

White Paper

Intel® Xeon Phi™ Coprocessor

DEVELOPER’S QUICK START GUIDE

Version 1.6

Intel® Xeon Phi™ Coprocessor DEVELOPER’S QUICK START GUIDE

2

Contents

Introduction .. 4

Goals ... 4

This document does: .. 4

This document does not: ... 4

Terminology .. 4

System Configuration .. 5

Intel® Xeon Phi™ Software .. 5

Intel® Many Integrated Core Architecture Overview .. 7

Administrative Tasks .. 8

Preparing Your System for First Use .. 8

Steps to install the driver and start the card.. 8

Steps to install the Software Development tools .. 9

Updating an Existing System ... 10

Updating a system that already has an Intel® Xeon Phi™ Coprocessor .. 10

Regaining Access to the Intel® Xeon Phi™ Coprocessor after Reboot ... 11

Restarting the Intel® Xeon Phi™ Coprocessor If It Hangs .. 11

Monitoring the Intel® Xeon Phi™ Coprocessor ... 12

Running an Intel® Xeon Phi™ Coprocessor program from the host system .. 12

Working directly with the uOS Environment Intel® Xeon Phi™ Coprocessor .. 12

Useful Administrative Tools ... 13

Getting Started/Developing Intel® Xeon Phi™ Software .. 13

Available Software Development Tools / Environments .. 13

Development Environment: Available Compilers and Libraries ... 13

Development Environment: Available Tools ... 14

General Development Information .. 14

Development Environment Setup ... 14

Documentation and Sample Code ... 15

Build-Related Information ... 16

Compiler Switches and Makefiles .. 16

Debugging During Runtime ... 16

Where to Get More Help ... 17

Using the Offload Compiler – Explicit Memory Copy Model ... 17

Reduction .. 17

Creating the Offload Version ... 18

Intel® Xeon Phi™ Coprocessor DEVELOPER’S QUICK START GUIDE

3

Asynchronous Offload and Data Transfer ... 19

Using the Offload Compiler – Implicit Memory Copy Model ... 19

Native Compilation ... 21

Parallel Programming Options on the Intel® Xeon Phi™ Coprocessor ... 22

Parallel Programming on the Intel® Xeon Phi™ Coprocessor: OpenMP* .. 22

Parallel Programming on the Intel® Xeon Phi™ Coprocessor: OpenMP* + Intel® Cilk™ Plus Extended Array

Notation ... 23

Parallel Programming on the Intel® Xeon Phi™ Coprocessor: Intel® Cilk™ Plus ... 24

Parallel Programming on Intel® Xeon Phi™ Coprocessor: Intel® Threading Building Blocks (Intel® TBB) 24

Using Intel® MKL ... 26

SGEMM Sample... 26

Intel® MKL Automatic Offload Model .. 28

Debugging on the Intel® Xeon Phi™ Coprocessor... 28

Performance Analysis on the Intel® Xeon Phi™ Coprocessor ... 28

About the Authors.. 29

Notices ... 30

Performance Notice ... 31

Optimization Notice ... 31

Intel® Xeon Phi™ Coprocessor DEVELOPER’S QUICK START GUIDE

4

Introduction

This document will help you get started writing code and running applications on a system (host) that includes

the Intel® Xeon Phi™ Coprocessor based on the Intel® Many Integrated Core Architecture (Intel® MIC

Architecture). It describes the available tools and includes simple examples to show how to get C/C++ and

Fortran-based programs up and running. For now, the developer will have to cut/paste the examples provided

in the document to their system.

This document is available at http://software.intel.com/mic-developer under the “Overview” tab.

Goals

This document does:

1. Walk you through the Intel® Manycore Platform Software Stack (Intel® MPSS) installation.

2. Introduce the build environment for software enabled to run on Intel® Xeon Phi™ Coprocessor.

3. Give an example of how to write code for Intel® Xeon Phi™ Coprocessor and build using Intel®

Composer XE 2013 SP1.

4. Demonstrate the use of Intel libraries like the Intel® Math Kernel Library (Intel® MKL).

5. Point you to information on how to debug and profile programs running on an Intel® Xeon Phi™

Coprocessor.

6. Share some best known methods (BKMs) developed by users at Intel.

This document does not:

1. Cover each tool in detail. Please refer to the user guides for the individual tools.

2. Provide in-depth training.

Terminology

Host – The Intel® Xeon® platform containing the Intel® Xeon Phi™ Coprocessor installed in a PCIe* slot. The

operating systems (OS) supported on the host are Red Hat* Enterprise Linux* 6.0, Red Hat* Enterprise Linux*

6.1, Red Hat* Enterprise Linux* 6.2, Red Hat* Enterprise Linux* 6.3, Red Hat* Enterprise Linux* 6.4, SUSE*

Linux* Enterprise Server SLES 11 SP2 and SUSE* Linux* Enterprise Server SLES 11 SP3. The user will have to

install the OS.

Target – The Intel® Xeon Phi™ Coprocessor and corresponding runtime environment installed inside the

coprocessor.

uOS – Micro Operating System – the Linux*-based operating system and tools running on the Intel® Xeon Phi™

Coprocessor.

ISA – Instruction Set Architecture – part of the computer architecture related to programming, including the

native data types, instructions, registers, addressing modes, memory architecture, interrupt and exception

handling, and external I/O (Input/Output).1

VPU – Vector Processing Unit- the portion of a CPU responsible for the execution of SIMD (single instruction,

multiple data) instructions.

1 Intel acronyms dictionary, 8/6/2009, http://library.intel.com/Dictionary/Details.aspx?id=5600

http://software.intel.com/mic-developer

Intel® Xeon Phi™ Coprocessor DEVELOPER’S QUICK START GUIDE

5

NAcc – Native Acceleration – a mode or form of Intel® MKL in which the data being processed and the MKL

function processing the data reside on the Intel® Xeon Phi™ Coprocessor.

Offload Compilers – The Intel® C/C++ Compiler and Intel® Fortran Compiler compilers, which can generate

binaries for both the host system and the Intel® Xeon Phi™ Coprocessor. The offload compilers can generate

binaries that will run only on the host, only on the Intel® Xeon Phi™ Coprocessor, or paired binaries that run on

both the host and the Intel® Xeon Phi™ Coprocessor and communicate with each other.

Intel® MPSS – Intel® Manycore Platform Software Stack– the user- and system-level software that allows

programs to run on and communicate with the Intel® Xeon Phi™ Coprocessor.

SCI - Symmetric Communications Interface – the mechanism for inter-node communication within a single

platform, where an node is a Intel® Xeon Phi™ Coprocessor or an Intel Xeon processor-based host processor

complex. In particular, SCI abstracts the details of communicating over the PCIe bus (and controlling related

Intel® Xeon Phi™ Coprocessor hardware) while providing an API that is symmetric between all types of nodes

System Configuration

The configuration assumed in this document is an Intel workstation containing two Intel® Xeon® processors,

one or two Intel® Xeon Phi™ Coprocessors attached to a PCIe* x16 bus, and a GPU for graphics display.

Intel® Xeon Phi™ Software

Figure 1: Software Stack

The Intel® Xeon Phi™ Coprocessor software stack consists of layered software architecture as noted below

and depicted in Figure 1.

Driver Stack:
The Linux software for the Intel® Xeon Phi™ Coprocessor consists of a number of components:

Intel® Xeon Phi™ Coprocessor DEVELOPER’S QUICK START GUIDE

6

 Device Driver: At the bottom of the software stack in kernel space is the Intel® Xeon Phi™ Coprocessor

device driver. The device driver is responsible for managing device initialization and communication

between the host and target devices.

