Computer aided design of extrusion forming tools

J. M. Nóbrega and O. S. Carneiro

《 × *I3N/IPC –Institute for Polymers and Composites Department of Polymer Engineering University of Minho Portugal*

mnobrega@dep.uminho.pt / olgasc@dep.uminho.pt

Introduction - Profile Extrusion

Introduction - Profile Extrusion

Outline

- Problem Statement
- Flow Distribution Optimisation
- Flow Balance Strategies
- Optimisation
- Length vs Thickness Optimisation
- Conclusion
- Calibrators
 - Problem Statement
 - System Behaviour
 - Optimisation Methodology
 - Case Study
 - Conclusion
- Conclusion
- Ongoing Work

Extrusion Dies – *Problem Statement*

Unbalanced

Balanced

~~

Extrusion run

Numerical Velocity contours

Modification of the controllable geometrical parameters until the optimum is reached

Modification of the controllable geometrical parameters until the optimum is reached

Progressive mesh refinements

	Cells along Thickness	Number of Cells	Time [h:m:s]	
	2	15 496	0:00:36	
	4	92 248	0:12:15	
	6	272 220	1:12:17	
	8	593 928	4:28:36	
	10	688 024	6:43:42	

PIV / 2.4 GHz

Modification of the controllable geometrical parameters until the optimum is reached

Equations to Solve

Conservation of mass:

$$\frac{\partial \rho u_j}{\partial x_j} = 0$$

Conservation of linear momentum:

$$\frac{\partial \rho u_i}{\partial t} + \frac{\partial \rho u_j u_i}{\partial x_j} = -\frac{\partial p}{\partial x_i} + \frac{\partial \tau_{ij}}{\partial x_j}$$

Conservation of energy:

$$\frac{\partial \rho cT}{\partial t} + \frac{\partial \rho cu_i T}{\partial x_i} = \frac{\partial}{\partial x_i} \left(k \frac{\partial T}{\partial x_i} \right) + \tau_{ij} \frac{\partial u_i}{\partial x_j}$$

Constitutive equation (Gen. Newtonian):

$$\tau_{ij} = \eta \left(\dot{\gamma} \right) \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right)$$

Modification of the controllable geometrical parameters until the optimum is reached

Equations to Solve

Conservation of mass:

$$\frac{\partial \rho u_j}{\partial x_j} = 0$$

Conservation of linear momentum:

$$\frac{\partial \rho u_i}{\partial t} + \frac{\partial \rho u_j u_i}{\partial x_j} = -\frac{\partial p}{\partial x_i} + \frac{\partial \tau_{ij}}{\partial x_j}$$

Conservation of energy:

$$\frac{\partial \rho cT}{\partial t} + \frac{\partial \rho cu_i T}{\partial x_i} = \frac{\partial}{\partial x_i} \left(k \frac{\partial T}{\partial x_i} \right) + \tau_{ij} \frac{\partial u_i}{\partial x_j}$$

Constitutive equation (viscoelastic):

$$\tau_{ij} + \lambda \left(\frac{\partial \tau_{ij}}{\partial t} + \frac{\partial \left(u_k \tau_{ij} \right)}{\partial x_k} \right) = \eta_p \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) + \lambda \left(\tau_{jk} \frac{\partial u_i}{\partial x_k} + \tau_{ik} \frac{\partial u_j}{\partial x_k} \right)$$

Modification of the controllable geometrical parameters until the optimum is reached

parameters until the optimum is reached

SIMPLEX Method (SM)

Experimental Method (EM)

Extrusion Dies – Flow Balance Strategies

《 子

~~

Initial flow channel dimensions

ES	1	2	3	4	5	6
t _i [mm]	2.0	2.5	2.5	3.0	2.0	4.0
L _i [mm]	30.0	37.5	37.5	45.0	30.0	60.0
L _i /t _i	15.0	15.0	15.0	15.0	15.0	15.0

Constitutive equation

$$\eta\left(\dot{\gamma}, T\right) = F\left(\dot{\gamma} \times H\left(T\right)\right) H\left(T\right)$$

$$F(\dot{\gamma}) = \eta_{\infty} + \frac{\eta_{0} - \eta_{\infty}}{\left(1 + (\lambda\dot{\gamma})^{2}\right)^{\frac{1-n}{2}}} \quad H(T) = \exp\left[\alpha\left(\frac{1}{T} - \frac{1}{T_{\alpha}}\right)\right]$$

Mesh

Operating and thermal boundary conditions

Flow rate	20 kg/h		
Melt inlet temperature	230 °C		
Outer die walls temperature	230 °C		
Inner (mandrel) die walls	Adiabatic		

《 木

DielNI – Initial trial

Optimizations performed

DieL – Length optimisation
DieT – Thickness optimisation
DieLS – Length optimisation + Flow separators

