
Intel's 50+ core MIC architecture: HPC on a Card or Massive
Co-Processor?
Will Intel’s Knights Corner chips function as co-processors like GPUs, or will they be
stand-alone many-core Linux systems? The two approaches present very different
performance profiles.

April 10, 2012
URL:http://www.drdobbs.com/parallel/intels-50-core-mic-architecture-hpc-on-a/232800139

In September 2011, the Texas Advanced Computer Center (TACC) announced Stampede, a new
10-petaflops-capable (1016 or 10,000 trillion floating-point operations per sec.) supercomputer based
on the Intel MIC (Many-Integrated Core) architecture. The Stampede announcement demonstrates a
substantial and long-term commitment by Intel to deliver massively parallel many-core hardware to
the high-performance computing (HPC) market by January 2013. The heart of the Stampede system
will be the 50+ core Knights Corner (KNC) processor chips packaged in a PCIe form factor (the same
form factor used by GPU computing co-processors). More than 8 of the 10 petaflop/sec. of peak
floating-point performance will be provided by the Knights Corner PCIe co-processors.

The entrance of an x86-based many-core design into the HPC leadership class marketplace raises a
key question: Will the Intel Knights Corner chips compete as co-processors that accelerate application
performance like GPUs do, or will they provide a "compile and run" alternative where the MIC
device behaves like a stand-alone many-core Linux system?

The fact that Intel has now made substantial commitment to teraflops-capable, massively-parallel
hardware devices comes as no surprise. Many in the computer industry, including me, have observed
that CPUs and GPUs are following convergent evolutionary paths. As I note in my Scientific
Computing article, "HPC's Future", the failure of Dennard's scaling laws forced chip manufacturers to
switch to parallelism to increase processor performance. Due to power and heat issues, many-core
processors have become a necessity as it is no longer possible to significantly increase the
performance of a single processing core.

This new era of multi- and many-core computing has been disruptive to the software industry as it
requires that existing applications be redesigned to exploit parallelism (rather than clock speed) to
achieve high application performance on this new parallel hardware. During this transition to
massively parallel programming, the owners of legacy code bases are faced with some difficult
choices because there are no generic "recompile and run" solutions. As I noted in my Scientific

Dr. Dobb's | Intel's 50+ core MIC architecture: HPC on a Card or... http://www.drdobbs.com/article/print?articleId=232800139&siteS...

1 of 11 12/Nov/12 18:18

Computing article, "Redefining What is Possible":

Legacy applications and research efforts that do not invest in multi-threaded software will not benefit
from modern multi-core processors, because single-threaded and poorly scaling software will not be
able to utilize extra processor cores. As a result, computational performance will plateau at or near
current levels, placing the projects that depend on these legacy applications at risk of both stagnation
and loss of competitiveness.

Vendors of parallel-processing hardware are making significant investments to ease the cost of
transitioning legacy software to massively parallel computing. The challenge for legacy software
owners lies in understanding how well these vendor efforts translate to production application
performance.

While still at an early pre-hardware release stage, it is possible to draw some preliminary conclusions
based on an analysis of the MIC and GPU architectures and the currently available information about
the NVIDIA Kepler and Intel Knights Corner chips. In this article, I consider these two processors
based on established high-level comparative measures such as memory capacity, balance ratios, and
Amdahl's Law in the context of four programming paradigms:

MPI (Message Passing Interface)
Directive-based programming like OpenMP and OpenACC
Common libraries providing FFT and BLAS functionality
Language platforms based on a strong-scaling execution model (CUDA and OpenCL™)

Convergent Evolution in HPC: Intel MIC and NVIDIA GPU

Five years ago, NVIDIA disrupted the high performance computing industry with the release of
CUDA in February 2007. In combination with low cost of teraflop/sec (single-precision) GPU
hardware, NVIDIA brought supercomputing to the masses along with co-processor acceleration of
both C and Fortran applications. With the MIC announcement, Intel has followed suit along this
convergent evolutionary path.

