Advanced Architectures

MSc Informatics Eng.

2014/15
A.J.Proencga

Data Parallelism 1 (vector, SIMD ext., GPU)

(most slides are borrowed)

AJProenga, Advanced Architectures, MEI, UMinho, 2014/15

| Introduction

= SIMD architectures can exploit significant data-
level parallelism for:
= Mmatrix-oriented scientific computing
» media-oriented image and sound processing

= SIMD is more energy efficient than MIMD
= only needs to fetch one instruction per data operation
= makes SIMD attractive for personal mobile devices

= SIMD allows programmers to continue to think
sequentially

uononpo.|

Beyond Instruction-Level Parallelism

5.
AN

* When exploiting ILP, goal is to minimize CPI

> Pipeline CPI =>
* Ideal pipeline CPI +
 Structural stalls +
» Data hazard stalls +
» Control stalls +

* Memory stalls ... cache techniques ...

> Multiple issue =>

+ find enough parallelism to keep pipeline(s) occupied

> Multithreading =>
+ find ways to keep pipeline(s) occupied

* Insert data parallelism features: SIMD...

AJProenga, Advanced Architectures, MEI, UMinho, 2014/15

| SIMD Parallelism

m Vector architectures (slides

m SIMD extensions (slides 19 to 22)

= Graphics Processor Units

v
v
v
v
v
v
4
2
(g-’—.
410 18)
(GPUS) (next set)

1000

m For x86 processors:

- MIMD*SIMD (32b)
—¢ MIMD*SIMD (64 b)

1
SIMD (32b) /
—&— SIMD (64b) e
-= MIMD /

=)
3

= Expected grow:
2 more cores/chip/year

= SIMD width:

Potential parallel speedup

e

°

2x every 4 years
= Potential speedup:

SIMD 2x that from MIMD!

1
2003 2007 2011 2015 2019 2023

Vector Architectures

» Basic idea:

= Read sets of data elements (scattered in

memory) into “vector re

gisters”

= Operate on those registers
» Store/disperse the results back into memory

$81N108)IY2IY J0}OSA

= Registers are controlled by the compiler
= Used to hide memory latency
= Leverage memory bandwidth

I VMIPS

= Example architecture: VMIPS
Loosely based on Cray-1 (next slide)

Vector registers Main mermory I
= Each register holds a 64-element,

64 bits/element vector

= Register file has 16 read ports and
8 write ports

Vector functional units

= Fully pipelined, new op each clock-cyc
= Data & control hazards are detected
Vector load-store unit veeto
= Fully pipelined

= 1 word/clock-cycle after initial latency
Scalar registers

= 32 general-purpose registers

= 32 floating-point registers

Vector
load/store
le
)

S81NJ081IY21y 10108/

FP add/subtract
FP multiply

.
ers

Scalar
registers

FP divide '—'
—

B

]
=:

S

Crossbar switches

et avestor Tnstruction Parallelism AN

\

Can overlap execution of multiple vector instructions
- Consider machine with 32 elements per vector register and 8 lanes:

Load Unit . Multiply Unit Add Unit
load f5To 000

eooooe dMul ATTATATATA
time oleje/e(eee[blajajajaja[ladd fu[n[nnnun]m
IoadOOO.OO.?AAAAAAA‘IIIIIIII
/ .ImulAAAAAAAAIIIII.III
AAAAA s N\nennnnnmn
Hlajalalajalladd /e e(mmn =®
Ala[alalala[all|m/m/mmn/n(m|m
AlAlalalaAlalalalmm(en(ennm
Instruction Ssssssas=

issue

COmEIete 24 operations/cycle while issuing 1 short instruction/cycle
8/19/2009

John Kubiatowicz Parallel Architecture: 35

Cray-1 Supercomputer
(1976)

AJProenga, Advanced Architectures, MEI, UMinho, 2014/15 8

| VMIPS Instructions | Vector Execution Time

| = ADDVV.D: add two vectors
= ADDVS.D: add vector to a scalar
= LV/SV: vector load and vector store from address

= Execution time depends on three factors:
= Length of operand vectors
= Structural hazards

$81N108)IY2IY J0}OSA
$81N)08]IY2IY J0}OOA

n Example: DAXPY (Double-precision A x X Plus Y) = Data dependencies
L.D FO,a ; load scalar a
v VI, Rx i load vector X = VMIPS functional units consume one element
MULVS.D V2,V1,FO ; vector-scalar multiply per clock cycle
LV V3,Ry ; load vector Y
ADDVV V4.V2,V3 ; add = Execution time is approximately the vector length
SV Ry, V4 ; store the result
= Convoy
= Requires the execution of 6 instructions versus almost 600 for MIPS = Set of vector instructions that could potentially

