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Texas Instruments: Keystone DSP architecture
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Beyond Vector/SIMD architectures

» Vector/SIMD-extended architectures are hybrid approaches
— mix (super)scalar + vector op capabilities on a single device
— highly pipelined approach to reduce memory access penalty
— tightly-closed access to shared memory: lower latency

» Evolution of Vector/SIMD-extended architectures

— CPU cores with wider vectors and/or SIMD cores:
» DSP VLIW cores with vector capabilities: Texas Instruments
» PPC cores coupled with SIMD cores: Cell Broadband Engine
* ARM64 cores coupled with SIMD cores: project Denver/BSC (NVidia)
» upcoming x86 many-cores: Intel MIC, AMD FirePro...

— devices with no scalar processor: accelerator devices
» ISA-free architectures, code compiled to silica: FPGA
» CPU-cores + accel devices (disjoint physical memories) => PCI-Express
» focus on SIMT/SIMD to hide memory latency: GPU-type architecture
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Cell Broadband Engine (PpE)

¢ Heterogeneous multicore processor
* 1x Power Processor Element (PPE)

— 64-bit Power-architecture-compliant processor

— Dual-issue, in-order execution, 2-way SMT processor —
. [84-bit PowerPC Registers|
— PowerPC Processor Unit (PPU) e S

| 32KB L1 ICache | 32 KB L1 DCache
—32KBL11C, 32 KB L1 DC, VMX unit -

— PowerPC Processor Storage Subsystem (PPSS)

— 512 KB L2 Cache

ToEIB
— General-purpose processor to run OS and control-intensive code

— Coordinates the tasks performed by the remaining cores

EEEEEER

Meeting on Parallel Routine Optimization and Applications — May 26-27, 2008
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Cell Broadband Engine (srE)

e Heterogeneous multicore processor

¢ 8x Synergistic Processing Element (SPE)

— Dual-issue, in-order execution, 128-bit SIMD processors

— Synergistic Processor Unit (SPU)
— SIMD ISA (four different granularities) e ——

256 KB Local Store (LS)

— 128 x128-bit SIMD register file

— 256 KB Local Storage (LS) for code/data
— Memory Flow Controller (MFC)

= — Memory-mapped I/O registers (MMIO Registers)
- — DMA Controller: commands to transfer data in and out
— Custom processors specifically designed for data-intensive code

— Provide the main computing power of the Cell BE

Meeting on Parallel Routine Optimization and Applications — May 26-27, 2008
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Cell Broadband Engine (chip)

Architecture

May 26-27, 2008
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Cell Broadband Engine (EiB)

¢ Element Interconnect Bus (EIB)
— Interconnects PPE, SPEs, and the memory and I/O interface controllers
— 4,x16 Byte-wide rings (2 clockwise and 2 counterclockwise)
— Up to three simultaneous data transfers per ring

— Shortest path algorithm for transfers

* Memory Interface Controller (MIC)

— 2xRambus XDR I/O memory channels

(accesses on each channel
of 1-8, 16, 32, 64 or 128 Bytes)

gi * Cell BE Interface (BEI)

— 2xRambus FlexIO /O channels

Meeting on Parallel Routine Optimization and Applications — May 26-27, 2008
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NVidia: Project Denver

25,
%S

 Pick a successful SoC:
Tegra 3 St o

Up to 3x Higher GPU Performance

Blu-Ray Quality Video

* Replace the 32-bit
ARM Cortex 9 cores
by 64-bit ARM cores | s rover

2W/Core
Idle Power:
S00mW/Core
Sleep:
300mW/SoC
* Add some Fermi
SIMT cores into

the same chip?...
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Intel: Many Integrated Core

5.
AN

From: :

* Larrabee —
(80-core GPU) ' any Processing Cores

« SCC .3 it
(Single-chip Cloud Comp 1 Sk S 1
24x dual-core tiles)

to MIC:
* Knights Ferry

(pre-production)

» Khnights Corner
(Xeon Phi co-processors &
up to 61 cores) ‘

* Knights Landing

(2 generation)
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A Spectrum of Possible Use Models

Intel® Xeon® Symmetric Processing

Processor

Intel MIC Architecture
Focused

Stand-alone

Intel Xeon processor

Stand-alone Co-processing

General Purpose Serial Codes with highly parallel
and Parallel Codes phases

jQl Main()

Xeon
Codes el

MIC
Codes
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Intel® MIC
Architecture
Focused

Highly parallel codes

11

Intel MIC architecture

5.
AN
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What is an FPGA

Field-Programmable Gate Arrays (FPGA)

A fabric with 1000s of simple configurable logic cells with LUTs,
on-chip SRAM, configurable routing and I/O cells

Columns of
embedded RAM Input/Output Blocks
blocks
Arrays of
programmable
logic blocks . - .

