Computing Systems & Performance

MSc Informatics Eng.

2013/14
A.J.Proenca

Data Parallelism 3 (M/C/CUDA programming)

(most slides are borrowed)

AJProenga, Computer Systems & Performance, MEI, UMinho, 2013/14 1

Programming Models for
o X' Intel® Xeon®
processors and Intel®

.‘ %I Many Integrated Core

ntel MIC) Architecture

‘ %, Scott McMillan
,, Senior Software Engineer

' Software & Services Group

April 11, 2012

TACC-Intel Highly Parallel
Computing Symposium

Spectrum of Programming Models and Mindsets

—_ e

“11" Multi-Core Centric Many-Core Centric

Multi-Core Hosted Symmetric

General purpose
serial and parallel

Many Core Hosted

Codes with balanced Highty-paratlel codes

computing needs

Codes with highly-
parallel phases

Multi-core
(Xeon)

Many-core

(MIC) = v

10

Programming Intel® MIC-based Systems
MPI+Offload

e MPI ranks on Intel® Xeon®
processors (only)

e All messages into/out of
processors

e Offload models used to
accelerate MPI ranks

e Intel® Cilk™ Plus, OpenMP¥*,
Intel® Threading Building
Blocks, Pthreads* within Intel®
MIC

e Homogenous network of hybrid

T R

Offload Code Examples

e C/C++ Offload Pragma

#pragma offload target (mic)
#pragma omp parallel for reduction(+:pi)
for (i=0; i<count; i++) {
float t = (float)((i+0.5)/count);
pi += 4.0/(1.0+t*t);
}

pi /= count;

e Function Offload Example
#pragma offload target(mic)
in(transa, transb, N, alpha, beta) \
in(A:length(matrix_elements)) \
in(B:length(matrix_elements)) \
inout(C:length(matrix_elements))

sgemm(&transa, &transb, &N, &N, &N,
&alpha, A, &N, B, &N, &beta, C, &N);

e Fortran Offload Directive
1dir$ omp offload target(mic)
1Somp parallel do
do i=1,10
A(i) = B(i) * C(i)
enddo

e C/C++ Language Extension
class _Cilk_Shared common {

int datal;

char *data2;

class common *next;

void process();
L
_Cilk_Shared class common obj1, obj2;
_Cilk_spawn _Offload objl.process();
obj2.process();

_Cilk_spawn

—
-

e,

Programming Intel® MIC-based Systems
Many-core Hosted

e MPI ranks on Intel® MIC

(only)
e All messages into/out of Intel®
MIC

e Intel® Cilk™ Plus, OpenMP¥*,
Intel® Threading Building
Blocks, Pthreads used directly
within MPI processes

e Programmed as homogenous
network of many-core CPUs:

LY
mEE
EEam
aEam

Xeon

Xeon

Programming Intel® MIC-based Systems
Symmetric

MPI ranks on Intel® MIC and
Intel® Xeon® processors

Messages to/from any core
Intel® Cilk™ Plus, OpenMP¥*,
Intel® Threading Building

Blocks, Pthreads* used directly
within MPI processes

MPI

Programmed as heterogeneous
network of homogeneous
nodes:

=s| [SS| Ral ISS| |
=s| ISs| IS JSS| |

=s| ISs] [S JSS| |
=s] JSs] S [SS]

Keys to Productive Performance on
Intel® MIC Architecture

¢ Choose the right Multi-core centric or Many-core
centric model for your application

e \Vectorize your application (today)
- Use the Intel vectorizing compiler

e Parallelize your application (today)
- With MPI (or other multi-process model)

- With threads (via Intel® Cilk™ Plus, OpenMP*, Intel®
Threading Building Blocks, Pthreads, etc.)

e Go asynchronous to overlap computation and
communication
intel)

15

Options for Thread Parallelism

Ease of use / code
Intel® Math Kernel Library maintainability

Intel® Threading Building Blocks /\

Intel® Cilk™ Plus
L

OpenMP*

Pthreads* and other threading libraries

Programmer control
N

intel)

16
Options for Vectorization

Ease of use / code

Intel® Math Kernel Library maintainability (depends
‘ on problem)
Array Notation: Intel® Cilk™ Plus /\

Automatic vectorization

'Semiautomatic vectorization with annotation:

#ipragma vector, #pragma ivdep, and #pragma
simd

C/C++ Vector Classes (F32vecl6, F64vec8) \/

Vector intrinsics (mm_add ps, addps)

17

Summary

e Intel® MIC Architecture offers familiar and flexible
programming models

e Hybrid MPI/threading is becoming increasingly important as
core counts grow

e Intel tools support hybrid programming today, exploiting
existing standards

e Hybrid parallelism on Intel® Xeon® processors + Intel®
MIC delivers superior productivity through code reuse

e Hybrid programming today on Intel® Xeon® processors
readies you for Intel® MIC

19

Intel® Many Integrated Core Architecture:
An Overview and Programming Models

Jim Jeffers
SW Product Application Engineer
Technical Computing Group

Sponsors of Tomorrow: (in tel)

3/13/2012 Copyright © 2012, Intel Corporation. All rights reserved.