(assuming DAXPY is operating on a vector with 64 elements)

execute together in one unit of time, chime

< <
@ H ()
| Challenges 8 | Multiple Lanes (7 g
> >
m Start up time S , o - s
. Latency of vector functional unit g u EIIemen;c n off vecttor regllstterg is “hardwired” to g
= Assume the same as Cray-1 3 elementno ve.c or register 3
« Floating-point add => 6 clock cycles @ = Allows for multiple hardware lanes 2
= Floating-point multiply => 7 clock cycles — Lane 0 Lane 1 Lane 2 Lane 3
= Floating-point divide => 20 clock cycles e e
= Vector load => 12 clock cycles I FP add FP add FP add FP add
P oo pipe 0 pipe 1 pipe 2 pipe 3
= Improvements: il ek 1 1 1 1

Vector Vector Vector Vector

5141 registers: registers: registers: registers:
elements elements elements. elements

0,4,8,... 1,5,9,... 2,6,10,... 37,11,

= > 1 element per clock cycle (1) “

. Il\ll:on-64 wide v.ectors (2) miziliz o]] I] T
= statements in vector code (3) - o] o @ pees [e - - . -
= Memory system optimizations to support vector processors (4) X - A A o ! P e
= Multiple dimensional matrices (5) \; \g\@/i/ S g
= Sparse matrices (6) - - \ Vectorloadstore unit |
= Programming a vector computer (7) 2 g

< <
u ® = @
| Vector Length Register (2 g | Vector Mask Registers (3 8
| > | >
o . . o
. — S : o
= Handling vector length not known at compile time g = Handling IF statements in Vector Loops: g
= Use Vector Length Register (VLR) = for (i =0; 1 < 64; i=i+l) E
L . (2 if (X[i] !'= 0 »
= Use strip mining for vectors over the maximum length: ([.] .) .
low = 0; X[i] = X[i] - Y[i];
VLT (nR ML) /rEind oddmsize piece using modulo op &t/ = Use vector mask register to “disable” elements:
for (j = 0; j <= (n/MVL); j=j+1) { /*outer loop*/)
for (1 = low; i < (low+VL); i=i+1) /*runs for length VL*/ v V1,Rx 7load vector X into V1
Y[i] = a * X[i] + Y[i] ; /*main operation*/ LV V2,Ry ;load vector Y
low = low + VL; /*start of next vector*/ L.D FO,#O :load FP zero into FO
: VL = MVL; /*reset the length to maximum vector length*/ SNEVS.D V1, FO ssets VM(1) to 1 if V1 (i)!=F0
vaeof] 0 1 2 3 L SUBVV.D v1,v1l,v2 ;subtract under vector mask
IJF AJ 44[AJ' AJ AJV Aj SV Rx,V1 ;store the result in X
Range of i 0 m (m+MVL) (m+2xMVL) ... (n-MVL)
(m-1) (m-1) (m-1) (m-1) (n-1)
HHVL 2L S s GFLOPS rate decreases!

| Stride (5)

| Memory Banks 4

| = Handling multidimensional arrays in Vector Architectures:
for (1 = 0; i < 100; i=i+1) {
for (j = 0; j < 100; j=j+1) {
A[i][3] = 0.0;
for (k = 0; k < 100; k=k+1)
A[i][3J] = A[i][3] + B[i][k] * D[k]I[3];

| = Memory system must be designed to support high
bandwidth for vector loads and stores

$2IN}08]IY21Y J0JOS\
$8IN}08}IY21Y J0JOS

Spread accesses across multiple banks
= Control bank addresses independently
= Load or store non sequential words
= Support multiple vector processors sharing the same memory

}
= Must vectorize multiplication of rows of B with columns of D
» Use non-unit stride (in VMIPS: load/store vector with stride)

= Bank conflict (stall) occurs when the same bank is hit faster than
bank busy time:
= How many memory banks needed? = #banks / Least_ Common_Multiple (stride, #banks) < bank busy time

Example (Cray T932, 1996; Ford acquired 1 out of 13, $39M):
= 32 processors, each generating 4 loads and 2 stores per cycle
= Processor cycle time is 2.167 ns, SRAM cycle time is 15 ns