PN
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’rogrammable
Interconnect
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FPGA as a multiple configurable ISA The GPU as a compute device: the G80

i
| Many coarse-g rained processors
- Different Implementation Options
® Small soft scalar processor
® or Larger vector processor
® or Customized hardware pipeline

- Each with local memory

Thread Execution Control Unit

m Each processor can exploit the
fine grained parallelism of the
FPGA to more efficiently
implement it's “program”

m Possibly heterogeneous
- Optimized for different tasks

m Customizable to suit the needs

Of a particular application AJProenga, Computer Systems & Performance, MEI, UMinho, 2012/13 14
The CUDA programming model CUDA Devices and Threads

* A compute device

» Compute Unified Device Architecture ~Is a coprocessor to the CPU or host

+ CUDA is a recent programming model, designed for — Has its own DRAM (device memory)
— Manycore architectures — Runs many threads in parallel
— Wide SIMD parallelism — Is typically a GPU but can also be another type of parallel
. processing device
— Scalability . o
- CUDA provides: » Data-parallel portions of an application are expressed as

device kernels which run on many threads - SIMT

. » Differences between GPU and CPU threads
— Synchr. & data sharing between small groups of threads ) .
— GPU threads are extremely lightweight

CUDA programs are written in C with extensions « Very little creation overhead, requires LARGE register bank

* OpenCL inspired by CUDA, but hw & sw vendor neutral — GPU needs 1000s of threads for full efficiency
— Programming model essentially identical  Multi-core CPU needs only a few

— Athread abstraction to deal with SIMD
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© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign



CUDA basic model:

» Synchronization within a block using
shared memory —
Courtesy NVIDIA

GPU Parallel Kernel
KernelB<<< nBIk, nTid >>>(args);

. p j : +
Single-Program Multiple-Data (SPMD) Programming Model: SPMD + SIMT/SIMD
H CPU GPU
i + i i » Hierarch
» CUDA integrated CPU + GPU application C program 1l 89-‘{}‘% - GEdS
— i - ria => Blocks
Serial C code executes on CPU ~ Block => Warps —
— Parallel Kernel C code executes on GPU thread blocks - Warp => Threads Kemel . giock | Block | Block
+ Single kernel runs on multiple blocks | 09 L &0 [ &9
CPU Coce a0 i3 (SPD) el )
Grid 0 4 + Threads within a warp are executed o Ay
Py in a lock-step way called single- | Griag i
GPU Parallel Kemel % instruction multiple-thread (SIMT) ‘ ' —
KernelA<<< nBIk, nTid >>>(args); =2 . . . N j .
g5 + Single instruction are executed on B e
;c multiple threads (SIMD) o o o | !_j
CPU Code <& — Warp size defines SIMD granularity ock (1. 1)
Grid 1 <2 (32 threads) ]
5
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The Computational Grid: Terminology (and in NVidia) g
Block IDs and Thread IDs 8
. s Threads of SIMD instructions (warps) g
. g\nléeg?%l'l:g;]g g%gkgomPUtatlonaLk~iwme . -IE_ra]Ch Zas ::S dOV\III'I PC (upto 48/6; perdSI:/IDC;JIrocestso;], Fermi/Kepler) %_
— Threads share global memory - g = Thread scheduler u§es scoreboard to |'spa (@ :
« Each thread uses IDs to decide el Block || Block = No data dependencies between threads! =
what data to work on / bos Bk = Threads are organized into blocks & executed in groups
—Block ID: 1D or 2D o9 || @y} of 32 threads (thread block)
—Thread ID: 1D, 2D, or 3D e =« Blocks are organized into a grid
* A thread block is a batch of e B |—||— = The thread block scheduler schedules blocks to
threads that can cooperate by: T = SIMD processors (Streaming Multiprocessors)

— Sync their execution w/ barrier

— Efficiently sharing data through a
low latency shared memory

— Two threads from two different
blocks cannot cooperate

= Within each SIMD processor:
= 32 SIMD lanes (thread processors)
= Wide and shallow compared to vector processors

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign
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CUDA Thread Block

» Programmer declares (Thread) Block:
— Block size 1 to 512 concurrent
threads CUDA Thread Block
— Block shape 1D, 2D, or 3D

— Block dimensions in threads threaatp [ol2Talalslel7]
« All threads in a Block execute the
same thread program