 Libraries: The libraries live on top of the device driver in user and system space. The libraries provide basic

card management capabilities such as enumeration of cards in a system, buffer management, and host-to-

card communication. The libraries also provide higher-level functionality such as loading and unloading

executables onto the Intel® Xeon Phi™ Coprocessor, invoking functions from the executables on the card,

and providing a two-way notification mechanism between host and card. The libraries are responsible for

buffer management and communication over the PCIe* bus.

 Tools: Various tools that help maintain the software stack. Examples include /usr/bin/micinfo for querying

system information, /usr/bin/micflash for updating the card’s flash, /usr/sbin/micctrl to help administrators

configure the card, etc.

 Card OS (uOS): The Linux-based operating system running on the Intel® Xeon Phi™ Coprocessor.

NOTE: Source for relatively recent versions of the uOS, the device driver, and the low-level SCI library

interface can be found at http://software.intel.com/mic-developer .

http://software.intel.com/mic-developer

Intel® Xeon Phi™ Coprocessor DEVELOPER’S QUICK START GUIDE

7

Intel® Many Integrated Core Architecture Overview

The Intel® Xeon Phi™ Coprocessor has up to 61 in-order Intel® MIC Architecture processor cores running at

1GHz (up to 1.3GHz). The Intel® MIC Architecture is based on the x86 ISA, extended with 64-bit addressing and

new 512-bit wide SIMD vector instructions and registers. Each core supports 4 hardware threads. In addition

to the cores, there are multiple on-die memory controllers and other components.

Figure 2: Architecture overview of an Intel® MIC Architecture core

Each core includes a newly-designed Vector Processing Unit (VPU). Each vector unit contains 32 512-bit

vector registers. To support the new vector processing model, a new 512-bit SIMD ISA was introduced.

The VPU is a key feature of the Intel® MIC Architecture-based cores. Fully utilizing the vector unit is critical for

best Intel® Xeon Phi™ Coprocessor performance. It is important to note that Intel® MIC Architecture cores do

not support other SIMD ISAs (such as MMX™, Intel® SSE, or Intel® AVX).

Each core has a 32KB L1 data cache, a 32KB L1 instruction cache, and a 512KB L2 cache. The L2 caches of all

cores are interconnected with each other and the memory controllers via a bidirectional ring bus, effectively

creating a shared last-level cache of up to 32MB. The design of each core includes a short in-order pipeline.

There is no latency in executing scalar operations and low latency in executing vector operations. Due to the

short in–order pipeline, the overhead for branch misprediction is low.

For more details on the machine architecture, please refer to the Intel® Xeon Phi™ Coprocessor Software

Developer’s Guide posted at http://software.intel.com/mic-developer under “TOOLS & DOWNLOADS” tab.

http://software.intel.com/mic-developer

Intel® Xeon Phi™ Coprocessor DEVELOPER’S QUICK START GUIDE

8

Administrative Tasks

If you purchased the Intel® Xeon Phi™ Coprocessor from an equipment manufacturer, please go to the Intel®

Developer Zone page http://software.intel.com/mic-developer and click on tab “TOOLS & DOWNLOADS”, then

select “Intel® Manycore Architecture Platform Software Stack (Intel® MPSS)” on this page. This brings you to a

page where you can download the latest hardware drivers and release notes for the platform.

Preparing Your System for First Use

Steps to install the driver and start the card

1. From Intel® Developer Zone page http://software.intel.com/mic-developer, click on tab “TOOLS &

DOWNLOADS”, then select “Intel® Manycore Platform Software Stack (Intel® MPSS)” on this page.

Navigate to MPSS 3.1 release for Linux and download “Readme file for the Intel® MPSS release”

(readme-en.txt). Also download the release notes (releaseNotes-linux.txt) and Intel® MPSS User’s

Guide.

2. You may install your system with Red Hat* Enterprise Linux 64-bit 6.0 kernel 2.6.32-71, Red Hat

Enterprise Linux 64-bit 6.1 kernel 2.6.32-131, Red Hat Enterprise Linux 6.2 64-bit kernel 2.6.32-220,

Red Hat Enterprise Linux 6.3 64-bit kernel 2.6.32-279, Red Hat Enterprise Linux 6.4 64-bit kernel

2.6.32-358, SUSE Linux Enterprise Server SLES 11 SP2 kernel 3.0.13-0.27-default or SUSE Linux

Enterprise Server SLES 11 SP3 kernel 3.0.76-0.11-default (Section 2.1 in readme-en.txt). Be sure to

install ssh, which is used to log in to the card’s uOS.

WARNING: On installing Red Hat, it may automatically update you to a new version of the Linux kernel.

If this happens, you will not be able to use the pre-built host driver, but will need to rebuild it manually

for the new kernel version. Please see section 8.1 of Intel® MPSS User’s Guide for instructions on

building an Intel® MPSS host driver for a specific Linux kernel.

3. Log in as root.

4. Download the release driver appropriated for your operating system in step 1 (<mpss-version>-rhel-

6.0.tgz, <mpss-version>-rhel-6.1.tgz, <mpss-version>-rhel-6.2.tgz, <mpss-version>-rhel-6.3.tgz,

<mpss-version>-rhel-6.4.tgz, <mpss-version>-suse-11.2.tgz or <mpss-version>-suse-11.3.tgz) where

<mpss-version> is mpss-3.1 at the time when this document was written

5. Install the host driver RPMs as detailed in section 2.2 of readme-en.txt. Don’t skip the creation of

configuration files for your coprocessor.

6. Update the flash on your coprocessor(s) as detailed in section 2.4 of readme-en.txt.

7. Reboot the system.

8. Start the Intel® Xeon Phi™ Coprocessor (while you can set up the card to start with the host system, it

will not do so by default), and then run “micinfo” to verify that it is set up properly:

sudo service mpss start

sudo micctrl –w

sudo /usr/bin/micinfo

 Make sure that the Driver Version, MPSS Version and Flash Version are verified according to the

following table:

http://www.intel.com/software/mic
http://www.intel.com/software/mic

Intel® Xeon Phi™ Coprocessor DEVELOPER’S QUICK START GUIDE

9

MPSS stack installed Driver Version MPSS Version Flash Version

mpss-3.1 3.1-xx 3.1 2.1.03.0386

mpss_gold_update_3-2.1.6720-13 6720-13 2.1.6720-13 2.1.02.0386

KNC_gold_update_2-2.1.5889-16 5889-16 2.1.5889-16 2.1.05.0385

KNC_gold_update_1-2.1.4982-15 4982-15 2.1.4982-15 2.1.05.0375

KNC_gold-2.1.4346-xx 4346-xx 2.1.4346-xx 2.1.01.0375

Table 1: Corresponding Driver Version, MPSS Version and Flash Version found in each MPSS release.

Steps to install the Software Development tools

You can purchase Software Development Tools at http://software.intel.com/en-us/linux-tool-suites. Select the

tool(s) that fit(s) your need (e.g., “Intel® Cluster Studio XE 2013”, “Intel® C++ Composer XE for Linux*”, “Intel®

Fortran Composer XE for Linux*”, etc.). After selecting the tool that you need and completing the purchasing

process, you will receive a serial number. Alternatively, visit http://software.intel.com/en-us/mic-developer ,

under the “Tools and Downloads” select the “Intel® Software Development Products” to find the latest list of

supported tools for the Intel® Xeon Phi™ Coprocessor.