“Stand-alone” Intel® MIC Architecture Computing Environment

fooey.c
main()
* Intel® MIC Architecture software environment includes a { it i i
highly functional, Linux* OS running on the co-processor printf(“running Foo()\n");
. Foo();
with:
— Afamiliar interactive shell }

— IP Addressability [headless node]
— Alocal file system with subdirectories, file reads, writes, etc Foo()
— standard i/o including printf {
— Virtual memory management

— Process, thread management & scheduling }
— Interrupt and exception handling Intel MIC Architecture
— Semaphores, mutexes, etc... (Knights Comer console)

printf(“fooey\n”);

mymic>ls
fooey

* What does this mean?

— A large majority of existing code even with OS oriented calls like

> mymic>./fooey
fork() can port with a simple recompile

running Foo()
— Intel MIC Architecture natively supports parallel coding models

fooe
like Intel® Cilk™ Plus, Intel® Threading Building Blocks, pThreads*, y S
OpenMP* L
Sponsors of Tomorrow: ‘ intel
19 3/13/2012 Copyright © 2012, Intel Corporation. All rights reserved. 19

Intel* Many Integrated Core Architecture (Intel” MIC Architecture)

Co-Processing Example: Computing Pi

define NSET 1000000
int main (int argc, const char** argv)
{ long int i;
float num_inside, Pi;
num_inside = ©.0f;
#pragma offload target (MIC)
#pragma omp parallel for reduction(+:num_inside)
for(i = @; i < NSET; i++)
{ float x, y, distance_from_zero;
// Generate x, y random numbers in [0,1)
x = float(rand()) / float(RAND_MAX + 1);
y = float(rand()) / float(RAND_MAX + 1);
distance_from_zero = sqrt(x*x + y*y);
if (distance_from_zero <= 1.0f)
num_inside += 1.0f;

}
Pi = 4.0f * (num_inside / NSET);
printf("value of Pi = %f \n",Pi);
}

A one line change from the CPU version |nte|>

3/13/2012 Copyright © 2012, Intel Corporation. All rights reserved. 22

Stand-alone Example: Computing Pi

define NSET 1000000
int main (int argc, const char** argv)
{ long int i;
float num_inside, Pi;
num_inside = @.0f;
#pragma omp parallel for reduction(+:num_inside)
for(i = @; i < NSET; i++)
{ float x, y, distance_from_zero;
// Generate x, y random numbers in [©0,1)
x = float(rand()) / float(RAND_MAX + 1);
y = float(rand()) / float(RAND_MAX + 1);
distance_from_zero = sqrt(x*x + y*y);
if (distance_from_zero <= 1.0f)
num_inside += 1.0f;

}
Pi = 4.0f * (num_inside / NSET);
printf("value of Pi = %f \n",Pi);

}

Original Source Code i)
Compiler command line switch targets platform (intel
3/13/2012 Copyright © 2012, Intel Corporation. All rights reserved. 23

The CUDA programming model

» Compute Unified Device Architecture

 CUDA s a recent programming model, designed for
— a CPU host coupled to a many-core device, where
— devices have wide SIMD/SIMT parallelism, and
— the host and the device do not share memory
« CUDA provides:
— athread abstraction to deal with SIMD
— synchr. & data sharing between small groups of threads
» CUDA programs are written in C with extensions
* OpenCL inspired by CUDA, but hw & sw vendor neutral
— programming model essentially identical

AJProenga, Computer Systems & Performance, MEI, UMinho, 2013/14 16

CUDA Devices and Threads

7N
ININ

* A compute device
— is a coprocessor to the CPU or host
— has its own DRAM (device memory)
— runs many threads in parallel

— is typically a GPU but can also be another type of parallel
processing device

» Data-parallel portions of an application are expressed as
device kernels which run on many threads - SIMT
» Differences between GPU and CPU threads