< . <
| Scatter-Gather (s g | Vector Programming (7) 8
> >
3 3
= Handling sparse matrices in Vector Architectures: g = Compilers are a key element to give hints on whether a g
for (i = 0; 1 < n; i=i+1) % code section will vectorize or not %
A[K[i]] = A[K[i]] + CIM[i]]; : :
= Check if loop iterations have data dependencies,
« Use index vector: otherwise vectorization is compromised
LV Vk, Rk ;load K)))
LVI Va, (Ra+Vk) :load A[K[]] . Vec;tor Architectures havg a too high cost, but S|mpler
variants are currently available on off-the-shelf devices;
vV Vm, Rm ;load M however:
LVI Ve, (Rct+Vm) ;load C[M[]] = most do not support non-unit stride => care must be taken in the
ADDVV.D Va, Va, Vc ;add them design of data structures
SVI (Ra+Vk), Va ;store A[K[]] = same applies for gather-scatter...

rchitecture Vi \‘ f‘m: (Poor-Man's SIMD?) Z \._‘

Inter-PE Connection Network l

Array

Controller 1 $ 1 $ t t $ t . .
Y1 v] v ¥]+ .+ +J ¢ * Scalar processing * SIMD processing (Intel)
PE PE PE PE PE PE PE PE - traditional mode - with SSE / SSE2
LPE| LPE| | i e mode) SsE2
e benl M [N N A8 I I o partonprodices e
Data +—> M 1] 1] 1] M] M M
e e e e e e e e
m m m m m m m m

+ Single Instruction Multiple Data (SIMD)
+ Central controller broadcasts instructions to multiple
processing elements (PEs)
- Only requires one controller for whole array
- Only requires storage for one copy of program
- All computations fully synchronized
* Recent Return to Popularity:
- GPU (Graphics Processing Units) have SIMD properties
- However, also multicore behavior, so mix of SIMD and MIMD (more later) Slide Source: Alex Klimovitski & Dean Macri, Intel Corporation

+ Dual between Vector and SIMD execution
8/19/2009 John Kubiatowicz Parallel Architecture: 36 8/19/2009 John Kubiatowicz Parallel Architecture: 37

SIMD Extensions SIMD Implementations

= Media applications operate on data types narrower than

.) = Implementations:
the native word size

= Intel MMX (1996)

4x float

2 «

< <

o o

=3 =3

2 2

5 5

g g

" Example: SSE and AVX-128 types 2x double & Eight 8-bit int: f 16-bit int (9,3

disconnect [nee o = Eight 8-bit integer ops or four 16-bit integer ops o

carry chains L 0] e '('E" L] Streaming SIMD Extensions (SSE) (1999) E"

tc;;parhhon” g - - - 4x 32-bit doubleword % - E|ght 16—b|t Integer ops g

il Tr i sz:b:do:bled o @ = Four 32-bit integer/fp ops or two 64-bit integer/fp ops @

= Next generation avxaseypes quadvord @ . o

_g - S N = = Advanced Vector eXtensions (AVX) (2010) =

AVX-512 will T T T O = =

be available | | u g | B o cousie g = Eight 32-bit fp ops or Four 64-bit fp ops (integer in AVX-2) g

soon... o} = 512-bits wide in AVX-512 (and also in Larrabee & MIC-KC) '@

= Limitations, compared to vector instructions: £ o
= Number of data operands encoded into op code = Operands must be in consecutive and aligned

