Advanced Architectures Processor arch: beyond Instruction-Level Parallelism

* When exploiting ILP, goal is to minimize CPI

MSc Informatics Eng > Pipeline CPI (efficient to exploit loop-level parallelism) =>
+ Ideal pipeline CPI + v
« Structural stalls + (4
2014/15 » Data hazard stalls + v
AJP » Control stalls + (4
~J.rroenga » Memory stalls ... cache techniques ...

> Multiple issue =>
« find enough parallelism to keep pipeline(s) occupied
> Multithreading =>
« find ways to keep pipeline(s) occupied
* Insert data parallelism features (next set of slides)

From ILP to Multithreading

(most slides are borrowed)

AJProenga, Advanced Architectures, MEI, UMinho, 2014/15 1 AJProenga, Advanced Architectures, MEI, UMinho, 2014/15 2

= =
. . . c . c
| Multiple Issue and Static Scheduling = | Multiple Issue E
| 2 I 7
7 7
g 2
. Issue Hazard Distinguishing
| To a Ch |eve C P I < 1 y n eed to CO m p | ete g Common name structure detection Scheduling characteristic Examples g
= =
H H H o Superscalar Dynamic Hardware Static In-order execution Mostly in the o
mUltlple |nStrUCt|OnS per CIOCk w (slzl:iic) Y l l embegdedspace: (7))
@: MIPS and ARM, @:
= including the ARM =
8) Corftex %\8 , Atom a
. Q Superscalar Dynamic Hardware Dynamic Some out-of-order None at the present Q
] S (0] | u tl ons.: 3 (dynamic) execution, but no 3
E— speculation E—
i = Superscalar Dynamic Hardware Dynamic with Out-of-order execution Intel Core i3, 5. 17: =
u Statlca I Iy SCh ed u Ied S u pe rscala r processors 8 (sp%culmive) ¥ sp)éculalion with speculation AMD Phenom:; IBM (8
. . Power 7
L V L IW (Ve ry I 0 n g in Stru Ctl O n WO rd) p ro CeSSO rS VLIW/LIW Static Primarily Static All hazards determined Most examples are in
. software and indicated by compiler signal processing,
= dynamically scheduled superscalar processors (often implicitly) such as the Tl Cox
EPIC Primarilystatic Primarily Mostly static All hazards determined Itanium
software and indicated explicitly

by the compiler

EPIC: Explicitly Parallel Instruction Computer

| Multithreading

| Performing multiple threads of execution in
parallel
Replicate registers, PC/IP, etc.
Fast switching between threads
Fine-grain multithreading / time-multiplexed MT
Switch threads after each cycle
Interleave instruction execution
If one thread stalls, others are executed
Coarse-grain multithreading
Only switch on long stall (e.g., L2-cache miss)

Simplifies hardware, but doesn’t hide short stalls
(eg, data hazards)

Chapter 7 — Multicores, Multiprocessors, and Clusters — 5

| Multithreading Example

Issue slots —
Thread A Thread B Thread C Thread D

[]
Time [N [|
[[] [| [[|
HEEE N =
HEEE EEE
[| |
| [[|
L L L 4-way superscalar
Issue slots —
Coarse MT Fine MT SMT
Time HE | 1 | HEEE
HEN HEEE
[1 [] HEE HEN
HE HEEE
EEEE = ||
| | | -
==- || ||
HEEE
[] HEE]
[[]

Chapter 7 — Multicores, Multiprocessors, and Clusters — 7

| Simultaneous Multithreading

| In multiple-issue dynamically scheduled
processor

Schedule instructions from multiple threads

Instructions from independent threads execute
when function units are available

Within threads, dependencies handled by
scheduling and register renaming

Example: Intel Pentium-4 HT

Two threads: duplicated registers, shared
function units and caches

HT: Hyper-Threading, Intel trade mark for their SMT implementation
MT in Xeon Phi: 4-way SMT with time-mux MT, not HT!

Chapter 7 — Multicores, Multiprocessors, and Clusters — 6

| Instruction and Data Streams

| An alternate classification

Data Streams

Single Multiple
Instruction | Single SISD: SIMD: SSE
Streams Intel Pentium 4 instructions of x86
Multiple | MISD: MIMD:
No examples today | Intel Xeon €5345

SPMD: Single Program Multiple Data
A parallel program on a MIMD computer
Conditional code for different processors

Chapter 7 — Multicores, Multiprocessors, and Clusters — 8

| Introduction to multithreading S | Types 3
Q Q
| S - o~ g
m Thread-Level parallelism . - fsyl\r/lng;etrlc multiprocessors ’ Q >
= Have multiple program counters . Small number of coresidevices || 55| B | B | =
= Share single memory with | | |
« Uses MIMD mOdel uniform memory latency (...NUMA)
= Targeted for tightly-coupled shared-memory
multiprocessors = Distributed shared memory
(DSM)
m For n processors, need n threads =« Memory distributed among 7
= Amount of computation assigned to each Ef:ﬁgfm memory access! ga 52 Ez /?
thread = grain size latency (NUMA) 2
= Threads can be used for data-level parallelism, . Z:‘;‘éf?:xtscﬁggf)‘iﬁgd via (e)
but the overheads may outweigh the benefit non-direct (multi-hop)

interconnection networks

Reading suggestions (from CAQA 5% Ed)

5.
NN

» Concepts and challenges in ILP: section 3.1
» Exploiting ILP w/ multiple issue & static scheduling: 3.7
» Exploiting ILP w/ dyn sched, multiple issue & specul: 3.8

* Multithread: exploiting TLP on uniprocessors: 3.12
* Multiprocessor cache coherence and

snooping coherence protocol with example: 5.2
» Basics on directory-based cache coherence: 5.4
* Models of memory consistency: 5.6

» A tutorial by Sarita Ave & K. Gharachorloo (see link at website)

AJProenga, Advanced Architectures, MEI, UMinho, 2014/15 11

