Da modelação até a simulação numérica

Stéphane Clain

Centro de Matématica, Universidade do Minho

6 de novembro de 2012

Motivações e exemplos

Método dos Volumes Finitos

Método dos Elementos Finitos

Computação científica intensiva

Motivações e exemplos

Convecção de um poluente

Um poluente (químico ou radioactivo) de fracção massica α desloca-se num fluido.

$$\partial_t \alpha + \nabla . (V\alpha) - \nabla (A\nabla \alpha) = s$$

- $\bullet~s$ é a fonte de poluição
- $\bullet \ V(x,t)$ é a velocidade do fluido

convecção difusão de um poluente

Shallow-water

Problema de água, ondas, inundação, tsunami.

$$\partial_t h + \nabla .(hu) = 0,$$

 $\partial_t (hu) + \nabla .(hu \otimes u + g \frac{h^2}{2}) = -gh \nabla H$

- h(x,t) altura da água
- $\bullet \ u(x,t)$ velocidade da água
- g gravidade
- H(x,t) topografia do fundo

Sistema de Euler

Equação dos gases compressíveis sem viscosidade

$$\partial_t \rho + \nabla .(\rho u) = 0,$$

$$\partial_t (\rho u) + \nabla .(\rho u \otimes u + P \operatorname{Id}) = g,$$

$$\partial_t (E) + \nabla (u(E+P)) = 0.$$

- $\bullet~\rho$ densidade
- $\bullet \ u$ velocidade
- \bullet P pressão
- $\bullet \ E$ energia total

Equação dos fluidos imcompressíveis com viscosidade

Agua, atmosfera, lava, polímeros,...

$$\rho \partial_t(u) + \rho u \nabla u + \nabla P = \mu \Delta u + g,$$

$$\nabla u = 0.$$

- $\bullet~\rho$ densidade
- $\bullet \ u$ velocidade
- P pressão
- μ viscosidade

Equação da fronteira livre

Fogo de foresta, bolha

$$\partial_t \phi + u \cdot \nabla \phi + \varepsilon \Delta \phi = 0,$$

$$\Gamma_t = \{x \text{ tal que } \phi(x, t) = 0\}.$$

- $\bullet~\phi$ função superficie de nível
- $\bullet \ u$ velocidade da frente
- ε coeficiente de curvatura
- Γ_t posição da frente no tempo t.

Disjunctor meio tensão .

Universidade do Minho, Março 2011 Stéphane Clain et al : Da modelação à simulação numérica

Image: A Image: A

Malha 2D do disjunctor.

Universidade do Minho, Março 2011 Stéphane Clain et al : Da modelação à simulação numérica

-

Simulação numérica do disjunctor MV (temperatura e velocidade)

A tocha ICP (Inductively Coupled Plasma)

Objectivo: Simulação numérica da tocha do LAEPT

- Frequência 64 MHz.
- Potência 4kW.
- Tensão de 4.5kV sob 600 mA.
- Geometria axisimétrica.
- Injecção do gás com "swirl".
- \bullet Dimensões $5\,cm\times 10cm$

Aplicação Estudo da radiação na atmosféra de marte ou titã.

Temperatura da chama com pressão atmosferica

- Argon, Ar 100%: temperatura \approx 7000 8000K.
- Terra, N_2 80%, O_2 20% : temperatura $\approx 4000 5000K$.
- Marte, N_2 3%, CO_2 97% : temperatura $\approx 6000K$.
- Titã, N_2 98%, CH_4 2% : temperatura $\approx 3500 4000K$.

Modelação e simulação da tocha:

- Modelo evolutivo em tempo (simular a ignição).
- Considerar geometrias complexas.
- Simetria de rotação relativamente ao eixo da tocha.
- Tempo de computação razoável (algumas horas).
- Aumentar a complexidade dos modelos, passo a passo.

Simulação numérica

Temperatura

Temperatura

Pressão

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Método dos volumes finitos

Universidade do Minho, Março 2011 Stéphane Clain et al : Da modelação à simulação numérica

Movimento de um grupo de pessoas

$$\partial_t \rho + \nabla(V\rho) = 0, \quad \rho(t = 0, .) = \rho^0(.)$$

- $\rho(x,t)$ densidade da população , $x \in \Omega$, t > 0.
- V velocidade das pessoas.

 \mathcal{T}_h Malha do domínio poligonal $\Omega \subset \mathbb{R}^2$ em triângulos .

- K_i o elemento de volume.
- $S_{ij} = K_i \cap K_j$ o lado comum.

- $\nu(i)$ conjunto dos indices dos elementos K_j adjacentes a K_i .
- \mathbf{n}_{ij} o vector normal exterior a K_i sobre S_{ij} .