* Threads share data and synchronize
while doing their share of the work

* Threads have thread id numbers
within Block

 Thread program uses thread id to
select work and address shared data
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CUDA Memory Model Overview

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

(Device) Grid
« Each thread can:
— R/W per-thread registers Block (0. 0) Block (1, 0)

— R/W per-thread local memory
— R/W per-block shared memory
— R/W per-grid global memory

_—

— Read only per-grid constant

memory Thread (0, 0) Thread (1,0) | Thread (0,0) Thread (1, 0)
— Read only per-grid texture T TR
memory
* The host can R/W Host

global, constant, and
texture memories

-

)
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© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

Parallel Memory Sharing

Thread + Local Memory: per-thread
—Private per thread
Local Memory —Auto variables, register spill
» Shared Memory: per-block
Block —Shared by threads of the same
block

R
I Shared —Inter-thread communication
KK Memory . I
<5 * Global Memory: per-application

—Shared by all threads
—Inter-Grid communication

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009

Global Sequential
Memory Grids
in Time
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Hardware Implementation:
Memory Architecture

25,
%S

ECE 498AL, University of Illinois, Urbana-Champaign

Device

* DeV|Ce memory (DRAM) Multiprocessor N
— Slow (2~300 cycles) g

— Local, global, constant,
and texture memory

‘ Multiprocessor 2

Multiprocessor 1

* On-chip memory
— Fast (1 cycle)

— Registers,
shared memory,
constant/texture cache

Instruction
Unit

Courtesy NVIDIA
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NVIDIA GPU Memory Structures 2 Eamilies in NVidia GPU
Qi
. . . 9
= Each SIMD Lane has private section of off-chip g
DRAM 2 GPU G80 GT200 Fermi
- “ Private memoryn (Local Memory) (.% Z{:{];:l((::;u (;g:; million é.-;:'hlllmn ;.](Dzhlllmn
= Contains stack frame, spilling registers, and private & DoublePrecision | None 30 FMA ops per clock 1256 FMA ops per clock
variables Sljiiglcl-};ri)ci:\’ion 128 MADD ops per clock | 240 MADD ops per clock | 512 FMA ops per clock
oating Point
= Each multithreaded SIMD processor also has e remne |1 , 5
local memory (Shared Memory) Mgt : ;
. Shared by SIMD lanes / threads Wlthln a bIOCk Sl]llljl:t\cll)lt;u?ltilv 16KB 16KB Configurable
. per SM 48KB or 16KB
| Memow Shared by S”VID processors IS GPU IllCachc None None Configurable
per SM 16KB or 48KB
Memory (GIObaI Memory) 112 Cache None None 768KB
ECC Memory No No Yes
» Host can read and write GPU memory Protection
Concurrent Kernels No No Up to 16
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NVidia GPU structure & scalability The NVidia Fermi architecture
[ Tnstrustion Cache }

Warp Scheduler [ Warp Scheduler ] \‘

[ Dispatoh Unit T Dispatch Unit ] "‘

Register File [32.768 x 32-bit)

G80: ;
128 Cores

DRAM I/F
4/l WWv¥a

g
g

®
K
&
HOST I/F
4/l WVda

Tesla: 240 SP Cores

BEEEEER

[=]
b
>
=
b

g
g

Fermi
Multithreaded

4/l Wv¥a

Rl

SIMD Processor L
(Streaming g s ) ;
MU/ﬁpI‘OCGSSOI‘) ‘ 54 KE Shared Memory I Li Cache .'
[ Uniform Cache F
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GT200 and Fermi SIMD processor

GT200 Core Fermi Core

1 warp instruction

1 warp instruction

Scoreboarded Scoreboarded

Scoreboarded
Warp Scheduler Warp Scheduler A Wa‘rp Scheduler
i i 1 warp instruction
1 warp instruction
128KB
64KB 16KB | < .
Register File

Register File Shared Memo! Loloil

Port 1

- Port 0

AJProenga, Computer Systems & Performance, MEI, UMinho, 2012/13

Fermi:
Multithreading and Memory Hierarchy

5.
NN

Thread

n

.
E E

AJProenga, Computer Systems & Performance, MEI, UMinho, 2012/13 31

Warp Scheduler Warp Scheduler

Instruction Dispatch Unit Instruction Dispatch Unit

1
ey
Warp 14 insiruction 35 Warp 15 instruction 85
- -
H :
Warp 14 instruction 38 Warp 3 instruction 34

Fermi Architecture Innovations

= Each SIMD processor has
= Two SIMD thread schedulers, two instruction dispatch units