DieL

DieT

DieLS

DieIni

DieL

DieT

Calibrators – *Problem Statement*

Calibrators - Pre-processor

Calibrators – *Numerical boundary conditions*

Polymer

$$\frac{\partial}{\partial x} \left(k_p \frac{\partial T_p}{\partial x} \right) + \frac{\partial}{\partial y} \left(k_p \frac{\partial T_p}{\partial y} \right) + \frac{\partial}{\partial z} \left(k_p \frac{\partial T_p}{\partial z} \right) - \rho_p c_p \frac{\partial}{\partial z} \left(w T_p \right) = 0$$

Calibrator

$$\frac{\partial}{\partial x} \left(k_c \frac{\partial Tc}{\partial x} \right) + \frac{\partial}{\partial y} \left(k_c \frac{\partial T_c}{\partial y} \right) + \frac{\partial}{\partial z} \left(k_c \frac{\partial Tc}{\partial z} \right) = 0$$

Polymer-calibrator interface

Contact Resistance

$$k_{c} \left(\frac{\partial T_{c}}{\partial n} \right)_{\text{interface}} = -k_{p} \left(\frac{\partial T_{p}}{\partial n} \right)_{\text{interface}} = h_{i} \left(T_{p} - T_{c} \right)_{\text{interface}}$$

Calibrators - *Typical result*

3D Temperature field calculation (FVM)

Influence of boundary conditions, process and geometrical parameters on the system performance (in terms of average temperature and temperature uniformity)

Conclusion:

In general

Exceptions

Calibrators - System Behaviour

よ

Calibrators - System Behaviour

Calibrators - System Behaviour

Calibrators - Optimisation Methodology

Calibrators - Optimisation Methodology

Temperature uniformity

$$\sigma_T = \sqrt{\frac{\sum_{i=1}^{n_f} (T_i - \overline{T})^2 A_i}{A_T}}$$

$$\overline{T} = \frac{\sum_{i=1}^{n_f} T_i A_i}{A_T}$$

$$F_{obj} = K \left| \overline{T} - T_{s} \right| + \boldsymbol{\sigma}_{T}$$

where:

$$\begin{cases} \overline{T} \le T_s \Longrightarrow K = 0\\ \overline{T} > T_s \Longrightarrow K = 1000 \end{cases}$$

Calibrators - Optimisation Methodology

Optimisation algorithm Non-linear SIMPLEX method

Restrictions:

- Number of calibration/cooling units <= 3
- Total calibration length (Σ LCi) <= 600 mm
- Total system length ($\Sigma LCi + \Sigma Dij + 10$) <= 850 mm
- Cooling Fluid Temperature TCi ∈ [10°C,26°C]

General conditions for the simulations

Processing conditions

 $v_p = 2 \text{ m/min}$ $T_m = 180 \ ^{\circ}\text{C}$ $T_f = 18 \ ^{\circ}\text{C}$ $T_s = 80 \ ^{\circ}\text{C}$

Materials Properties $K_p = 0.18$ W/mK $K_c = 14$ W/mK $\rho_p = 1400$ kg/m³ $C_p = 1000$ J/kgK

Boundary conditions

Annealing zones: free convection and radiation Polymer-calibrator interface: contact resistance $(h_i = 425 \text{ W/m}^2\text{K})$

Ķ

Mesh

一六

TC1 = 10°C

Calibrator 2

 $TC2 = 26^{\circ}C$

- Implementation of the wall Slip and free-surface boundary conditions (L.L. Ferrás, Post-doctoral project);
- Development of unstructured numerical modelling code (N.D. Gonçalves, PhD project);
- Implementation of viscoelastic constitutive equations in an unstructured modelling code (S. Reddy, MSc Eurheo project);
- Prediction of thermal induced stresses in calibration in OpenFOAM (S. Reddy, Research Project);
- Development of high order interpolation schemes (R. Costa, FCT Research Project, DMAT);
- Portability and Performance in Heterogeneous Manycore Systems (R. Ribeiro, PhD Project, DI) -OpenFOAM;

- Development of multiscale modelling approaches (S.T. Mould, PhD Project);
- Development of ISPH numerical modelling code (D.F. Cordeiro, PhD/Cooperation Project, USP);
- Development of FSI methodologies for the design of extrusion dies in OpenFOAM (M.R. Moosavi, Postdoctoral grant);
- Modelling the cooling stage in profile extrusion using OpenFOAM (R. Ananth, PhD project, MIT+Soprefa);
- Design of a new generation of car washing machines (M. Sabet, PhD project, MIT+Petrotec);
- Characterisation of the heat transfer coefficient at the polymer-metal interface in profile cooling (F. Araújo, FCT Research Project);

Recent / Ongoing work

 Development of ISPH numerical modeling code (D.F. Cordeiro, PhD/Cooperation Project, USP);

(a) Simulação sem a utilização de técnicas de tratamento de posição de partículas.

(b) Simulação utilizando a técnica de deslocamento artificial.

(c) Simulação com deslocamento artificial e ITBLS

(d) Simulação com deslocamento artificial e ITBFT.

Recent / Ongoing work

《 ×

 Development of ISPH numerical modelling code (D.F. Cordeiro, PhD/Cooperation Project USP);

Recent / Ongoing work

 Development of ISPH numerical modeling code (D.F. Cordeiro, PhD/Cooperation Project, USP);

%