— GPU threads are extremely lightweight
« very little creation overhead, requires LARGE register bank

— GPU needs 1000s of threads for full efficiency
« multi-core CPU needs only a few

AJProenga, Computer Systems & Performance, MEI, UMinho, 2013/14 17

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

CUDA basic model:
Single-Program Multiple-Data (SPMD)

» CUDA integrated CPU + GPU application C program
— Serial C code executes on CPU
— Parallel Kernel C code executes on GPU thread blocks

Grid 0
GPU Parallel Kernel % % % %

KernelA<<< nBIk, nTid >>>(args); T
CPU Code g

GPU Parallel Kernel % % % %
KernelB<<< nBIk, nTid >>>(args); T

AJProenga, Computer Systems & Performance, MEI, UMinho, 2013/14 18

CPU Code g

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

Programming Model: SPMD + SIMT/SIMD

« Hierarchy cpus — o

— Device => Grids e

— Grid => Blocks

— Block => Warps l Grid 1

— Warp => Threads Ke:"e' Block Block Block
+ Single kernel runs on multiple blocks L OO | &0 [&0

(SPMD) l Block-| Block ' Block

- Serial L) L@

» Threads within a warp are executed Code L

in a lock-step way called single- l " crid2

instruction multiple-thread (SIMT) o 2
 Single instruction are executed on 2 T

multiple threads (SIMD) "Bmm)

— Warp size defines SIMD granularity
(32 threads)

* Synchronization within a block uses

shared memory
Courtesy NVIDIA

AJProenga, Computer Systems & Performance, MEI, UMinho, 2013/1 .

The Computational Grid:

Block IDs and Thread IDs

* A kernel runs on a computational _
grid of thread blocks

— Threads share global memory o
« Each thread uses IDs to decide S E | Blook || Bk
what data to work on / o
—Block ID: 1D or 2D oA | an b
—Thread ID: 1D, 2D, or 3D P
« A thread block is a batch of \ Mg LA 7 3
threads that can cooperate by: \ 2 , _Ir

Block(1, 1

— Sync their execution w/ barrier \

— Efficiently sharing data through a
low latency shared memory

— Two threads from two different
blocks cannot cooperate

AJProenga, Computer Systems & Performance, MEI, UMinho, 2013/14 20

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009

ECE 498AL, University of Illinois, Urbana-Champaign

| Terminology (and in NVidia)

m Threads of SIMD instructions (warps)

Each has its own IP (up to 48/64 per SIMD processor, Fermi/Kepler)
Thread scheduler uses scoreboard to dispatch

No data dependencies between threads!

Threads are organized into blocks & executed in groups
of 32 threads (thread block)

» Blocks are organized into a grid
s | he thread block scheduler schedules blocks to

| | | | | |
syuun Buissasoud |eoiydels)

SIMD processors (Streaming Multiprocessors)

» Within each SIMD processor:
s 32 SIMD lanes (thread processors)
= Wide and shallow compared to vector processors

CUDA Thread Block

* Programmer declares (Thread) Block:

— Block size 1 to 512 concurrent
threads CUDA Thread Block

— Block shape 1D, 2D, or 3D
— Block dimensions in threads

threadID |ol1]2]3l4]5]6]7]

« All threads in a Block execute the
same thread program

» Threads share data and synchronize
while doing their share of the work float y = func (x);

output [threadID] = vy;

float x = input[threadID];

* Threads have thread id numbers
within Block

» Thread program uses thread id to
select work and address shared data

AJProenga, Computer Systems & Performance, MEI, UMinho, 2013/14 22

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

I\I\

Thread

Block

MI,W

Parallel Memory Sharing

* Local Memory:

Local Memory

» Shared

—Private per thread
—Auto variables, register spill

per-thread

Memory: per-block

A

Memory

Grid 0

—Inter-Grid communication

<>

<>

-
=

Global
Memory

AJProenga, Computer Systems & Performance, MEI, UMinho, 2013/14

—Shared by threads of the same
block
Shared —Inter-thread communication

» Global Memory:
—Shared by all threads

per-appllcatlon

Sequential
Grids
in Time

CUDA Memory Model Overview

zN\
ININ

« Each thread can:

« The host can R/W Host
global, constant, and
texture memories

R/W per-thread registers

R/W per-thread local memory
R/W per-block shared memory
R/W per-grid global memory

Read only per-grid constant
memory

Read only per-grid texture
memory

9

)

(Device) Grid

Block (0, 0)

e

Block (1, 0)

