u_{i,j,z+1}^{(k+1)} + u_{i,j,z+1}^{(k+1)} - 6u_{i,j,z}^{(k)} - h^3 f_{i,j,z} \Big) \end{aligned}$

2D/3D-PB GPU Project

- Part 1. Develop and implement and efficient resolution of the 2D Poisson-Boltzmann (PB) equation using GPU
- □ Part 2. 3D Poisson-Boltzmann (PB) equation using GPU
- Opportunity to explore different types of parallelism/ scalability and optimization strategies of numeric algorithms.
- Research with high impact in the Molecular Modelling scientific community
- Incorporation in on-going projects at MMSG(UM) and MS(ITQB-UNL) labs

2D/3D-PB GPU Project

- Contact: micaelo@quimica.uminho.pt
- □ or Google: Nuno Micaelo
- www: nunomicaelo.com

Questions?