If you acquired a serial number for Intel tools, go to the Intel® Registration Center (IRC) at

http://registrationcenter.intel.com to register and download the products. Click the button “Register Product”

will bring you to the download page of the tool(s) you purchased. The following example shows a case when a

user bought the Intel Cluster Studio XE for Linux: from http://software.intel.com/en-us/intel-cluster-studio-xe/ ,

under the tab Documentation, you can get the Install Guide, Getting Started Guide and Release Notes

documents.

1. Follow the instructions in the Install Guide to install the Intel Cluster Studio XE for Linux*. If you

bought the Intel C++ Composer XE for Linux, or the Intel Fortran Composer XE for Linux only, read the

corresponding Install Guide to install these packages, as well as separately installing Intel® VTune™

Amplifier XE 2013 for Linux*.

 For first time installations, be sure to get the product license number described above that is

required to activate the product, and then provide the license number during installation.

Subsequent installations can select the “Use existing license” option.

 Read the release notes of the product (icsxe2013sp1-release-notes.pdf if you bought the

Intel Cluster Studio XE for Linux, or Release_Notes_C_2013SP1_L_EN_Update1.pdf if you

bought the Intel C++ Composer XE for Linux, or Release-notes-f-2013sp1-l-en-u1.pdf if you

bought the Intel Fortran Composer XE for Linux) carefully.

 Untar the product file

o tar –xvzf l_ics_2013.<update>.<package_num>.tgz, or

o tar –xvf l_ccompxe_intel64_2013.<update>.<package_num>.tgz, or

o tar –xvf l_fcompxe_intel64_2013.<update>.<package_num>.tgz

2. Install the software tools using the previously acquired serial number.

http://software.intel.com/en-us/linux-tool-suites
http://software.intel.com/en-us/mic-developer
http://registrationcenter.intel.com/
http://software.intel.com/en-us/intel-cluster-studio-xe/

Intel® Xeon Phi™ Coprocessor DEVELOPER’S QUICK START GUIDE

10

3. Verify that the card is working by running a sample program (located in

/opt/intel/composerxe/Samples/en_US/C++/mic_sample for C/C++ code or in

/opt/intel/composerxe/Samples/en_US/Fortran/mic_sample for Fortran code) with

“setenv H_TRACE 2” or “export H_TRACE=2” to display the dialog between the Host and Intel®

Xeon Phi™ Coprocessor (messages from the processor will be prefixed with “MIC:”). If you do see

dialog then everything is running fine and the system is ready for general use.

4. If you intend to collect performance data on this system using Intel VTune Amplifier XE 2013:

a) After MPSS gets started, it loads the data collection driver automatically. But for some reason, if

it fails to load the data collection driver, you can manually load the driver by going to

/opt/intel/vtune_amplifier_xe/bin64/k1om/ and running:

sudo sep_micboot_install.sh

b) Start (or restart) the Intel® Manycore Platform Software Stack service (this also starts the

sampling driver once the files are copied in the previous step):

sudo service mpss restart

sudo micctrl -r

sudo micctrl -w

The coprocessor has successfully restarted when micctrl –w reports “micx: online”

c) The sampling driver will now start every time the coprocessor is restarted

d) If you ever need to reinstall the sampling driver, it can be done as follows:

sudo service mpss stop

sudo sep_micboot_uninstall.sh

sudo service mpss restart

sudo micctrl –w

Updating an Existing System

Updating a system that already has an Intel® Xeon Phi™ Coprocessor

1. From Intel® Developer Zone page http://software.intel.com/mic-developer, click on the “TOOLS &

DOWNLOADS” tab, then select “Software Drivers: Intel® Manycore Platform Software Stack (Intel®

MPSS)” on this page. Download “Readme file for the Intel® MPSS release” (readme-en.txt). Also

download the release notes (releaseNotes-linux.txt)

2. Uninstall the previous version of the MPSS and install the new MPSS using the instructions in

section 2.3 of readme-en.txt .

3. Update the flash on your card(s) as detailed in section 2.4 of readme-en.txt

4. Reboot the system

http://www.intel.com/software/mic

Intel® Xeon Phi™ Coprocessor DEVELOPER’S QUICK START GUIDE

11

5. Start the Intel® Xeon Phi™ Coprocessor (while you can set up the card to start with the host

system, it will not do so by default), and then run “micinfo” to verify that it is set up properly:

sudo service mpss start

sudo micctrl -w

/usr/bin/micinfo

 Make sure that the Driver Version, MPSS Version and Flash Version are verified according to table

1 in the previous section.

Regaining Access to the Intel® Xeon Phi™ Coprocessor after Reboot

The Intel® Xeon Phi™ Coprocessor will not start when the host system reboots. You will need to manually start

the Intel® Xeon Phi™ Coprocessor, and then run “micinfo” to verify that it started properly. You may need to

add /usr/sbin and /sbin to your path to do this successfully as a non-root user via sudo:

sudo service mpss start

sudo micctrl -w

/usr/bin/micinfo

Note: It is possible to make the coprocessor uOS automatically start on reboot and preload desired files. See

section 19.12 of the MPSS User’s Guide for details

Restarting the Intel® Xeon Phi™ Coprocessor If It Hangs

If a process running on the Intel® Xeon Phi™ Coprocessor hangs, but the coprocessor is otherwise responsive

via ssh, log onto the coprocessor and kill the process like any other Linux process.

When a coprocessor hangs, and is inaccessible or unresponsive via ssh, there are two ways to restart it. But

first, see if you can tell what is happening:

sudo micctrl –-status <micx>

Assuming that the Intel® MPSS service is still functioning properly, you can try to restart the coprocessor

without affecting any other attached coprocessors as follows:

sudo micctrl –-reset <micx>

sudo micctrl –-boot <micx>

sudo micctrl -w

Intel® Xeon Phi™ Coprocessor DEVELOPER’S QUICK START GUIDE

12

/usr/bin/micinfo

If the Intel® MPSS service is not running properly, then you need to restart the driver and all connected

coprocessors:

sudo service mpss stop

sudo service mpss unload

sudo service mpss start

sudo micctrl -w

/usr/bin/micinfo

Monitoring the Intel® Xeon Phi™ Coprocessor

If you want to monitor the load on your coprocessor, its temperature, etc., run the System Management and

Configuration (SMC) utility. See section 6.3 of the MPSS readme.txt for details:

Execute the monitor

/usr/bin/micsmc &

When started with no arguments, micsmc will run in GUI-mode. When invoked with arguments, it will run in

character-mode.

Running an Intel® Xeon Phi™ Coprocessor program from the host system

It is possible to copy an Intel® MIC Architecture native binary to a specified Intel® Xeon Phi™ Coprocessor and

execute it using the “micnativeloadex” utility. This utility conveniently copies library dependencies to the

coprocessor. See section 7.5 of the MPSS User’s Guide for details.

Working directly with the uOS Environment Intel® Xeon Phi™ Coprocessor

Since the coprocessor is running Linux and is effectively a separate network node, root or non-root users can

log into it via “ssh” and issue many common Linux commands. Files are transferred to/from the coprocessor

using “scp” or other means.

The default IP address for the coprocessor as seen from the host is 172.31.<coprocessor>.1, while the

coprocessor sees the host at 172.31.<coprocessor>.254 by default. The coprocessor can also be

referred to from the host by the alias mic<coprocessor>. For example, the first coprocessor you install in

your system is called “mic0” and is located at 172.31.1.1. It sees the host as 172.31.1.254. If a second

coprocessor were installed, it would be called “mic1” and located at 172.31.2.1, and it would see the host

as 172.31.2.254.

Intel® Xeon Phi™ Coprocessor DEVELOPER’S QUICK START GUIDE

13

For detailed information on setting up the card for non-root users, adjusting the network configuration,

mounting an NFS file system exported by the host for use on the Intel® Xeon Phi™ coprocessor, etc., please

see the document Intel® MPSS User’s Guide.