While similarly packaged as a PCIe device, Intel has taken a different architectural approach to
massively-parallel computing hardware. The KNC generation of MIC products appears to be HPC-
oriented, which means high-end customers can now choose from two types of teraflop/sec capable
PCIe-based co-processors.

Comparing NVIDIA GPUs and Intel MIC

GPU designs utilize many streaming multiprocessors (SM) where each SM can run up to 32
concurrent SIMD (Single Instruction Multiple Data) threads of execution. The current generation of
Fermi GPUs supports 512 concurrent SIMD threads of execution that can be sub-divided into 16
separate SIMT (Single Instruction Multiple Thread) tasks. The upcoming NVIDIA Kepler GPUs will
support even greater parallelism. For example, the GTX 680 will support 1,536 concurrent SIMD
threads.

Teraflop/sec. performance is achieved through a per-SM hardware scheduler that can quickly identify
those SIMD instructions that are ready-to-run (meaning they have no unresolved dependencies).
Ready-to-run instructions are then dispatched to keep multiple integer, floating-point, and special
function units busy. A per-GPU hardware scheduler similarly allocates work (via CUDA thread
blocks or OpenCL™ work-groups) to ensure high utilization across all the SM on a GPU.

Dr. Dobb's | Intel's 50+ core MIC architecture: HPC on a Card or... http://www.drdobbs.com/article/print?articleId=232800139&siteS...

2 of 11 12/Nov/12 18:18

High flops/watt efficiency is realized through the use of a SIMD execution model inside each SM that
requires less supporting logic than non-SIMD architectures. GPU hardware architects have been able
to capitalize on this savings by devoting more power and space to 64-bit addressing, additional ALUs,
floating-point, and Special Function Units for transcendental functions. Some reviewers report that
NVIDIA expects Kepler to deliver "about 3x improvement in [double precision] performance per watt
…" over Fermi.
Other notable characteristics include:

Data-parallel operations are spread across the SMs of one or more GPU devices.
Task-parallelism is accomplished by running concurrent kernels on different SMs and/or
multiple devices plus the host processor.
MPI jobs are accelerated by using one or more GPUs per process and capabilities like
GPUdirect, which optimizes data transfer into device memory.

Intel MIC

The Intel MIC architecture in the KNC chip utilizes x86 Pentium-based processing cores that support
four threads per core. According to The Register, the next generation Knights Corner has "64 cores on
the die, and depending on yields and the clock speeds that Intel can push on the chip, it will activate
somewhere between 50 and 64 of those cores and run them at 1.2GHz to 1.6GHz". The preceding
implies that each KNC chip will provide between 200 and 256 concurrent threads of execution.

Teraflop/sec floating-point performance can be achieved when enough of the SMP threads issue
special SSE-like instructions to fully utilize an enhanced vector/SIMD unit that resides on each core.
(Note: this requires the use of a special "-mmic" compiler switch to tell the Intel compilers to look for
cases when these MIC-specific vector instructions can be utilized, or via hand-coding with intrinsic
operations.)

High flops/watt efficiency is realized by leveraging the simplicity of the original in-order short
execution pipeline Pentium design and the power savings of chips created with their 22 nm
manufacturing process. MIC also derives high flops/watt from using wide vector units. The logic for
the Pentium core is small relative to modern processor cores, which left room for additional logic to
support 64-bit addressing, four concurrent threads per core, and a large 512-bit wide vector unit. Per
the TACC Stampede announcement, the initial revision of KNC per-core vector unit will deliver 50%
higher floating-point performance in 2013.
Other notable characteristics include:

Data-parallel tasks appear to be mainly accelerated by the per-core vector units.
Task-parallelism is accelerated by running a task per thread and separate tasks on the device(s)
and host processor.
MPI jobs are accelerated by using one or more MIC devices per process or capabilities like
MIC-as-a-compute-node discussed later in this article.

 NVIDIA GPU Intel MIC

Degree of
Parallelism

Fermi supports 512 concurrent SIMT
threads of execution. Kepler will triple
this number to 1,536 threads.

Knights Corner expected to support
between 200 and 256 concurrent threads.

