Beyond Instruction-Level Parallelism

* When exploiting ILP, goal is to minimize CPI

Computing Systems & Performance

5.
AN

MSc Informatics Eng. > Pipeline CPI =>
+ Ideal pipeline CPI + v
+ Structural stalls + v
+ Data hazard stalls + (4
2013/14 + Control stalls + v
A.J.Proencga * Memory stalls ... cache techniques ... (%4
> Multiple issue =>
« find enough parallelism to keep pipeline(s) occupied ¢/
> Multithreading =>
Data Parallelism 1 (vector, SIMD ext., GPU) « find ways to keep pipeline(s) occupied v
t slid b d .
(most slides are borrowed) * Insert data parallelism features: SIMD...
AJProenga, Computer Systems & Performance, MEI, UMinho, 2013/14 1 AJProenga, Computer Systems & Performance, MEI, UMinho, 2013/14 2
Introduction g SIMD Parallelism =
5 5
= SIMD architectures can exploit significant data- = Vector architectures
level p.aral.lel'sm fqr' iy . » SIMD extensions
= matrix-oriented scientific computing . .
= media-oriented image and sound processing = Graphics Processor Units (GPUs)
= SIMD is more energy efficient than MIMD = For x86 processors: e a
» only needs to fetch one instruction per data operation = Expected grow: 1o0 / x///

2 more cores/chip/year

= SIMD width: /f/

= SIMD allows programmers to continue to think F?Xtevf”l' 4 yezrs ﬁ/—‘
: = Potential speedup: \
sequentially SIMD 2x that from MIMD!

= makes SIMD attractive for personal mobile devices

°

Potential parallel speedup

1
2003 2007 2011 2015 2019 2023

Vector Architectures

I'-insfrucﬂon Parallelism // AV

= [

$81N108)IY2IY J0}OSA

= Basic idea: Can overlap execution of multiple vector instructions
- Read SetS of data elements into “Vector - Consider machine with 32 elements per vector r'egisfef‘ and 8 lanes:
registers” Load Unit Multiply Unit Add Unit
= Operate on those registers load YoTeTe[e[o[r—
. oolejood™M Nalalalala
u StOre the reSU|tS baCk IntO memory time ooeoooe e blalalala/aldadd fmimmEE E EE
IdooooooopAAAAAAAlIlllIlll
oa EIEIEIEIEI el NN OIOCOOCICE
; ; ol|o]olo]o]d AA[A[A[A[g o Nlmmmmnnm=
= Registers are controlled by the compiler T da P
» Used to hide memory latency BRREEEEE NN O000000C
. NN O0000000
= Leverage memory bandwidth — 00000000
issue
Complete 24 operations/cycle while issuing 1 short instructionlqycle
8/19/2009 John Kubiatowicz Parallel Architecture: 35

| VMIPS Instructions

| = ADDVV.D: add two vectors
= ADDVS.D: add vector to a scalar
s LV/SV: vector load and vector store from address

| vmIPS

= Example architecture: VMIPS
= Loosely based on Cray-1

= Vector registers Main memory I
= Each register holds a 64-element,

64 bits/element vector
= Register file has 16 read ports and

8 write ports Vector I“
load/store
= Vector functional units
= Fully pipelined, new op each clock-cycle

$2IN}08]IY21Y J0JOS\
$8IN}08}IY21Y J0JOS

= Example: DAXPY
L.D FO,a ; load scalar a
LV V1,Rx ; load vector X

FP add/subtract
FP multiply

MULVS.D V2,V1,FO ; vector-scalar multiply
FP divide
:/ D?ta <|& czntrfl hazar.(tjs are detectet?l — | I—' LV V3,Ry ; load vector Y
ector load-store uni ecor [

) = Fully pipelined B — ADDVV v4,vz,v3 i add

=« 1 word/clock-cycle after initial latency I SV Ry,V4 ; store the result
= Scalar registers .