Useful Administrative Tools

This product ships with the following administrative tools, found in the “/usr/bin” directory. Root, and

users needing to use these tools, should add this directory to their default path:

 micinfo - provides information about host and coprocessor system configuration.

 micflash - updates the flash on the coprocessor; saves and retrieves the version and other

information for each section of the flash

 micsmc - a tool designed to ease the burden of monitoring and managing Intel® Xeon Phi™

coprocessors.

 miccheck – a utility for verifying the configuration of an Intel® Xeon Phi™ coprocessor by running

various diagnostic tests.

 micnativeloadex – a utility that will copy an Intel® MIC Architecture native binary to a specified Intel®

Xeon Phi™ coprocessor r and execute it

 micctrl – a tool to help the system administrator configure and restart the coprocessor

 micrasd – an application running on the host to handle and log hardware errors.

 mpssflash – the POSIX version of micflash.

 mpssinfo – the POSIX version of micinfo.

Please see section 7 in the MPSS User’s Guide for details on these tools and their arguments.

Getting Started/Developing Intel® Xeon Phi™ Software

You develop applications for the Intel® MIC Architecture using your existing knowledge of multi-core and SIMD

programming. The offload language extensions allow you to port sections of your code (written in C/C++ or

FORTRAN) to run on the Intel® Xeon Phi™ Coprocessor, or you can port your entire application to the Intel® MIC

Architecture. Best performance will only be attained with highly parallel applications that also use SIMD

operations (generated by the compiler or using compiler intrinsics) for most of their execution.

Available Software Development Tools / Environments

You can start programming for the Intel® Xeon Phi™ Coprocessor using your existing parallel programming

knowledge and the same techniques you use to develop parallel applications on the host. New tools were not

created to support development directly on the Intel® Xeon Phi™ Coprocessor; rather, the familiar host-based

Intel tools have been extended to add support for the Intel® MIC Architecture via a few additions to standard

languages and APIs. However, to make best use of the development tools and to get best performance from

the Intel® Xeon Phi™ Coprocessor, it is important to understand the Intel® MIC Architecture.

Development Environment: Available Compilers and Libraries

 Compilers

Intel® Xeon Phi™ Coprocessor DEVELOPER’S QUICK START GUIDE

14

o Intel C++ Composer XE 2013 SP1 for building applications that run on Intel® 64 architecture

and Intel® MIC Architecture

o Intel® Fortran Composer XE 2013 SP1 for building applications that run on Intel® 64

architecture and Intel® MIC Architecture

 Libraries packaged with the compilers include:

o Intel® Math Kernel Library (Intel® MKL) optimized for the Intel® MIC Architecture

o Intel® Threading Building Blocks (Intel® TBB)

o Intel® Integrated Performance Primitive (Intel® IPP)

 Libraries packaged separately include:

o Intel® MPI for Linux* OS including Intel® Many Integrated Core (Intel® MIC) Architecture

o Intel® Trace Collector and Analyzer

o Intel® SDK for OpenCL* Applications XE 2013 available at: http://software.intel.com/en-

us/vcsource/tools/opencl-sdk-xe

Development Environment: Available Tools

In addition to the standard compilers and Intel libraries, the following tools are available to help you debug and

optimize software running on the Intel® Xeon Phi™ Coprocessor.

 Debugger

o Intel® Debugger for applications running on the Intel® 64 architecture and Intel® MIC

Architecture

o Intel® C++ Eclipse* Product Extension including Debugging

 Profiling

o Intel® VTune™ Amplifier XE 2013 for Linux, which is used on the host Linux OS to collect and

view performance data collected on the Intel® Xeon Phi™ Coprocessor

o Intel® Inspector XE 2013, which is used to detect memory and threading error for serial and

parallel applications

o Intel® Advisor XE 2013, which is used to assist developers to design threads.

General Development Information

Development Environment Setup

• To set up your development environment for use with the Intel tools, you need to source the

following script (the default install locations are assumed):

o Intel® C++ and Fortran Composer XE 2013 SP1:

/opt/intel/composerxe/bin/compilervars.csh or compilervars.sh script

with intel64 as the argument, e.g.

source /opt/intel/composerxe/bin/compilervars.sh intel64

The following scripts are run as a result of calling the compilervars script. To get your

environment properly initialized, it is advisable not to run them individually (Among other things,

there are ordering issues that might result in unpredictable behavior.)

o Intel Debugger: /opt/intel/composerxe/pkg_bin/idbvars.csh or idbvars.sh

script with intel64 as the argument.

o Intel TBB: /opt/intel/composerxe/tbb/bin/tbbvars.csh or tbbvars.sh with

intel64 as the argument.

http://software.intel.com/en-us/vcsource/tools/opencl-sdk-xe
http://software.intel.com/en-us/vcsource/tools/opencl-sdk-xe

Intel® Xeon Phi™ Coprocessor DEVELOPER’S QUICK START GUIDE

15

o Intel® MKL: /opt/intel/composerxe/mkl/bin/mklvars.csh or mklvars.sh with

intel64 as the argument.

Documentation and Sample Code

• The most useful documentation can be found in

/opt/intel/composerxe/Documentation/en_US/ including:

o compiler_c/main_cls/index.htm and compiler_f/main_cls/index.htm -

complete documentation for Intel® C++ Compiler XE 13.0 and the Intel® Fortran Compiler XE

2013.

 Most information on how to build for the Intel® MIC Architecture can be found in the “Key

Features/Intel® MIC Architecture” section under “Programming for the Intel® MIC

Architecture”

 Information on Intel® MIC Architecture intrinsics can be found in the “Compiler

Reference/Intrinsics” section under “Intrinsics for Intel® MIC Architecture”

o Release-notes-*-2013SP1-l-en.pdf - please read these carefully for known issues

and their workarounds, plus installation instructions, for all the tools with Intel® MIC

Architecture support. You’ll find Intel® MIC Architecture-specific information primarily in

section 3.

 Note: For various reasons, this document can miss some last-minute updates. The most

recent Release-notes-*-2013SP1-l-en.pdf documents can be downloaded from the Intel

Registration Center (see Section “Steps to install the Software Development tools”).

o debugger/debugger_documentation.htm – Information on how to use the Intel

Debugger. You will find information specific to debugging Intel® MIC Architecture applications

under the “Debugging with the Intel® Debugger on Eclipse*” and “Debugging on the Command

Line” sections

• Other documentation that includes sections on using the Intel® Xeon Phi™ Coprocessor:

o The Intel MKL User’s Guide, which can be accessed via mkl_documentation.htm found in

/opt/intel/composerxe/Documentation/en_US/mkl, contains a section called

“Using the Intel® Math Kernel Library on Intel® MIC Core Architecture Coprocessors” which

describes both “Automatic Offload” and “Compiler Assisted Offload” of Intel® MKL functions.

o Information on collecting performance data on the Intel® Xeon Phi™ Coprocessor using VTune

Amplifier XE 2013 for Linux* can be found in

/opt/intel/vtune_amplifier_xe_2013/documentation/en/tutorials/fin

d_lw_hotspots/C++/index.htm

• Useful documentation on the Web:

o On the website http://software.intel.com/mic-developer you will find a wide range of

documentation that can be downloaded, most notably the Intel® Xeon Phi™ Coprocessor

Software Developers Guide under “PROGRAMMING” tab., as well as including the System V

Application Binary Interface K1OM Architecture Processor Supplement, Intel® Xeon Phi™

Performance Monitor Units, and the Intel® Xeon Phi™ Coprocessor Instruction Set Reference