Dr. Dobb's | Intel's 50+ core MIC architecture: HPC on a Card or... http://www.drdobbs.com/article/print?articleId=232800139&siteS...

3 of 11 12/Nov/12 18:18

Achieving
High

Performance

A per-SM hardware scheduler keeps
multiple computational units busy by
identifying and dispatching any ready-
to-run SIMD instructions.

A compiler or programmer utilizes special
SSE-like instructions to keep each per-core
vector unit busy.

Achieving
Power

Efficiency

The per-SM SIMD execution model
requires less supporting logic, leading
to high power efficiency and
floating-point performance. Expect a 3x
increase in Kepler double-precision
efficiency.

Leverages the simplicity of the original
Pentium design and the floating-point
capability of a 512-bit vector unit along
with the power savings of manufactured
with a 22 nm process.

Data-parallel
acceleration

Data-parallel operations are spread
across the SMs of one or more GPU
devices.

Data-parallel operations accelerated by the
per-core vector units and are spread across
the cores of one or more devices.

Task-parallel
acceleration

Concurrent kernel execution allows
multiple kernels to run on one or more
SM.

Concurrent threads can run multiple tasks
on the device.

MPI
acceleration

MPI jobs are accelerated by using one
or more GPUs per MPI process and
optimized data transfer capabilities like
GPUdirect.

MPI jobs are accelerated by using one or
more MIC devices per MPI process, or one
MPI process per MIC core.

Table 1: GPGPU and MIC architectural approaches to massive parallelism

For more detailed information about the MIC architecture, I recommend reading, "Larrabee" A
Many-Core x86 Architecture for Visual Computing" as MIC is based on the Larrabee computing
architecture with the visualization capability removed. The NVIDIA documentation such as the Fermi
whitepaper, my tutorial series in Dr. Dobb's, and my book, "CUDA Application Design and
Development" are good sources for more detailed information about NVIDIA GPUs.

The Code Migration Conundrum

While teraflop/sec. performance is compelling, there is no guarantee that any of these devices will
deliver high performance (or even a performance benefit) for any given application. This uncertainty
coupled with the risk and costs of a porting effort has kept many customers with legacy code from
investing in this new technology.

Chip manufacturers, and the industry as a whole, have invested heavily in several programming
models to make porting efforts as fast and risk free as possible. As mentioned, NIVIDA's investment
in CUDA has been very successful. Not surprisingly, well established legacy programming models
have also attracted much attention. For comparison purposes, this article will focus on four types of
programming models that are supported by the industry for massively-parallel co-processors:

MPI (Message Passing Interface)

Dr. Dobb's | Intel's 50+ core MIC architecture: HPC on a Card or... http://www.drdobbs.com/article/print?articleId=232800139&siteS...

4 of 11 12/Nov/12 18:18

Directive-based programming like OpenMP and OpenACC
Common libraries providing FFT and BLAS functionality
Language platforms based on a strong-scaling execution model (CUDA and OpenCL)

The current packaging of GPU and MIC massively-parallel chips as external PCIe devices
complicates each of these programming models. For example, the overhead incurred by host/device
data transfers breaks an assumption made by the SMP execution model that any thread can access any
data in a shared memory system without paying a significant performance penalty. Efforts like
OpenACC (and potentially OpenMP 4.0) are attracting attention because they provide a standard
method to specify data locality. The hope is that minimal code changes will be required to modify
legacy code to run on co-processors.

Limited on-board memory also requires partitioning computational problems into pieces that can fit
into device memory. At this time, a human programmer is required to partition larger computational
problems into smaller pieces that can run on a co-processor and achieve high performance by
efficiently overlapping computation and communication. Hybrid memory cubes hold hope for large
memory co-processors in the future, but it is unclear whether the next generation NVIDIA Kepler or
Intel MIC cards will use this technology.

Succinctly, achieving performance with co-processors generally requires that the programmer to:

Transfer the data across the PCIe bus onto the device and keep it there;
Give the device enough work to do;
Focus on data reuse within the co-processor(s) to avoid memory bandwidth bottlenecks.