’

Thread (0, 0) Thread (1, 0)

Thread (0, 0)

Thread (1, 0)

i YV i A4
A

h

4 IIIIII I

YN i YV

N

A

AJProenga, Computer Systems & Performance, MEI, UMinho, 2013/14

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

Hardware Implementation:
Memory Architecture

ININ
Device

* Device memory (DRAM) S—
— Slow (2~300 cycles) J

— Local, global, constant,
and texture memory

’ Multiprocessor 2

Multiprocessor 1

* On-chip memory
— Fast (1 cycle)

— Registers,
shared memory,
constant/texture cache

| i i {1

Courtesy NVIDIA

AJProenga, Computer Systems & Performance, MEI, UMinho, 2013/14

NVIDIA GPU Memory Structures

s Each SIMD Lane has private section of off-chip
DRAM
= “Private memory” (Local Memory)

= Contains stack frame, spilling registers, and private
variables

sjun Buissaooid [eaiydels

s Each multithreaded SIMD processor also has
local memory (Shared Memory)

= Shared by SIMD lanes / threads within a block

» Memory shared by SIMD processors is GPU
Memory (Global Memory)
= Host can read and write GPU memory

= Multiply two vectors of length 8192
Code that works over all elements is the grid

Example

Thread blocks break this down into manageable sizes

» 512 threads per block

SIMD instruction executes 32 elements at a time

Thus grid size = 16 blocks
Block is analogous to a strip-mined vector loop with
vector length of 32

Block is assigned to a multithreaded SIMD processor
by the thread block scheduler

Current-generation GPUs (Fermi) have 7-16
multithreaded SIMD processors

Warp scheduler Scoreboard
. Warp No. | Address | SIMD instructions Operands?
Instruction . 1 42 1d.global.f64 Ready
cache 1 43 mul.i64 No
3 95 shl.s32 Ready
3 96 add.s32 No
8 11 Id.global.f64 Ready
8 12 Id.global.f64 Ready
I I
| Instruction register I
]
I T T T 2tk SR R T TN TN TN T S T —
SIMD Lanes
%;'7 ;;'7 ;§5 %i; Qi; ;;5 ;;5 %;5 Ei5 ;;; ;;& ;;5 ;;5 ;;5 ;;5 ;;5 (Thread
Processors)
Regi- | Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg
sters
1Kx32 [1Kx32 [1K %32 [1Kx32 | 1Kx32 | 1Kx32 [1Kx32 [1Kx 32 | 1Kx32 | 1IKx32 | 1Kx 32 [1Kx32 | 1Kx32 | 1Kx32 | 1K= 32 [1K= 32
Load | Load | Load | Load | Load | Load | Load | Load | Load | Load | Load | Load | Load | Load | Load | Load
store store store store store store store store store store store store store store store store
unit unit unit unit unit unit unit unit unit unit unit unit unit unit unit unit
20 A A A A
l Address coalescing unit | | Interconnection network I
|) [}
1] v
To Global
Local Memory
64KB Memory

sjun Buissasoid [eolydels

sjun Buissaooid [eaiydels

Vector Processor versus CUDA core

l [PC_] l |SIMD Thread Scheduler|
Instruction m Instruction
cache cache Dispatch unit
PC
A 4

[E.___fnf':rf'ffif’f'_fgis'e' _____ '_”_s_‘_rf'?fif)_"_f?gis'er
|] F@MTHF@MTE i @"ﬁf @r ﬁf @Mf

sjun Buissasoid [eolydels

processer r
K 2 l K2
0 1
& a 5 6 7
2 2
=) 2
e 2
5 3
£ o
g 60 61 62 63 1023 1023 1023 1023
v4 v4 v4 v4 vt v4 v4 v4
Vector load/store unit SIMD Load/store unit
5 P2 S 7 S 7 S 7.
Address coalescing unit
2 £%)
Memorzr:::terlace Memory interface unit
) 2

Conditional Branching

s Like vector architectures, GPU branch hardware uses
internal masks

= Also uses
= Branch synchronization stack
« Entries consist of masks for each SIMD lane
« l.e. which threads commit their results (all threads execute)

= Instruction markers to manage when a branch diverges into
multiple execution paths
» Push on divergent branch
= ...and when paths converge
« Act as barriers
» Pops stack

» Per-thread-lane 1-bit predicate register, specified by
programmer

®
=
Q
el
=.
Q
Sl
Y
=
o
(@)
D
n
2
=)
«
c
=)
=
(2}