Manual (under “OVERVIEW” tab) . From this site you will also be able to find a community

forum to ask questions, links to other available tools, code samples, and case studies.

o http://software.intel.com/en-us/articles/programming-and-compiling-for-intel-many-

integrated-core-architecture contains a wealth of information on compilers.

http://software.intel.com/mic-developer
http://software.intel.com/en-us/articles/programming-and-compiling-for-intel-many-integrated-core-architecture
http://software.intel.com/en-us/articles/programming-and-compiling-for-intel-many-integrated-core-architecture

Intel® Xeon Phi™ Coprocessor DEVELOPER’S QUICK START GUIDE

16

• Some sample offload code using the explicit memory copy model can be found in:

o C++:

/opt/intel/composerxe/Samples/en_US/C++/mic_samples/intro_sampleC/

o Fortran: /opt/intel/composerxe/Samples/en_US/Fortran/mic_samples/

o Intel® MKL: /opt/intel/composerxe/mkl/examples/mic*

o For examples of Intel® MKL automated offload:

/opt/intel/composerxe/mkl/examples/mic_ao/blasc

and …/mic_ao/blasf

o The rest of the samples demonstrate use of MKL via compiler-assisted offload

(/opt/intel/composerxe/mkl/examples/mic_offload).

• Some sample offload code using the implicit memory copy model can be found in:

o C:
/opt/intel/composerxe/Samples/en_US/C++/mic_samples/shrd_sampleC

and …/LEO_tutorial

o C++:
/opt/intel/composerxe/Samples/en_US/C++/mic_samples/shrd_sampleCP

P

Build-Related Information

• The offload compiler produces “fat” binaries and .so files that contain code for both host and the

Intel® Xeon Phi™ Coprocessor.

• The offload compiler produces code that examines the runtime execution environment for the

presence of an Intel® Xeon Phi™ Coprocessor. The offload compiler will create both host and Intel® MIC

Architecture versions of all code marked for offload.

• A number of workarounds and hints can be found in releaseNotes-linux.txt.

Compiler Switches and Makefiles

When building applications that offload some of their code to the Intel® Xeon Phi™ Coprocessor, it is possible to

cause the offloaded code to be built with different compiler options from the host code. The method of

passing these options to the compiler is documented in the compiler documentation under the “Compiler

Reference/Compiler Options/Compiler Option Categories and Descriptions” section. Look for the –offload-

option compiler switch. In that same section, also look up the –offload-attribute-target compiler

switch, which provides an alternative to editing your source files in some situations (applies to the pragma-

based offload methods). Finally, -no-offload provides a way to make the compiler ignore the

_Cilk_offload and #pragma_offload constructs (which cause it by default to build a heterogeneous

binary).

Debugging During Runtime

To debug offload activity, the following environment variables are available:

 To learn whether offload portions of the program are running on the host or coprocessor

For csh – setenv H_TRACE 1

For sh – export H_TRACE=1

 For more complete debug information

For csh – setenv H_TRACE 2

Intel® Xeon Phi™ Coprocessor DEVELOPER’S QUICK START GUIDE

17

For sh – export H_TRACE=2

 To print the compiler’s internal offload timers, a value of 1 reports just the time the offload took

measured by the host, and the amount of computation time done by the coprocessor. A value of

2 adds information on how much data was transferred in either direction.

For csh – setenv OFFLOAD_REPORT <1 or 2>

For sh – export OFFLOAD_REPORT=<1 or 2>

Details can be found in the compiler documentation in the “Compilation/Setting Environment Variables” section.

Where to Get More Help

You can visit the Forum on the Intel® Xeon Phi™ Coprocessor to post questions. It can be found at the

http://software.intel.com/en-us/forums/intel-many-integrated-core .

Using the Offload Compiler – Explicit Memory Copy Model

In this section, a reduction is used as an example to show a step-by-step approach for developing applications

for the Intel® Xeon Phi™ Coprocessor using the offload compiler. The offload compiler is a heterogeneous2

compiler, with both host CPU and target compilation environments. Code for both the host CPU and Intel® Xeon

Phi™ coprocessor is compiled within the host environment, and offloaded code is automatically run within the

target environment. The offload behavior is controlled by compiler directives: pragmas in C/C++, and

directives in Fortran.

Some common libraries, such as the Intel® Math Kernel Library (Intel® MKL), are available in host versions as

well as target versions. When an application executes its first offload and the target is available, the runtime

loads the target executable onto the Intel® Xeon Phi™ Coprocessor. At this time, it also initializes the libraries

linked with the target code. The loaded target executable remains in the target memory until the host

program terminates. Thus, any global state maintained by the library is maintained across offload instances.

Note: Although, the user may specify the region of code to run on the target, there is no guarantee of

execution on the Intel® Xeon Phi™ Coprocessor. Depending on the presence of the target hardware or the

availability of resources on the Intel® Xeon Phi™ Coprocessor when execution reaches the region of code

marked for offload, the code can run on the Intel® Xeon Phi™ Coprocessor or not.

The following code samples show several versions of porting reduction code to the Intel® Xeon Phi™

Coprocessor using the offload pragma directive.

Reduction

The operation refers to computing the expression:

ans = a[0] + a[1] + … + a[n-1]

2 http://dictionary.reference.com/browse/heterogeneous

http://software.intel.com/en-us/forums/intel-many-integrated-core
http://dictionary.reference.com/browse/heterogeneous

Intel® Xeon Phi™ Coprocessor DEVELOPER’S QUICK START GUIDE

18

Host Version:

The following sample code shows the C code to implement this version of the reduction.

float reduction(float *data, int size)

{

 float ret = 0.f;

 for (int i=0; i<size; ++i)

 {

 ret += data[i];

 }

 return ret;

}

Code Example 1: Implementing Reduction Code in C/C++

Creating the Offload Version

Serial Reduction with Offload

The programmer uses #pragma offload target(mic) (as shown in the example below) to mark statements

(offload constructs) that should execute on the Intel® Xeon Phi™ Coprocessor. The offloaded region is defined

as the offload construct plus the additional regions of code that run on the target as the result of function

calls. Execution of the statements on the host will resume once the statements on the target have executed

and the results are available on the host (i.e. the offload will block, although there is a version of this pragma

that allows asynchronous execution). The in, out, and inout clauses specify the direction of data to be

transferred between the host and the target.

Variables used within an offloaded construct that are declared outside the scope of the construct (including

the file-scope) are copied (by default) to the target before execution on the target begins and copied back to

the host on completion.

For example, in the code below, the variable ret is automatically copied to the target before execution on the

target and copied back to the host on completion. The offloaded code below is executed by a single thread on

a single Intel® MIC Architecture core.

float reduction(float *data, int size)

{

 float ret = 0.f;

 #pragma offload target(mic) in(data:length(size))

 for (int i=0; i<size; ++i)

 {

 ret += data[i];

 }

 return ret;

}

Code Example 2: Serial Reduction with Offload

Intel® Xeon Phi™ Coprocessor DEVELOPER’S QUICK START GUIDE

19

Vector Reduction with Offload

Each core on the Intel® Xeon Phi™ Coprocessor has a VPU. The auto vectorization option is enabled by default

on the offload compiler. Alternately, as seen in the example below, the programmer can use the Intel® Cilk™

Plus Extended Array Notation to maximize vectorization and take advantage of the Intel® MIC Architecture

core’s 32 512-bit registers. The offloaded code is executed by a single thread on a single core. The thread

uses the built-in reduction function __sec_reduce_add() to use the core’s 32 512-bit vector registers to

reduce the elements in the array sixteen at a time.

float reduction(float *data, int size)

{

 float ret = 0;

 #pragma offload target(mic) in(data:length(size))

 ret = __sec_reduce_add(data[0:size]); //Intel® Cilk™ Plus

 //Extended Array Notation

 return ret;

}

Code Example 3: Vector Reduction with Offload in C/C++

Asynchronous Offload and Data Transfer

Asynchronous offload and data transfer between the host and the Intel® Xeon Phi™ Coprocessor is available.