Princípio de conservação

 \Rightarrow Integração sobre o volume K_i

$$\int_{K_i} \partial_t \rho d\, x + \int_{K_i} \nabla . (V\rho) d\, x = 0.$$

⇒ Fórmula de Green-Gauss

$$\frac{d}{dt} \int_{K_i} \rho(x,t) dx + \int_{\partial K_i} \rho(x,t) V.\mathbf{n} ds = 0.$$

 \Rightarrow Integração entre t^n e $t^{n+1} = t^n + \Delta t$

$$\int_{K_i} \rho(x, t^{n+1}) dx = \int_{K_i} \rho(x, t^n) dx$$
$$- \sum_{j \in \nu(i)} \int_{t^n}^{t^{n+1}} \int_{S_{ij}} \rho(x, t) V. \mathbf{n}_{ij} ds$$

Aproximação da função :

$$\rho_i^n \approx \frac{1}{|K_i|} \int_{K_i} \rho(x, t^n) dx,$$

$$\rho_i \qquad \rho_i \qquad \rho_j$$
fluxo "upwind"

Aproximação do fluxo :

$$\frac{1}{\Delta t|S_{ij}|} \int_{t^n}^{t^{n+1}} \int_{S_{ij}} \rho(x,t) V \cdot \mathbf{n}_{ij} = [V \cdot n_{ij}]^+ \rho_i^n + [V \cdot n_{ij}]^- \rho_j^n$$

V

御下 ・ ヨト ・ ヨト

э

Esquema Volumes Finitos

$$\rho_i^{n+1} = \rho_i^n - \sum_{j \in \nu(i)} \frac{\Delta t |S_{ij}|}{|K_i|} \left([V_{ij}.n_{ij}]^+ \rho_i^n + [V_{ij}.n_{ij}]^- \rho_j^n \right).$$

Método dos Elementos finitos

Universidade do Minho, Março 2011 Stéphane Clain et al : Da modelação à simulação numérica

I ≡ ▶ < </p>

Transferência de calor

$$\nabla \mathbf{q} = f, \quad \mathbf{q} = k \nabla T.$$

- T(x,t) temperatura , $x\in \Omega$,
- $\bullet~\mathbf{q}$ fluxo de calor.
- f fonte de calor (ou de frio)
- k conductividade termica.

Formulação fraca

Em dimensão 1 (barra [0, L])

• formulação forte

$$(kT')' = f$$
, $T(0) = T_0$, $T(L) = T_1$.

• Formulação fraca : para qualquer função $\phi \in V$

$$\int_0^L kT'\phi' dx = \int_0^L f\phi dx$$

 ${\rm com}\ V=\{\phi\in C^1([0,L]),\ \phi(0)=T_0, \phi(L)=T_1\}_{\text{const}},$

Discretização da barra com N + 1 pontos $x_i = ih, i = 0, ..., N$

Funções "chapeu" ϕ_i contínuas, linear piecewise, $\phi_i(x_j) = \delta_{ij}$.

Representação discreta da solução como

$$T_h(x) = T_0\phi_0(x) + T_1\phi_N(x) + \sum_{j=1}^{N-1} T_j\phi_j(x).$$

Problema discretizado

Substituir a solução exata com a solução discreta

• Para qualquer i = 1, ..., N - 1

$$\int_0^L kT'_h \phi'_i dx = \int_0^1 f \phi_i dx$$

• Estrutura linear

$$\sum_{j=1}^{N-1} T_j \int_0^L \phi'_j \phi'_i = -T_0 \int_0^L \phi'_0 \phi'_i - T_1 \int_0^L \phi'_N \phi'_i + \int_0^L f \phi_i dx$$

• Formulação matricial: O problema se torna como AT = b com

$$A_{ij} = \int_0^L \phi'_j \phi'_i, \quad b_i = -T_0 \int_0^L \phi'_0 \phi'_i - T_1 \int_0^L \phi'_N \phi'_i + \int_0^L f \phi_i dx$$

Resolver o sistema linear para determinar os T_i .

Computação científica de alto desempenho 'high performance computing'

- Vectorização com SIMD: XMM (MultiMedia Extention 1997), SSE (Streaming SIMD Extention 1999-2006), AVX (advanced Vector Extention 2011) (7.6 Gflops *without*, 30 Gflop/s *with* per core).
- Programação Multi-core: OpenMP, Pthread. Usar 4 ate 24 cores com memoria partilhada (peak 24×30=720 Gflops).
- Programação GPU : CUDA, OpenCL. Utilizar as capacidades de calculo do GPU. Placas dedicadas Tesla, Fermi (500 Gflop/s).
- Programação paralela : MPI para comunicar com milhares de computadores. Exemplo: computador Jaguar Cray XT5-HE with 224 256 Opteron 6-core 2.6 GH 2 300 000 Gflop/s).

