Advanced Architectures Processor arch: beyond Instruction-Level Parallelism

* When exploiting ILP, goal is to minimize CPI

MSc Informatics Eng > Pipeline CPI (efficient to exploit loop-level parallelism) =>
+ Ideal pipeline CPI + v
« Structural stalls + (4
2014/15 » Data hazard stalls + v
AJP » Control stalls + (4
~J.rroenga » Memory stalls ... cache techniques ...

> Multiple issue =>
« find enough parallelism to keep pipeline(s) occupied
> Multithreading =>
« find ways to keep pipeline(s) occupied
* Insert data parallelism features (next set of slides)

From ILP to Multithreading

(most slides are borrowed)
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EPIC: Explicitly Parallel Instruction Computer




| Multithreading

| Performing multiple threads of execution in
parallel
Replicate registers, PC/IP, etc.
Fast switching between threads
Fine-grain multithreading / time-multiplexed MT
Switch threads after each cycle
Interleave instruction execution
If one thread stalls, others are executed
Coarse-grain multithreading
Only switch on long stall (e.g., L2-cache miss)

Simplifies hardware, but doesn’t hide short stalls
(eg, data hazards)
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| Multithreading Example
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| Simultaneous Multithreading

| In multiple-issue dynamically scheduled
processor

Schedule instructions from multiple threads

Instructions from independent threads execute
when function units are available

Within threads, dependencies handled by
scheduling and register renaming

Example: Intel Pentium-4 HT

Two threads: duplicated registers, shared
function units and caches

HT: Hyper-Threading, Intel trade mark for their SMT implementation
MT in Xeon Phi: 4-way SMT with time-mux MT, not HT!

Chapter 7 — Multicores, Multiprocessors, and Clusters — 6

| Instruction and Data Streams

| An alternate classification

Data Streams

Single Multiple
Instruction | Single SISD: SIMD: SSE
Streams Intel Pentium 4 instructions of x86
Multiple | MISD: MIMD:
No examples today | Intel Xeon €5345

SPMD: Single Program Multiple Data
A parallel program on a MIMD computer
Conditional code for different processors
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| Introduction to multithreading S | Types 3
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= Threads can be used for data-level parallelism, . Z:‘;‘éf?:xtscﬁggf)‘iﬁgd via ( e )
but the overheads may outweigh the benefit non-direct (multi-hop)

interconnection networks

Reading suggestions (from CAQA 5% Ed)

5.
NN

» Concepts and challenges in ILP: section 3.1
» Exploiting ILP w/ multiple issue & static scheduling: 3.7
» Exploiting ILP w/ dyn sched, multiple issue & specul: 3.8

* Multithread: exploiting TLP on uniprocessors: 3.12
* Multiprocessor cache coherence and

snooping coherence protocol with example: 5.2
» Basics on directory-based cache coherence: 5.4
* Models of memory consistency: 5.6

» A tutorial by Sarita Ave & K. Gharachorloo (see link at website)
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