« 32 general-purpose registers eglins \ = Requires the execution of 6 instructions versus almost 600 for MIPS

= 32 floating-point registers Crossbar switches

Vector Execution Time Challenges

= Start up time
= Latency of vector functional unit

= Assume the same as Cray-1
= Floating-point add => 6 clock cycles
= Floating-point multiply => 7 clock cycles
= Floating-point divide => 20 clock cycles
= Vector load => 12 clock cycles

= Execution time depends on three factors:
» Length of operand vectors
» Structural hazards
» Data dependencies

$81N108)IY2IY J0}OSA
$81N)08]IY2IY J0}OOA

s VMIPS functional units consume one element

ek I = Improvements:
per CIOCK cycCle

= > 1 element per clock cycle

= Execution time is approximately the vector length = Non-64 wide vectors

= |F statements in vector code

= Memory system optimizations to support vector processors
= Multiple dimensional matrices

= Sparse matrices

= Programming a vector computer

= Convoy

» Set of vector instructions that could potentially
execute together in one unit of time, chime

Multiple Lanes Vector Length Register

= Element n of vector register A is “hardwired” to
element n of vector register B
= Allows for multiple hardware lanes

= Handling vector length not known at compile time
= Use Vector Length Register (VLR)

$2IN}08]IY21Y J0JOS\
$8IN}08}IY21Y J0JOS

2191] [s191

231|513

r121] (8121

CIE8] I ETRS]

Lane 0

Lane 3

elements.

elements
1,5,9,...

elements.

2,6,10,...

1

[1

I

FP mul.

FP mul.

FP mul.

Use strip mining for vectors over the maximum length:

low = 0;

ais)| [sre VL = (n $ MVL); /*find odd-size piece using modulo op % */
— — FP add FP add FP add FP add

Pof o] pipe 0 pipe 1 pipe 2 pipe 3 for (J = 0; j <= (n/MVL); Jj=j+1) { /*outer loop*/

i] T T I T T I T for (i = low; i < (low+VL); i=i+l) /*runs for length VL*/
ais1| [see .)) . .

ol o o i oo oo Y[i] = a * X[1] + Y[i] ; /*main operation*/

low = low + VL; /*start of next vector*/
VL = MVL; /*reset the length to maximum vector length*/

T T pipe 0 pipe 1 pipe 2 pipe 3

+ + + + + Value of j 0 1 2 3 e e nMVL
s A A A - St 1t [I 1
)

m ' M ﬂ ! Rangeofi 0 m o (meMVL) (me2xMVL) ... co (n-MVL)
\ ’

----- e ———— Vector load-store unit ‘ . . - - .
Elemeit group (m-1) (m-1) (m-1) (m-1) (n-1)

+MVL 42xMVL +3xMVL

< <
- @ ()
Vector Mask Registers 2 Memory Banks 2
> >
. . g 5
= Handling IF statements in Vector Loops: 5 = Memory system must be designed to support high :
for (1 = 07 1 < 64; i=i+1) g bandwidth for vector loads and stores £
. . [(9]
if X[i] 1= 0) @ = Spread accesses across multiple banks @
X[i] = X[1] - Y[i]; = Control bank addresses independently
= Use vector mask register to “disable” elements: = Load or store non sequential words
LV V1,Rx ;load vector X into V1 = Support multiple vector processors sharing the same memory
LV V2,Ry ;load vector Y
L.D FO, #0 ;load FP zero into FO = Example (Cray T932):
SNEVS.D V1,F0 ;sets VM(i) to 1 if V1(i)!=F0 = 32 processors, each generating 4 loads and 2 stores per cycle
SUBVV.D V1,V1,V2 ;subtract under vector mask = Processor cycle time is 2.167 ns, SRAM cycle time is 15 ns
SV Rx, V1 ;store the result in X = How many memory banks needed?

s GFLOPS rate decreases!