Bottom line: Semantic limitations coupled with the costs and complexity of utilizing data located in
multiple memory spaces plus limitations in on-board memory capacity currently prevents the
automatic translation of legacy code to both GPUs and MIC co-processors. Some porting effort is
required.

MIC as a Linux compute node

The MIC architecture is based on modified Pentium processing cores coupled to a per-core vector
unit. The performance implications of this design decision will most certainly be hotly debated by the
GPU and MIC communities for years to come. The Intel Server Room Blog notes, "The MIC
architecture products are first and foremost compute nodes. They run an open source [L]inux OS, they
are networked and can run applications." So, let's analyze MIC as if it were a separate many-core
Linux computer connected to the host system by the PCIe bus, or MIC-as-a-compute-node.

From a source compatibility point of view, this model is attractive to organizations with millions of
lines of legacy code: take your existing legacy source code, recompile for MIC using a "–mmic"
compiler flag, and run. Most build systems make it easy to specify both the compiler and any special
flags like "-mmic", which supports the claim by Jeff Nichols, a Director at Oak Ridge National
Laboratory, that they were able to port "millions of lines of code... literally in days" to MIC. MIC-as-
a-compute-node is of interest to owners of existing OpenMP, MPI + vector, and hybrid MPI +
OpenMP applications as these codes have the potential to recompile and run.

But how well will it run? Even without hardware at hand, it is possible to get a sense of how well
recompiled x86-based legacy code will run on MIC-as-a-compute-node by considering three factors:
Amdahl's Law, wide SSE-like vector characteristics, and on-board memory capacity.

Amdahl's Law gives an approximation that models the ideal speedup that can happen when single-
threaded programs are modified to run on parallel hardware. The speedup of a program using multiple

Dr. Dobb's | Intel's 50+ core MIC architecture: HPC on a Card or... http://www.drdobbs.com/article/print?articleId=232800139&siteS...

5 of 11 12/Nov/12 18:18

processors in parallel computing is limited by the time required by the sequential fraction of the
program. In the best case, those sections of code that can be parallelized can have their runtime
reduced by a factor of N, where N is the number of parallel processing elements. Obviously, the time
taken to complete the serial sections of code (e.g. those sections that cannot be parallelized) will not
change, which means they can dominate the runtime when the number of parallel processing
elements, N, is large.

Co-processors have the advantage of being able to exploit the performance capabilities of the latest
and highest clock rate processors in the host system. In contrast, using MIC-as-a-compute-node
means that serial sections of code will run on a single 1.2 GHz to 1.6 GHz Pentium core. This
difference in processor performance relative to a state-of-the-art processing core can increase the
fraction of time spent in sequential code and cause applications to run more slowly on MIC-as-
a-compute-node compared to MIC-as-a-coprocessor.

The key to MIC floating-point performance is the efficient use of the per core vector unit. To access
the vector unit, the compiler must be able to recognize SSE compatible constructs so it can generate
the MIC SSE-like assembly language instructions. The test with your current hardware and compiler
is simple: tell your compiler to utilize the SSE instructions on your x86 processor through the
"–msse" or other compiler switch. Applications that run faster will probably benefit from the MIC
vector unit. (Conversely, check if the application slows down by disabling the use of SSE
instructions.) Those applications that don't benefit from the SSE instruction set will most likely be
limited to the performance of the individual Pentium based cores (or that of 50 to 64 1.2GHz -
1.6GHz Pentium processors). For additional analysis and discussion of "-msse" compatibility on
MIC, see Greg Pfister's "MIC and the Knights" by Greg Pfister.

Balance ratios are conventional, established measures used in HPC to evaluate potential system
performance. My 2010 GTC presentation lists the four important balance ratios for the current PNNL
(Pacific Northwest National Laboratory) Chinook supercomputer: memory capacity, memory
bandwidth, aggregate link bandwidth, and interconnect latency.