= No sophisticated addressing modes (strided, scatter-gather) memory locations

= No mask registers

2
o Example SIMD Code S
A Brief History of x86 SIMD =
2]
. = Example DAXPY: =
/\/\ o
L.D F0,a ;load scalar a s
8 x 8 bit , 5
Integer MMX A3 h MOV Fl, FO ;copy a into F1 for SIMD MUL 1)
32 bit
@A BANOW! ‘g5 oot MOV F2, FO jcopy a into F2 for SIMD MUL 2.
Subset SSE 5p Fioat . m
fetz MOV F3, FO ;jcopy a into F3 for SIMD MUL %
SSE2 QDXPGF‘?O?&‘ DADDIU R4,Rx,#512 ;last address to load 3
ure Subset ! - Loop: 2
(7]
SSlE3 L.4D F4,0[Rx] ;load X[i], X[i+1], X[i+2], X[i+3] o
o
— MUL.4D F4,F4,F0 ;axX[i],axX[i+1],axX[i+2],axX[i+3] =
=
L.4D F8,0[Ry] ;load Y[i], Y[i+1], Y[i+2], Y[i+3] =
! 3
SSE4.1 ; ADD.4D F8,F8,F4 ;axX[11+Y[11, ..., axX[i+31+Y[i+3]]
! CEL S.4D 0[Ry],F8 ;store into Y[i],Y[i+1],Y[i+2],Y[i+3] ®
Ca 88?4‘2 g DADDIU Rx,Rx,#32 ;increment index to X
Larrab v
QL X 8 x 32 bit SSES DADDIU Ry,Ry,#32 ;increment index to Y
16 x 32 bit SP Float P el DSUBU R20,R4,Rx ;compute bound
AVX+FMA 3 operands BNEZ R20, Loop ;check if done

AJProenga, Advanced Architectures, MEI, UMinho, 2014/15 23

Theoretical peak (GFLOP/s)

Graphical Processing Units

s Question to GPU architects:

= Given the hardware invested to do graphics well,
how can we supplement it to improve the performance
of a wider range of applications?

» Key ideas:

= Heterogeneous execution model
= CPU is the host, GPU is the device

= Develop a C-like programming language for GPU
= Unify all forms of GPU parallelism as CUDA_threads

= Programming model follows SIMT:
“Single Instruction Multiple Thread ”

Performance gap between
NVidia GPUs and Intel CPUs

4500

4000

3500
GeForce GTX 680
3000

2500 4

2000
GeForce GTX 580
1500 - GeForce GTX 480

GeForce 8800 GTX Tesla 0207/ |
Haswell intel DP

500 - GeForce 7800 GTX X o __
GeForce 6800 Ultra Bloomfield Sandy /Bui(Ivy Bridge
GgForce FX 5800 Prescott rest Harpertgwi.. = | CoowV
T ;

0 1_Willam = 5 .
2000 2002 2004 2006 2008 2010 2012 2014

Release date

1000 - GeForce GTX 280

syjun Buisseooid |eosiydels

NVIDIA GPU SP

20X NVIDIA GPU DP

Classifying GPUs

« Don't fit nicely into SIMD/MIMD model

— Conditional execution in a thread allows an
illusion of MIMD
* But with performance degradation
» Need to write general purpose code with care

Static: Discovered Dynamic: Discovered
at Compile Time at Runtime
Instruction-Level VLIW Superscalar
Parallelism
Data-Level SIMD or Vector GPU device
Parallelism
AJProenga, Advanced Architectures, MEI, UMinho, 2014/15 26
Performance gap between
several computing devices (SP)
Theoretical Peak Performance, Single Precision
10 T T T T T T —
—hA— s, Inte . | . w® ot
— = g:t,)s. |NVIIDIA L R P “01‘3100\‘\ wec\\:*‘oeg
—@— GPUs, AMD ¥ o{\?\o@ “.j‘,\g%%,oe"“ :

——ag— MIC, Intel

=)
u

GFLOP/sec

1 i L i i i i
2007 2008 2009 2010 2011 2012 2013

End of Year
AJProenga, Advanced Architectures, MEI, UMinho, 2014/15 28

http://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/

- g - Q
cores/processing elements ; | NVIDIA GPU Architecture 8
in several devices ; 8
imilariti i 3
E = Similarities to vector machines: g
Number of Processing Elements, Single Precision High-End Hardware g 1 &
Key question: # ———" :“9 oo T'ﬂ . 5 = Works well with data-level parallel problems %
what is a core? —— GPUs, WVIDIA S P S e - » Scatter-gather transfers <
—@— GPUs, AMD S @o@‘) ° © ¥O 5 i g
—— MO ntel 85 @ « o1 g = Mask regISterS T
a) IU+FPU?) B S S A A AN R . ,
GPU-type... g i _ ; ‘ o ; é = Large register files
b) ASIMD § 1 & .
processor? %'02 B = Differences:
CPU-type.. g g = No scalar processor
This slide: o % » Uses multithreading to hide memory latency
-a) 5 = Has many functional units, as opposed to a few
In this course: 5 deeply pipelined units like a vector processor
- b) o 2(;07 2(;08 2(;09 2(;!0 2(;11 21;'2 2(;13 §
End of Year §
AJProenga, Advanced Architectures, MEI, UMinho, 2014/15 29 g&