For details see the “About Asynchronous Computation” and “About Asynchronous Data Transfer” sections in

the Intel® C++ Compiler User and Reference Guide (under “Key Features/Programming for the Intel® MIC

Architecture”).

For an example showing the use of asynchronous offload and transfer, refer to /opt/intel/composerxe

/Samples/en_US/C++/mic_samples/intro_sampleC/sampleC13.c

Note that when using the Explicit Memory Copy Model in C/C++, arrays are supported provided the array

element type is scalar or bitwise copyable struct or class. So arrays of pointers are not supported. For C/C++

complex data structure, use the Implicit Memory Copy Model. Please consult the section “Restrictions on

Offload Code Using a Pragma” in the document “Intel C++ Compiler User and Reference Guide” for more

information.

Using the Offload Compiler – Implicit Memory Copy Model
Intel Composer XE 2013 SP1 includes two additional keyword extensions for C and C++ (but not Fortran) that

provide a “shared memory” offload programming model appropriate for dealing with complex, pointer-based

data structures such as linked lists, binary trees, and the like (_Cilk_shared and _Cilk_offload). This

model places variables to be shared between the host and coprocessor (marked with the _Cilk_shared

keyword) at the same virtual addresses on both machines, and synchronizes their values at the beginning and

end of offload function calls marked with the _Cilk_offload keyword. Data to be synchronized can also

be dynamically allocated using special allocation and free calls that ensure the allocated memory exists at the

same virtual addresses on both machines.

APIs for Dynamic shared memory allocation:
void *_Offload_shared_malloc(size_t size);

_Offload_shared_free(void *p);

Intel® Xeon Phi™ Coprocessor DEVELOPER’S QUICK START GUIDE

20

APIs for Dynamic Aligned Shared memory allocation

void *_Offload_shared_aligned_malloc(size_t size, size_t alignment);

_Offload_shared_aligned_free(void *p);

It should be noted that this is not actually “shared memory”: there is no hardware that maps some portion of

the memory on the Intel® Xeon Phi™ Coprocessor to the host system. The memory subsystems on the

coprocessor and host are completely independent, and this programming model is just a different way of

copying data between these memory subsystems at well-defined synchronization points. The copying is

implicit, in that at these synchronization points (offload calls marked with _Cilk_offload) do not specify

what data to copy. Rather, the runtime determines what data has changed between the host and coprocessor,

and copies only the deltas at the beginning and end of the offload function call.

The following code sample demonstrates the use of the _Cilk_shared and _Cilk_offload keywords

and the dynamic allocation of “shared” memory.

float * _Cilk_shared data; //pointer to “shared” memory

_Cilk_shared float MIC_OMPReduction(int size)

{

 #ifdef __MIC__

 float Result;

 int nThreads = 32;

 omp_set_num_threads(nThreads);

 #pragma omp parallel for reduction(+:Result)

 for (int i=0; i<size; ++i)

 {

 Result += data[i];

 }

 return Result;

 #else

 printf("Intel(R) Xeon Phi(TM) Coprocessor not available\n");

 #endif

 return 0.0f;

}

int main()

{

 size_t size = 1*1e6;

 int n_bytes = size*sizeof(float);

 data = (_Cilk_shared float *)_Offload_shared_malloc (n_bytes);

 for (int i=0; i<size; ++i)

 {

 data[i] = i%10;

 }

 _Cilk_offload MIC_OMPReduction(size);

 _Offload_shared_free(data);

 return 0;

}

Intel® Xeon Phi™ Coprocessor DEVELOPER’S QUICK START GUIDE

21

Code Example 4: Using the “_Cilk_shared” and “_Cilk_offload” Keywords with Dynamic Allocation in

C/C++

Note: For more examples on using the implicit memory copy model, see:

C: /opt/intel/composerxe/Samples/en_US/C++/mic_samples/shrd_sampleC

and …/LEO_tutorial

C++: /opt/intel/composerxe/Samples/en_US/C++/mic_samples/shrd_sampleCPP

For more information, users are encouraged to read the Intel C++ Compiler User and Reference Guides and/or

the Intel Fortran Compiler User and Reference Guides.

The section “Restrictions on Offload Using Shared Virtual Memory” in the document “Intel C++ Compiler User

and Reference Guide” shows some restrictions of using this programming model.

Native Compilation

Applications can also be run natively on the Intel® Xeon Phi™ Coprocessor, in which case the coprocessor will

be treated as a standalone multicore computer. Once the binary is built on the host system, copy the binary

and other related binaries or data to the Intel® Xeon Phi™ Coprocessor’s filesystem (or make them visible over

there via NFS).

Example:

1. Copy openmp_sample.c from

/opt/intel/composerxe/Samples/en_US/C++/openmp_samples/ to your home directory

2. Build the application with the –mmic flag:

icc –mmic –vec-report3 –openmp openmp_sample.c

3. Upload the binary to the coprocessor:

scp a.out mic0:/tmp/a.out

4. Copy over any shared libraries required by your application, in this case the OpenMP* runtime library:

scp /opt/intel/composerxe/lib/mic/libiomp5.so mic0:/tmp/libiomp5.so

5. Connect to the coprocessor with ssh and export the local directory so that the application can find any

shared libraries it uses (in this case the OpenMP* runtime library):

ssh mic0

export LD_LIBRARY_PATH=/tmp

6. This application may generate a segmentation fault if the stacksize is not set correctly. To modify the

stacksize use:

Intel® Xeon Phi™ Coprocessor DEVELOPER’S QUICK START GUIDE

22

ulimit –s unlimited

7. Go to /tmp and run a.out:

cd /tmp

./a.out

Parallel Programming Options on the Intel® Xeon Phi™ Coprocessor

Most of the parallel programming options available on the host systems are available for the Intel® Xeon Phi™

Coprocessor. These include the following:

1. Intel Threading Building Blocks (Intel® TBB)

2. OpenMP*

3. Intel® Cilk Plus

4. pthreads*

The following sections will discuss the use of these parallel programming models in code using the offload

extensions. Code that runs natively on the Intel® Xeon Phi™ Coprocessor can use these parallel programming

models just as they would on the host, with no unusual complications beyond the larger number of threads.

Parallel Programming on the Intel® Xeon Phi™ Coprocessor: OpenMP*

There is no correspondence between OpenMP threads on the host CPU and on the Intel® Xeon Phi™

Coprocessor. Because an OpenMP parallel region within an offload/pragma is offloaded as a unit, the offload

compiler creates a team of threads based on the available resources on Intel® Xeon Phi™ Coprocessor. Since

the entire OpenMP construct is executed on the Intel® Xeon Phi™ coprocessor, within the construct the usual

OpenMP* semantics of shared and private data apply.

Multiple host CPU threads can offload to the Intel® Xeon Phi™ coprocessor at any time. If a CPU thread

attempts to offload to the Intel® Xeon Phi™ Coprocessor and resources are not available on the coprocessor,

the code meant to be offloaded may be executed on the host. When a thread on the coprocessor reaches the

“omp parallel” directive, it creates a team of threads based on the resources available on the coprocessor. The

theoretical maximum number of hardware threads that can be created is 4 times the number of cores in your

Intel® Xeon Phi™ Coprocessor. The practical limit is four less than this (for offloaded code) because the first

core is reserved for the uOS and its services.