Table 2 below compares the MIC balance ratios for legacy workloads against the PNNL Chinook
supercomputer. (Note: This table makes several assumptions about MIC capabilities and so the values
should be considered with caution.) The ratios can be easily updated as Intel publishes more
performance data on KNC:

Intel has not yet released information about the amount of memory that will be available on
each MIC card. This table arbitrarily assumes that each MIC card will contain 8 GB of RAM.
Intel has yet not released information about the how fast MIC can communicate across the PCIe
bus. The table arbitrarily assumes effective utilization of the available PCIe bandwidth (e.g. 16
GB/s on a PCIe gen-2 bus and 32 GB/s should the Knights Corner cards utilize a PCIe gen-3
interface).
Intel has not yet released information about communication latency through the internal ring
interconnect or across the PCIe bus. The following table assumes that communications latency
will be software limited and comparable to existing Infiniband software stacks.
This table lists 8-core Chinook and 50-core KNC balance ratios based on the assumption that
peak floating-point performance will be achieved by all the per-core vector units.

Balance Category
MIC Knights Corner

(50-core)
Chinook
(8-core)

Dr. Dobb's | Intel's 50+ core MIC architecture: HPC on a Card or... http://www.drdobbs.com/article/print?articleId=232800139&siteS...

6 of 11 12/Nov/12 18:18

Memory Amount (Bytes/flop) 0.008 0.46

Memory Bandwidth (B/s/flop/s) ? 0.21

Aggregate Link BW (B/s/flop/s)
0.016 (PCIe gen-2)
0.032 (PCIe gen-3) 0.17

Interconnect Latency (ms) < 2 1.1

Table 2 : Potential balance ratios for MIC-as-a-compute-node

With the exception of latency, larger values are preferred for generic legacy workloads such as
NWChem – a porting effort referenced in the MIC literature – for which the Chinook supercomputer
was designed. The small ratio of MIC memory capacity to flops indicates that memory capacity will
be a significant problem and likely obstacle for many legacy applications. From a communications
bandwidth and latency stand-point, MIC-as-a-compute-node is very interesting as most applications
will run at a fraction of the peak floating-point rate. In particular, a PCIe gen-3 bus has the potential to
act as a 256 Gb/s data link, which exceeds current, commodity InfiniBand capabilities.

When running on MIC-as-a-compute-node, legacy "compile and run" customers should consider the
following factors as listed in Table 3.

Feature Categories Projected Application Profile to Run Well on MIC-as-
a-Compute-Node

Memory Usage MPI and OpenMP application code + data must have a small
per-core memory footprint.
Must be cache friendly to efficiently use the on-core cache
memory and avoid memory bandwidth bottlenecks.
Need to avoid serialization side-effects from semaphores and
atomic operations like C++ smart pointers and reference counted
objects.

Balance of Scalar and
Vector

High flop rates will be achieved through SSE-like vector
operations.
Need to avoid Amdahl's Law sequential bottlenecks due to low
Pentium performance compared to modern high clock-rate CPU
cores

Table 3: Project application characteristics to run well on MIC-as-a-compute-node

In summary, MIC does not eliminate the need to rewrite legacy applications except for those
applications that can run in the memory footprint of the PCIe device. Of that subset of applications,
only those that currently do not rely on serial calculations but depend mostly on SSE acceleration will
be able to benefit from the per-core vector unit to achieve high floating-point performance. Further,

Dr. Dobb's | Intel's 50+ core MIC architecture: HPC on a Card or... http://www.drdobbs.com/article/print?articleId=232800139&siteS...

7 of 11 12/Nov/12 18:18

high performance will probably require cache friendly applications. Those applications that can
recompile and run will probably still require modification to make full use of the MIC capabilities. In
particular, memory limitations will most likely require re-architecting the application to use the
current generation of MIC devices as a co-processor.

Programming Model Considerations for GPUs and MIC co-processors

When evaluating co-processors for a legacy application, it is necessary to consider the characteristics
of the programming model. Whenever possible, use benchmarks to evaluate the transfer and
computational efficiency of co-processor applications that are similar to the intended application.