伺 ト イ ヨ ト イ ヨ

- Vectorização com SIMD: XMM (MultiMedia Extention 1997), SSE (Streaming SIMD Extention 1999-2006), AVX (advanced Vector Extention 2011) (7.6 Gflops *without*, 30 Gflop/s *with* per core).
- Programação Multi-core: OpenMP, Pthread. Usar 4 ate 24 cores com memoria partilhada (peak 24x30=720 Gflops).
- Programação GPU : CUDA, OpenCL. Utilizar as capacidades de calculo do GPU. Placas dedicadas Tesla, Fermi (500 Gflop/s).
- Programação paralela : MPI para comunicar com milhares de computadores. Exemplo: computador Jaguar Cray XT5-HE with 224 256 Opteron 6-core 2.6 GH 2 300 000 Gflop/s).

.

- Vectorização com SIMD: XMM (MultiMedia Extention 1997), SSE (Streaming SIMD Extention 1999-2006), AVX (advanced Vector Extention 2011) (7.6 Gflops *without*, 30 Gflop/s *with* per core).
- Programação Multi-core: OpenMP, Pthread. Usar 4 ate 24 cores com memoria partilhada (peak 24x30=720 Gflops).
- Programação GPU : CUDA, OpenCL. Utilizar as capacidades de calculo do GPU. Placas dedicadas Tesla, Fermi (500 Gflop/s).
- Programação paralela : MPI para comunicar com milhares de computadores. Exemplo: computador Jaguar Cray XT5-HE with 224 256 Opteron 6-core 2.6 GH 2 300 000 Gflop/s).

- 4 B b 4 B b

- Vectorização com SIMD: XMM (MultiMedia Extention 1997), SSE (Streaming SIMD Extention 1999-2006), AVX (advanced Vector Extention 2011) (7.6 Gflops *without*, 30 Gflop/s *with* per core).
- Programação Multi-core: OpenMP, Pthread. Usar 4 ate 24 cores com memoria partilhada (peak 24x30=720 Gflops).
- Programação GPU : CUDA, OpenCL. Utilizar as capacidades de calculo do GPU. Placas dedicadas Tesla, Fermi (500 Gflop/s).
- Programação paralela : MPI para comunicar com milhares de computadores. Exemplo: computador Jaguar Cray XT5-HE with 224 256 Opteron 6-core 2.6 GH 2 300 000 Gflop/s).

• SSE4 version: mais registros para limitar o accesso a memoria

• AVX version: resgistros de 256 bits YMM. 4 operações de dupla precisão simultaneamente.

• AVX version: operações não destrutivas (com 3 registros)

• AVX version: tranferência de blocos de memória com data alinhada.

eneral-Purpose legisters (GPRs)	64-Bit Media and Floating-Point Registers		128-Bit Media Registers	
R/	X	MMX0/FPRO		
RE	α	MMX1/EPR1		
R	x	MMX2/FPR2		
R	X	MMY3/FDP3		
R	P	MAYA/EDDA		
P ⁴		MMYC (CDD)		
Pr		MANGERE		
PS PS	p	MMAG/PPNG		
	<u> </u>	MINA//PPK/		-
Pro Pro	63	0		
	0 Dans Bunister			-
R	u nags kegister	_		-
R	0 EFLAGS	RFLAGS		-
R	63	0		
KI	 Instruction Pointer 	r		
R	4	Dan		
R	5 EIP	KIP		
0	63	0	127	0
Legacy x86 negisters	supported in all modes	Application-programm 128-bit media control-	ing registers also include the and status register and the	
Register extensions,	supported in 64-bit mode	x87 tag-mord, control-	word, and status-word registers	

registros internos

- Distribuir cálculos independentes sobre diferentes cores.
- Memória partilhadas entre os diferentes cores.
- Os compiladores realizam este operação com pragma. Fácil de programar

Ciclo monocore

```
for(int i=0; i<99999;i++)
a[i] = b[i] + 9;</pre>
```

Ciclo multicore com OpenMP

• O principal problema é o acesso à memória (conflitos de acesso, fluxo limitado no 'bus').

• Distribuir um conjunto de operações dentro um thread constituido de vários nós de cálculo em paralelos

- Muitas unidades de cálculo para um preço muito baixo.
- É necessario uma livraria para 'falar' com o GPU. (CUDA, OpenCL)
- Transferência da memória CPU⇔ GPU
- Estrutura dos dados específica (blocos de memória em 2^n)

- 4 同 ト 4 目 ト

OpenCL threads

Parallel computing

MPI cluster: PC farm

- Memória partilhada. Cada computador é um nó de calculo independente.
- Sistema de comunicação e transferência de dados (MPI).
- Programação e esquemas numéricos especificas.
- Não há limitação do número de máquinas.

- Modelação -> Esquema numérica -> Implementação -> Simulação
- Projetos FCT: volumes finitos de ordens muitas elevadas
- Projetos FCT: simulação de um escoamento de polímeros

Objectivos : Realizar uma implementação eficiente de alto desempenho usando as vários técnicas.

Tese de Mestrado: Propostas para realizar uma tese de mestrado no domínio da simulação numérica e o cálculo cientifico intensivo com técnica de vectorização , GPU ou paralelização .