< <
[0) [0)
g Scatter-Gather 2
= =
S S
= Handling multidimensional arrays in Vector Architectures: F = Handling sparse matrices in Vector Architectures: g
for (3 = 0; § < 100; j=j+1) { & , , , &
A[K[1 = A[K[1 + C[M[1 ;
ALL][5] = 0.0; [K[1]] [K[1]] [M[i]]
for (k = 0; k < 100; k=k+1)
A[i1[3] = A[il[j] + B[il[k] * D[k][3]; = Use index vector:
} LV Vk, Rk ;load K
) LVI Va, (Ra+Vk) ;load A[K[]]
= Must vectorize multiplication of rows of B with columns of D v v R load M
= Use non-unit stride (in VMIPS: load/store vector with stride) m, =m 7o
VI Vc, (Rc+Vm) ;load C[M[]]

= Bank conflict (stall) occurs when the same bank is hit faster than
bank busy time: ADDVV.D Va, Va, Vc ;add them
= #banks / Least_ Common_Multiple (stride, #banks) < bank busy time SVT (Ra+Vk) Va sstore A[K[]]
4 4

" Architecture /N
) N

Array ::I Inter-PE Connection Network ‘I
Controller 1 1 1 1 1 1 1 1

v | 1 + | | +_ v | ¥

> PE [PE [PE [PE [” PE [PE [*” PE [” PE
Control = t 1 : I I I) I I t
Data <> M M M M M M M M
> e > e |l e e |lbe|lve e e

m m m m m m m m

+ Single Instruction Mulﬁple baTa (SIMD)

+ Central controller broadcasts instructions to multiple
processing elements (PEs)
- Only requires one controller for whole array
- Only requires storage for one copy of program
- All computations fully synchronized

* Recent Return to Popularity:
- GPU (Graphics Processing Units) have SIMD properties
- However, also multicore behavior, so mix of SIMD and MIMD (more later)

* Dual between Vector and SIMD execution

8/19/2009 John Kubiatowicz Parallel Architecture: 36

SIMD Extensions

» Media applications operate on data types
narrower than the native word size

» Example: disconnect carry chains to “partition”
adder

» Limitations, compared to vector instructions:
= Number of data operands encoded into op code

= No sophisticated addressing modes (strided, scatter-
gather)

= NoO mask registers

eIpawI)N|\ 10} SUOISUS)XT 18S UoNoNJSUl QNIS

l'mIMD: (Poor-Man's SIMD?)

+ SIMD processing (Intel)

- with SSE / SSE2

* Scalar processing
- traditional mode
- one operation produces - one operation produces
one result multiple results

Slide Source: Alex Klimovitski & Dean Macri, Intel Corporation

8/19/2009 John Kubiatowicz Parallel Architecture: 37

SIMD Implementations

= Implementations:
s Intel MMX (1996)
= Eight 8-bit integer ops or four 16-bit integer ops
= Streaming SIMD Extensions (SSE) (1999)
= Eight 16-bit integer ops
= Four 32-bit integer/fp ops or two 64-bit integer/fp ops
= Advanced Vector eXtensions (2010)
= Four 64-bit integer/fp ops

= Operands must be in consecutive and aligned
memory locations

elpawn|n|Al 10} SUOISUSIXT 18S uononIsu| gNIS

%)
=
A Brief History of x86 SIMD Jjample SIMD Code 5
(]
= Example DAXPY: 2
NN o
L.D FO,a ;load scalar a 5
8 x 8 bit , =]
Integer MMX 4y 32 bit MOV Fl, FO ;jcopy a into F1 for SIMD MUL 1)
NG BANOW! o pront MOV F2, FO ;copy a into F2 for SIMD MUL £
Subset SSE oo h , m
oat MOV F3, FO ;copy a into F3 for SIMD MUL :.,f,
E Ssaz%éitg DADDIU R4,Rx,#512 ;last address to load ?
: Future Subset) Loop: e
v o (2]
SSlEO L.4D F4,0[Rx] ;load X[i], X[i+1], X[i+2], X[i+3] g
oo MUL.4D F4,F4,F0 ;axX[i],axX[i+1],axX[i+2],axX[i+3] =
| L.4D F8,0[Ry] ;load Y[i], Y[i+1], Y[i+2], Y[i+3] =
SSE4.1 ADD.4D F8,F8,F4 ;axX[i]+Y[i], ..., axX[i+3]+Y[i+3] é
| | S35 S.4D O[Ry],F8 ;store into Y[i],Y[i+1],Y[i+2],Y[i+3] &
£ 88%4'2 { DADDIU Rx,Rx,#32 ;increment index to X