MPI has strong support as it is the de facto standard distributed scientific computing framework. As
mentioned above, developers must consider memory footprint and Amdahl's Law sequential code
limitations when porting MPI code to MIC. When porting to both MIC and GPU co-processors, some
considerations are:

Most implementations use one co-processor per MPI process.
Network bandwidth limitations tend to be a key bottleneck making most MPI applications
network rather than compute bound. Use whatever features are available (like GPUdirect) to
optimize data transfers.
Use all the co-processors in a single MPI process when communications latency is an issue.
This can be particularly useful for applications that perform many latency bound operations
such as reductions.

While directives-based programming such as OpenMP has strong support in the developer
community, directives for co-processors is a "Work-in-progress." For legacy code based on OpenMP,
code modifications will certainly be required as legacy applications do not have a concept of data
location (Tthey assume an SMP model). Something like "#pragma target (device)" is required.
Standardization is moving quickly to prevent a "tower of Babel" proliferation of incompatible pragma
specifications.

Note that many OpenMP code bases were developed when two, four, or eight cores were considered
"many." High core count processors may expose scaling issues. In this regard, you should:

Be aware that atomic and common synchronization operations (such as semaphores, reference
counting, etc.) might expose unexpected serialization bottlenecks.
Pay particular attention to scaling behavior on cache-coherent architectures like MIC and the
impact of conditional operations on SIMD-based GPU architectures.
Many legacy OpenMP apps have directives employed at the innermost loop level, which limits
the achievable parallelism. Code modification may be required to expose more parallelism.

Common libraries providing FFT and BLAS functionality should perform well on co-processors
because they are optimized for a particular architecture and set of hardware capabilities. (This
assumes data transfers do not limit performance.)

Language platforms based on a strong-scaling execution model, such as CUDA and OpenCL, will
likely perform well on both architectures because they provide linear scaling according to number of
processing elements and provide the best Amdahl's Law reduction in parallel code runtime. Scaling
behavior of the computational kernels should not be an issue unless global atomic operations are
utilized.

In all programming approaches, high performance can be achieved when the compute intensive
portions of the application conform to the three rules of high-performance co-processer programming

Dr. Dobb's | Intel's 50+ core MIC architecture: HPC on a Card or... http://www.drdobbs.com/article/print?articleId=232800139&siteS...

8 of 11 12/Nov/12 18:18

mentioned previously. If not, expect floating-point performance to be either PCIe or device memory
limited.

In summary, expect to use MIC and GPUs as co-processors and that software will rapidly evolve to
hide differences between co-processor hardware. Growing support for OpenACC by vendors like
CAPS and PGI can make co-processors an attractive, highly portable option for legacy OpenMP
codes because the source code intrusion is relatively small. Vendor libraries provided by NVIDIA
and Intel already provide an optimized framework for some applications. Generally, applications
written in OpenCL and CUDA will deliver the greatest performance and longevity due to their use of
a strong scaling execution model that can achieve a linear parallel code speedup regardless of number
of processing elements. In addition, these languages provide asynchronous queues that can
choreograph tasks and data movement among numerous devices.

Approach Programming Considerations for Legacy Codes

MPI (Message Passing
Interface)

Co-processor accelerated MPI processes can potentially make
better use of on-board resources.
Assuming 50 cores and 8 GB per device, each MPI process on a
MIC card will have roughly 160 MB for program and data
storage. Note: more cores implies less data per core.
MPI processes on MIC cores must be particularly frugal in
memory usage because each MPI process requires a separate
copy of all data.
MIC-as-a-compute-node may exhibit Amdahl's Law sequential
bottlenecks due to low clock rate Pentium performance
compared to modern CPU cores.

Directive-based
programming (OpenMP and

OpenACC)

OpenACC has the potential to transparently run OpenMP
applications on co-processors from any vendor with minimal
modification.
Legacy code can potentially "compile and run" on MIC-as-
a-compute-node assuming both program and data fits in
memory.
High core counts may expose surprising serialization
bottlenecks. For example, reference counted objects such as
smart pointers in C++ may cause serialization bottlenecks on
atomic operations.
Applications should be "cache friendly" to avoid memory
bandwidth bottlenecks. The effectiveness and messaging
overhead of the MIC cache coherency model at high core counts
is currently unknown.
MIC-as-a-compute-node may exhibit Amdahl's Law sequential
bottlenecks due to low clock rate Pentium performance
compared to modern CPU cores.
Beware the PCIe bottleneck.