The code shown below is an example of a single host CPU thread attempting to offload the reduction code to

the Intel® Xeon Phi™ Coprocessor using OpenMP in the offload construct.

float OMP_reduction(float *data, int size)

{

 float ret = 0;

 #pragma offload target(mic) in(size) in(data:length(size))

 {

 #pragma omp parallel for reduction(+:ret)

 for (int i=0; i<size; ++i)

 {

 ret += data[i];

Intel® Xeon Phi™ Coprocessor DEVELOPER’S QUICK START GUIDE

23

 }

 }

 return ret;

}

Code Example 5: C/C++: Using OpenMP in Offloaded Reduction Code

real function FTNReductionOMP(data, size)

 implicit none

 integer :: size

 real, dimension(size) :: data

 real :: ret = 0.0

!dir$ omp offload target(mic) in(size) in(data:length(size))

!$omp parallel do reduction(+:ret)

 do i=1,size

 ret = ret + data(i)

 enddo

!$omp end parallel do

 FTNReductionOMP = ret

 return

end function FTNReductionOMP

Code Example 6: Fortran: Using OpenMP* in Offloaded Reduction Code

Parallel Programming on the Intel® Xeon Phi™ Coprocessor: OpenMP* + Intel® Cilk™ Plus

Extended Array Notation

The following code sample further extends the OpenMP example to use Intel Cilk Plus Extended Array

Notation. In the following code sample, each thread uses the Intel Cilk Plus Extended Array Notation

__sec_reduce_add() built-in reduction function to use all 32 of the Intel® MIC Architecture’s 512-bit vector

registers to reduce the elements in the array.

float OMPnthreads_CilkPlusEAN_reduction(float *data, int size)

{

 float ret=0;

 #pragma offload target(mic) in(data:length(size))

 {

 int nthreads = omp_get_max_threads();

 int ElementsPerThread = size/nthreads;

 #pragma omp parallel for reduction(+:ret)

 for(int i=0;i<nthreads;i++)

 {

 ret =_sec_reduce_add(

 data[i*ElementsPerThread:ElementsPerThread]);

 }

 //rest of the array

 for(int i=nthreads*ElementsPerThread; i<size; i++)

 {

 ret+=data[i];

 }

Intel® Xeon Phi™ Coprocessor DEVELOPER’S QUICK START GUIDE

24

 }

 return ret;

}

Code Example 7: Array Reduction Using Open MP and Intel® Cilk™ Plus in C/C++

Parallel Programming on the Intel® Xeon Phi™ Coprocessor: Intel® Cilk™ Plus

Intel Cilk Plus header files are not available on the target environment by default. To make the header files

available to an application built for the Intel® MIC Architecture using Intel Cilk Plus, wrap the header files with

#pragma offload_attribute(push,target(mic)) and #pragma offload_attribute(pop) as follows:

#pragma offload_attribute(push,target(mic))

#include <cilk/cilk.h>

#include <cilk/reducer_opadd.h>

#pragma offload_attribute(pop)

Code Example 8: Wrapping the Header Files in C/C++

In the following example, the compiler converts the cilk_for loop into a recursively called function using an

efficient divide-and-conquer strategy.

float ReduceCilk(float*data, int size)

{

 float ret = 0;

 #pragma offload target(mic) in(data:length(size))

 {

 cilk::reducer_opadd<int> total;

 cilk_for (int i=0; i<size; ++i)

 {

 total += data[i];

 }

 ret = total.get_value();

 }

 return ret;

}

Code Example 9: Creating a Recursively Called Function by Converting the “cilk_for” Loop

Parallel Programming on Intel® Xeon Phi™ Coprocessor: Intel® Threading Building Blocks

(Intel® TBB)

Like Intel Cilk Plus, the Intel TBB header files are not available on the target environment by default. They are

made available to the Intel® MIC Architecture target environment using similar techniques:

#pragma offload_attribute (push,target(mic))

#include "tbb/task_scheduler_init.h"

#include "tbb/blocked_range.h"

#include "tbb/parallel_reduce.h"

#include "tbb/task.h"

#pragma offload_attribute (pop)

using namespace tbb;

Intel® Xeon Phi™ Coprocessor DEVELOPER’S QUICK START GUIDE

25

Code Example 10: Wrapping the Intel TBB Header Files in C/C++

Functions called from within the offloaded construct and global data required on the Intel® Xeon Phi™

Coprocessor should be appended by the special function attribute __attribute__((target(mic))).

As an example, parallel_reduce recursively splits an array into subranges for each thread to work on. The

parallel_reduce uses a splitting constructor to make one or more copies for each thread. For each split, the

method join is invoked to accumulate the results.

1. Prefix the class by the macro __MIC__ and the class name by __attribute__((target(mic))) if

you want them to be generated for the coprocessor.

#ifdef __MIC__

class __attribute__((target(mic))) ReduceTBB

{

private:

 float *my_data;

public:

 float sum;

 void operator()(const blocked_range<size_t>& r)

 {

 float *data = my_data;

 for(size_t i=r.begin(); i!=r.end(); ++i)

 {

 sum += data[i];

 }

 }

 ReduceTBB(ReduceTBB& x, split) : my_data(x.my_data), sum(0) {}

 void join(const ReduceTBB& y) { sum += y.sum; }

 ReduceTBB(float data[]) : my_data(data), sum(0) {}

};

#endif

Code Example 11: Prefixing an Intel TBB Class for Intel® MIC Architecture code generation in C/C++

2. Prefix the function to be offloaded to the Intel® Xeon Phi™ Coprocessor by
__attribute__((target(mic)))

__attribute__((target(mic)))

float MICReductionTBB(float *data, int size)

{

 ReduceTBB redc(data);

 // initializing the library

 task_scheduler_init init;

 parallel_reduce(blocked_range<size_t>(0, size), redc);

 return redc.sum;

}

Intel® Xeon Phi™ Coprocessor DEVELOPER’S QUICK START GUIDE

26

Code Example 12: Prefixing an Intel TBB Function for Intel® MIC Architecture code generation in C/C++

3. Use #pragma offload target(mic) to offload the parallel code using Intel TBB to the coprocessor

float MICReductionTBB(float *data, int size)

{

 float ret(0.f);

 #pragma offload target(mic) in(size) in(data:length(size)) out(ret)

 ret = _MICReductionTBB(data, size);

 return ret;

}

Code Example 13: Offloading Intel TBB Code to the coprocessor in C/C++

NOTE: Codes using Intel TBB with an offload should be compiled with –tbb flag instead of –ltbb.

Using Intel® MKL

For offload users, Intel MKL is most commonly used in Native Acceleration (NAcc) mode on the Intel® Xeon Phi™

Coprocessor. In NAcc, all data and binaries reside on the Intel® Xeon Phi™ Coprocessor. Data is transferred by

the programmer through offload compiler pragmas and semantics to be used by Intel MKL calls within an

offloaded region or function. NAcc functionality contains BLAS, LAPACK, FFT, VML, VSL, (Sparse Matrix Vector),

and required Intel MKL Service functions. Please see the Intel MKL release documents for details on which

functions are optimized and which are not supported.

The Native Acceleration Mode can also be used in native Intel® MIC Architecture code – in this case the Intel

MKL shared libraries must be copied to the Intel® Xeon Phi™ Coprocessor before execution.

Figure 3.1: Using MKL Native Acceleration with Offload

SGEMM Sample

Using SGEMM routine from BLAS library

Sample Code – sgemm

Step 1: Initialize the matrices, which in this example need to be global variables to make use of data

persistence.