Larrabee v B TR SSE5

AVX" 5P Float

v

DADDIU Ry,Ry,#32 ;increment index to Y
DSUBU R20,R4,Rx ;compute bound
AVX+FMA 3 operands BNEZ R20, Loop ;check if done

16 x 32 bit SP Float

AJProenga, Computer Systems & Performance, MEI, UMinho, 2013/14 21

@
L]]] 8
| Graphical Processing Units E Classifying GPUs
o)
= Question to GPU architects: g
= Given the hardware invesfed 'to do graphics well, % « Don't fit nicely into SIMD/MIMD model
how can we supplement it to /m;?)rove the performance & — Conditional execution in a thread allows an
of a wider range of applications? z illusion of MIMD
_ _ * But with performance degradetion
= Key ideas: » Need to write general purpose code with care
= Heterogeneous execution model
= CPU is the host, GPU is the device Static: Discovered Dynamic: Discovered
= Develop a C-like programming language for GPU : at Compile Time at Runtime
= Unify all forms of GPU parallelism as CUDA_thread petroton-Level VLW Superscalar
= Programming model follows SIMT: -
“Single Instruction Multiple Thread ” g:::”ﬁ\s/eml SIMD or Vector GPU device

AJProenga, Computer Systems & Performance, MEI, UMinho, 2013/14 24

Performance gap between

Theoretical
GFLOP/s
1500
NVIDIA GPU Single Precision
1250 === NVIDIA GPU Double Precision
== |ntel CPU Single Precision
«=s-|ntel CPU Double Precision
1000
750
Tesla C2050

500

250 Westmere
TeslaC1060

Woodcrest

o Pentiunta Harpertown
Sep-01 Jan-03 Jun-04 Oct-05 Mar-07 Jul-08

Dec-09
AJProenga, Computer Systems & Performance, MEI, UMinho, 2013/14 25

NVIDIA GPU Architecture

= Similarities to vector machines:
= Works well with data-level parallel problems
= Scatter-gather transfers
= Mask registers
= Large register files

» Differences:
= No scalar processor
» Uses multithreading to hide memory latency

= Has many functional units, as opposed to a few
deeply pipelined units like a vector processor

sjun Buissedold [eaiydels

Ultra-Threaded Dispatch Processor

What s a core?

* Is a core an ALU?

—AT]I claims 800 streaming processors!!
« 5way VLIW * 16 way SIMD * 10 “SIMD cores” ==

SIMD. SIMD SIMD SIMD.
Engine Engine Engine Engine

nnnnnnnnn

:::::

* |s a core a SIMD vector unit?

—NVidia claims 512 streaming processors!!
» 32 way SIMD * 16 “multiprocessors”
— To match ATI, they could count another factor of 2 for dual-issue

General-Purpose Registers

« In these slides, we use core consistent with the CPU world
— Superscalar, VLIW, SIMD are part of a core’ s architecture, not the #cores

AJProenga, Computer Systems & Performance, MEI, UMinho, 2013/14 26

25,
%S

» Compute Unified Device Architecture
+ CUDA is a recent programming model, designed for
— Manycore architectures
— Wide SIMD parallelism
— Scalability
» CUDA provides:
— A thread abstraction to deal with SIMD
— Synchr. & data sharing between small groups of threads
CUDA programs are written in C with extensions
* OpenCL inspired by CUDA, but hw & sw vendor neutral
— Programming model essentially identical

AJProenga, Computer Systems & Performance, MEI, UMinho, 2013/14 28