Common libraries providing
FFT and BLAS functionality

Optimized libraries should run well and reflect the co-processor
hardware performance capabilities.

Dr. Dobb's | Intel's 50+ core MIC architecture: HPC on a Card or... http://www.drdobbs.com/article/print?articleId=232800139&siteS...

9 of 11 12/Nov/12 18:18

Subject to memory capacity and bandwidth limitations of the
PCIe bus.

Accelerator execution model
like OpenCL

Strong-scaling execution model applications like those written
OpenCL (and potentially CUDA) have the potential to run well.

Table 4: Summary table of various programming model comments

The rapidity in which the industry is moving to support legacy programming is reflected in NVIDIA's
directives based developer effort at SC11 that delivered 5x to 20x speedups for several legacy
applications in two days or less. Intel's HPC General Manager Rajeeb Hazra expresses a similar view
about MIC compiler technology: "It eliminates code porting to a certain extent," redefining the effort
so that, "It just makes it an optimization job." As always, caveat emptor still applies regardless of the
technology used.

Hands-on comments by TACC about programming MIC as of March 1, 2012 can be found in the "Oil
and Gas High Performance Computing Workshop" video.

Summary

Technical innovation is rapidly evolving massively parallel devices into ever more capable
computational tools. While both NVIDIA GPUs and Intel MIC devices support multiple
programming models, the current PCIe-based packaging imposes memory capacity, data locality and
bus bandwidth limitations that strongly favors the use of these devices as external co-processors. At
this time, we see a convergence of evolutionary characteristics where the prime selection criterion is
performance rather than a head-on collision of technical approaches.

As in any market, price versus expected benefit will dominate procurement decisions and market
success.

From a performance point of view, the KNC chip looks to be competitive with GPUs as a teraflops-
capable co-processor. Pricing information is not available for NVIDIA Kepler or Intel KNC products,
so it is not possible at this time to make a price vs. performance comparison. The TACC
announcement shows that Intel is definitely looking at high performance computing. Meanwhile,
NVIDIA has established a strong market presence and massive base of CUDA developers with
products starting around the $150 - $180 price range and extending to HPC products priced in the
thousands of dollars.

Clearly, benchmark results will be a hot topic once Kepler and KNC chips become available.
Benchmarks will certainly be devised to exploit architectural differences between both products to
accelerate some applications more than others. This will be a good thing as feedback from the
forthcoming benchmark battles will doubtless spur technical innovations that will improve the
performance of future GPU and MIC generations of products. As this article notes, it does not really
matter if a software effort is charged as "software porting work" or "application performance tuning"
as both time and money will be required to effectively use MIC and GPU devices.

The intention of all programming models is to abstract the hardware interface to preserve
performance and reduce or eliminate porting costs. Eventually, software will mature to the point that
performance decisions will focus more on the hardware than software. As a programmer, it is always
best to look at what works best for you now and in the future. For this reason, programming
languages like CUDA and OpenCL are attractive due to their use of a strong scaling execution model

Dr. Dobb's | Intel's 50+ core MIC architecture: HPC on a Card or... http://www.drdobbs.com/article/print?articleId=232800139&siteS...

10 of 11 12/Nov/12 18:18

in combination with asynchronous queues. In other words, applications written now will be able to
choreograph numerous tasks across one or more devices to scale to whatever number of concurrent
threads of execution the hardware vendors can provide us.

Rob Farber is an analyst who writes frequently on High-Performance Computing hardware topics.

Terms of Service | Privacy Statement | Copyright © 2012 UBM TechWeb, All rights reserved.

Dr. Dobb's | Intel's 50+ core MIC architecture: HPC on a Card or... http://www.drdobbs.com/article/print?articleId=232800139&siteS...

11 of 11 12/Nov/12 18:18