Intel® Xeon Phi™ Coprocessor DEVELOPER’S QUICK START GUIDE

27

Step 2: Send the data over to the Intel® Xeon Phi™ Coprocessor using #pragma offload. In this

example, the free_if(0) qualifier is used to make the data persistent on the Intel® Xeon Phi™

Coprocessor.

#define PHI_DEV 0

#pragma offload target(mic:PHI_DEV) \
 in(A:length(matrix_elements) free_if(0)) \
 in(B:length(matrix_elements) free_if(0)) \
 in(C:length(matrix_elements) free_if(0))
 {
 }

Code Example 14: Sending the Data to the Intel® Xeon Phi™ Coprocessor

Step 3: Call sgemm inside the offload section to use the “Native Acceleration” version of Intel® MKL on

the Intel® Xeon Phi™ Coprocessor. The nocopy() qualifier causes the data copied to the card in step 2

to be reused.

#pragma offload target(mic:PHI_DEV) \

 in(transa, transb, N, alpha, beta) \

 nocopy(A: alloc_if(0) free_if(0)) nocopy(B: alloc_if(0) free_if(0)) \

 out(C:length(matrix_elements) alloc_if(0) free_if(0)) // output data

 {

 sgemm(&transa, &transb, &N, &N, &N, &alpha, A, &N, B, &N,

 &beta, C, &N);

 }

Code Example 15: Calling sgemm Inside the Offload Section

Step 4: Free the memory you copied to the card in step 2. The alloc_if(0) qualifier is used to reuse

the data on the card on entering the offload section, and the free_if(1) qualifier is used to free the

data on the card on exit.

#pragma offload target(mic:PHI_DEV) \

 in(A:length(matrix_elements) alloc_if(0) free_if(1)) \

 in(B:length(matrix_elements) alloc_if(0) free_if(1)) \

 in(C:length(matrix_elements) alloc_if(0) free_if(1))

 {

 }

Code Example 16: Set the Copied Memory Free

As with Intel® MKL on any platform, it is possible to limit the number of threads it uses by setting the number

of allowed OpenMP threads before executing the MKL function within the offloaded code.

#pragma offload target(mic:PHIDEV) \

 in(transa, transb, N, alpha, beta) \

 nocopy(A: alloc_if(0) free_if(0)) nocopy(B: alloc_if(0) free_if(0))

Intel® Xeon Phi™ Coprocessor DEVELOPER’S QUICK START GUIDE

28

 out(C:length(matrix_elements) alloc_if(0) free_if(0)) // output data

 {

 omp_set_num_threads(64); // set num threads in openmp

 sgemm(&transa, &transb, &N, &N, &N, &alpha, A, &N, B, &N,

 &beta, C, &N);

 }

Code Example 17: Controlling Threads on the Intel® Xeon Phi™ Coprocessor Using

omp_set_num_threads()

Intel® MKL Automatic Offload Model

A few of the host Intel® MKL functions are Automatic Offload-aware--you call them as you normally would on

the host. However, if you have preceded the library call with a call to mkl_mic_enable(), Intel MKL will

automatically decide at runtime whether some or all of the work required to complete the call should be

divided between the host and the Intel® Xeon Phi™ Coprocessor. It bases this decision on problem size, the

load on both processors, and other metrics. Turn this functionality off with mkl_mic_disable().

Automatic Offload applies only to select host Intel MKL library calls made outside of code run on the Intel®

Xeon Phi™ Coprocessor via _Cilk_offload or #pragma offload. As a result, you should be careful to

minimize transferring the same data both in Automatic Offload calls and in code run on the coprocessor by

_Cilk_offload or #pragma offload. At present, there is no way to keep common data on the

coprocessor between automatic MKL offloads and explicit programmer-controlled offloads (via

_Cilk_offload or #pragma offload).

An example that demonstrates how to control Automatic Offload can be found at

/opt/intel/composerxe/mkl/examples/mic_ao/blasc for C code, and at

/opt/intel/composerxe/mkl/examples/mic_ao/blasf for Fortran code.

Debugging on the Intel® Xeon Phi™ Coprocessor

You will find information specific to debugging Intel® MIC Architecture applications under the “Debugging with

the Intel® Debugger on Eclipse*” and “Debugging on the Command Line” sections of
/opt/intel/composerxe/Documentation/en_US/debugger/debugger_documentation.htm

Performance Analysis on the Intel® Xeon Phi™ Coprocessor

Information on collecting performance data on the Intel® Xeon Phi™ Coprocessor using Intel® VTune™ Amplifier

XE for Linux* can be found in mic-data-collection.pdf, located in

/opt/intel/vtune_amplifier_xe_2013/documentation/en.

Intel® Xeon Phi™ Coprocessor DEVELOPER’S QUICK START GUIDE

29

About the Authors

Sudha Udanapalli Thiagarajan received a Bachelor’s degree in Computer Science and

Engineering from Anna University Chennai, India in 2008 and a Masters degree in

Computer Engineering from Clemson University in May 2010. She joined Intel in 2010

and been working as an enabling Application Engineer, focusing on optimizing

applications for ISV’s and developing collateral for Intel® Many Integrated Core

Architecture.

Charles Congdon is a senior software engineer with Intel® Corporation's Software and

Services Group. He specializes in improving application performance and scalability,

and has written software and documentation for projects inside and outside Intel.

Before joining Intel, Charles was a consulting software engineer for Oracle®

Corporation, where he concentrated on parallelism and 64-bit support in Windows NT

and OpenVMS® versions of the Oracle RDBMS on the Digital Alpha processors.

Sumedh Naik received a Bachelor’s degree in Electronics Engineering from Mumbai

University, India in 2009 and a Master’s degree in Computer Engineering from Clemson

University in December 2012. He joined Intel in 2012 and been working as an

Software Engineer, focusing on developing collateral for Intel® Xeon Phi™ coprocessor.

Loc Q Nguyen received an MBA from University of Dallas, a master’s degree in

Electrical Engineering from McGill University, and a bachelor's degree in Electrical

Engineering from École Polytechnique de Montréal. He is currently a software engineer

with Intel Corporation's Software and Services Group. His areas of interest include

computer networking, computer graphics, and parallel processing.

Intel® Xeon Phi™ Coprocessor DEVELOPER’S QUICK START GUIDE

30

Notices

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO

LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY

RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND

CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND

INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF

INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A

PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR

OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or

indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY

SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS

SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND

EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND

REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF

PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION

CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN

THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must

not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined".

Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or

incompatibilities arising from future changes to them. The information here is subject to change without notice.

Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may

cause the product to deviate from published specifications. Current characterized errata are available on

request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing

your product order.

Copies of documents which have an order number and are referenced in this document, or other

Intel literature, may be obtained by calling 1-800-548-4725, or go

to: http://www.intel.com/design/literature.htm

Intel, the Intel logo, Cilk, Xeon and Intel Xeon Phi are trademarks of Intel Corporation in the U.S.

and other countries.

*Other names and brands may be claimed as the property of others

Copyright© 2013 Intel Corporation. All rights reserved.

http://www.intel.com/design/literature.htm

Intel® Xeon Phi™ Coprocessor DEVELOPER’S QUICK START GUIDE

31

Performance Notice

For more complete information about performance and benchmark results, visit
www.intel.com/benchmarks

Optimization Notice

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for

optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3,

and SSE3 instruction sets and other optimizations. Intel does not guarantee the availability,

functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel.

Microprocessor-dependent optimizations in this product are intended for use with Intel

microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel

microprocessors. Please refer to the applicable product User and Reference Guides for more

information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

http://www.intel.com/benchmarks