= 16 SIMD lanes (SIMD width=32, chime=2 cycles), 16 load-store
units, 4 special function units

= Thus, two threads of SIMD instructions are scheduled every two
clock cycles

= Fast double precision

= Caches for GPU memory

= 64-bit addressing and unified address space
= Error correcting codes

= Faster context switching
s Faster atomic instructions

From Fermi into Kepler:
The Memory Hierarchy

25,
NN

Thread Kepler Memory Hierarchy

Thread

Shared Memory [ Shared

ey ) _cadie

| Cace )
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From Fermi into Kepler:
Compute capabilities

FERMI | FERMI | KEPLER | KEPLER
GF100 GF104 GK104 GK110
Compute Capability 2.0 2.1 3.0 3.5
Threads / Warp 32 32 32 32
Max Warps / Multiprocessor 48 48 64 64
Max Threads / Multiprocessor 1536 1536 2048 2048
Max Thread Blocks / Multiprocessor 8 8 16 16
32-bit Registers / Multiprocessor 32768 32768 65536 65536
Max Registers / Thread 63 63 63 255
Max Threads / Thread Block 1024 1024 1024 1024
Shared Memory Size Configurations (bytes) 16K 16K 16K 16K
48K 48K 32K 32K
48K 48K
Max X Grid Dimension 2716-1 2716-1 2732-1 2732-1
Hyper-Q No No No Yes
Dynamic Parallelism No No No Yes
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Overview of GK110 Kepler Architecture

PCl Express 3.0 Host Intorface
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From Fermi to Kepler core:
- SM and the SMX Architecture

Warp Scheduler ‘

i

Warp Scheduler
Dispatch Dispatch Dispatch Dispatch
+ + + *

H
i
i
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coro core Goro B ors Cor core [BRUR (> s+
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Instruction Cache

Warp Scheduler Warp Scheduler
Dispatch  Dispatch Dispatch Dispatch
+ * * *

Register File (65,536 x 32-bit)

O R S SO S S S &

Bl FEE]l B
| e [ v o R -
) o N o [ -
o] o e [ e o [
o] o R o v o) R
"Ll CELEl B

o] o e [ o v o [
) o v [ G v o R =
) con e [ com v o R

Core Core Coro

Gor| core core [N coe oo core BRI
cor| ) or] [ o e ][RR o=r s



o) o)

o )

g Example 2

= -

. % Warp scheduler Scoreboard %

| Multlply two vectors of Iength 8192 § nstruction ] Wa? No. Adirzess Sl’r;l?nzzz::ficéi:ns OP:;:r;;s? §
. . hi

= Code that works over all elements is the grid g o 1 i 64 e e

. . . =] 3 96 dd.s32 N >

= Thread blocks break this down into manageable sizes © 8 it i global 64 ez @

g 8 iz 1d.global.f64 Ready g

@ &

= 512 threads per block ‘—J

] i i i I Instruction register |
SIMD instruction executes 32 elements at a time — ‘l t‘ gtt -

= Thus grid size = 16 blocks SIVD Lanes
. . | FREEREEREEREEEEE
= Block is analogous to a strip-mined vector loop with e [ e | o | o | g | s | on | v | o | s | o | s | o | o | Fe | o
VeCtOf Iength Of 32 1Kx32[1Kx32 | 1Kx32 [ 1Kx32 | 1Kx32 [ 1K %82 | 1Kx32 [ 1Kx32 | 1Kx32 [1Kx32 | 1Kx32 | 1K x82 | 1Kx32 [1Kx32 | 1K %32 [ 1K x32
t [ ¢ [ ¢ [ ¥ T ¥ T ¥ ¢ [ ¥ T ¥TFTF [ FTFTFTF T4
by the thread block scheduler 1 1
[ Address coalescing unit ‘ ‘ Interconnection network ‘

= Current-generation GPUs (Fermi) have 7-16 ! I I

¥
To Global

multithreaded SIMD processors Local Memory Memory

64KB

GPU: NVidia Fermi versus AMD Cayman

| [Pc ]

SIMD Thread Scheduler
Instruction m Instruction
cache cache Dispatch unit Fermi
PC

v

,—{ Instruction register | Instruction register |
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Ultra-Threaded Dispatch Processor
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Vector load/store unit SIMD Load/store unit E?\‘gilr?e anir?e
3 v v4 [Z) v4 Thread
| Address coalescing unit | Processor
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_ L T
Memorlyj r:ﬂtedace I Memory interface unit | 8x4B@55GT/s  2x2B@5.0GT/s
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General-Purpose Registers




