
Parallel Sorting
Paradigms for Parallel Computing
João Luís Sobral

21/April/2015

Parallel Sorting

�  Sequential sorting algorithms

Method Complexity
(average)

Type Description

Quicksort n log n Partitioning Recursively sort elements less/
greater than a given pivot

Mergesort n log n Merging Successively merge sorted sub-
lists starting from lists with one
element

Heap sort n log n

Selection Insert elements into a binary
heap

Insertion
sort

n2 Insertion Insert elements into the sorted
list

Radix sort n d Sort elements digit by digit (d)

Parallel Sorting

� Locality of reference in sorting algorithms

Method Locality of reference Improvements

Quicksort Good spatial locality + bad temporal
locality on initial stages

Initial set partioning using
k keys

Mergesort Good spatial locality + bad temporal
locality on final merge stages

Single merge when data
exceeds cache size

Heap sort Bad Cache aware trees + d-
fan-out

Insertion
sort

Bad

Radix sort Good when MSD first (only when
processing LSDs)

Reduce the number of
passes through data

Parallel Sorting (Impact on locality)

0

50

100

150

200

250

300

350

400

450

500

10000 100000 1e+06

in
st

ru
ct

io
ns

 p
er

 k
ey

set size in keys

memory-tuned heapsort
tiled mergesort

memory-tuned quicksort
radix sort

0

1

2

3

4

5

6

10000 100000 1e+06

ca
ch

e
m

is
se

s p
er

 k
ey

set size in keys

memory-tuned heapsort
tiled mergesort

memory-tuned quicksort
radix sort

0

200

400

600

800

1000

1200

1400

10000 100000 1e+06

tim
e

(c
yc

le
s p

er
 k

ey
)

set size in keys

memory-tuned heapsort
tiled mergesort

memory-tuned quicksort
radix sort

0

50

100

150

200

250

300

350

400

450

500

10000 100000 1e+06

in
st

ru
ct

io
ns

 p
er

 k
ey

set size in keys

memory-tuned heapsort
tiled mergesort

memory-tuned quicksort
radix sort

0

1

2

3

4

5

6

10000 100000 1e+06

ca
ch

e
m

is
se

s p
er

 k
ey

set size in keys

memory-tuned heapsort
tiled mergesort

memory-tuned quicksort
radix sort

0

200

400

600

800

1000

1200

1400

10000 100000 1e+06

tim
e

(c
yc

le
s p

er
 k

ey
)

set size in keys

memory-tuned heapsort
tiled mergesort

memory-tuned quicksort
radix sort

0

50

100

150

200

250

300

350

400

450

500

10000 100000 1e+06

in
st

ru
ct

io
ns

 p
er

 k
ey

set size in keys

memory-tuned heapsort
tiled mergesort

memory-tuned quicksort
radix sort

0

1

2

3

4

5

6

10000 100000 1e+06

ca
ch

e
m

is
se

s p
er

 k
ey

set size in keys

memory-tuned heapsort
tiled mergesort

memory-tuned quicksort
radix sort

0

200

400

600

800

1000

1200

1400

10000 100000 1e+06

tim
e

(c
yc

le
s p

er
 k

ey
)

set size in keys

memory-tuned heapsort
tiled mergesort

memory-tuned quicksort
radix sort

Parallel Sorting

� Parallelism in sorting algorithms

Method

Quicksort Start with p lists

Mergesort Merge p lists parallel

Heap sort ???

Insertion sort ???

Radix sort Sort set of digits in parallel

Parallel Sorting (on distributed memory)

� Design issues:
◦ Keys are initially distributed over processors
◦ Data properties
�  Partially-sorted data?

◦  Exploitable parallelism
�  Splitter-based
�  Merger-based

◦ Data movements across processors
◦  Load balancing

Parallel Sorting

� Parallel quicksort (simplified)
◦ Master selects and broadcasts pivot key
◦  Each process locally splits using the pivot
�  Records size of smaller and greater sets

◦  Sums size of smaller and greater sets
◦ Divide processors into smaller and greater sets
�  Send data to each processor

◦ Repeat the processes until #sets = #p
�  Locally sort on each process p

Parallel Sorting

� Parallelism in sorting algorithms
◦ Mergesort
�  Merge data between pairs of processors (sorting

networks)
�  Only effective when n/p ~1
�  Requires extensive data movements when n/p>>1

◦  Sampling based
�  Split data into P sets using p-1 splitters
�  Each processor acts upon a local set
�  Minimizes data movements

Parallel Sorting

� Parallel mergesort
◦  Locally sort each set
◦  Exchange sets among processors

Figure 1. (a) merge-based parallel sorting with 3 processes, (b) batchers-merge-
exchange network for 8 processes, (c) one single merge-exchange operation

1. An arbitrary sequential sorting method executed by all processes in parallel
creates locally sorted sequences.

2. The sorted sequences are merged in parallel to form the globally sorted order.

For the in-place sequential sorting method a recursive most-significant-digit-

first radix sort based on American Flag sort [11] is used in this paper. In every
recursion step, a set of contiguous keys (starting with all keys) is sorted into bins
according to a specific part of the bits of the key values. This is repeated with the
keys in the single bins using the radix width r as the number of bits processed
in one step. The recursion stops if the number of keys in a bin is below a certain
threshold value t. The sorting is finished with an algorithm that is faster for small
numbers of keys. The time complexity of this sequential sorting method results
from the number of exchange operations for every key. Sorting b-bit integers
results in a maximum depth of recursion of d b

r e. Each key is exchanged in every
recursion step and at most t times according to the fast algorithm finishing the
sorting. This results in d b

r e+ t exchange operations per key and time complexity
O(ns(d b

r e + t)) for sorting a set of ns keys. The constants r and t have a strong
e↵ect on the performance of the sorting method and their optimal values strongly
depend on the hardware system.

The parallel merge step is comprised of several single merge-exchange opera-
tions with two participating processes at a time. These pairs of processes are de-
termined using classical sorting networks like batchers-merge-exchange network
shown in Figure 1(b) for 8 processes. The arrows represent single merge-exchange
operations executed from left to right. The network consists of 6 consecutive
stages denoting the maximum number of merge-exchange operations for every
process. For a number of p processes, batchers-merge-exchange network consists
of 1

2dlog2 pe(dlog2 pe + 1) consecutive stages [1].
The merge-exchange operation between two processes is shown in Figure 1(c).

The exact number of keys to exchange is determined using a bisection method,
followed by the exchange of the keys with point-to-point communication (e.g., in-
place with MPI_Sendrecv_replace). This reduces the merge-exchange operation

Parallel Sorting

�  Sample sort
◦ Quicksort based
�  Split data into P sets
�  Each processor acts upon a local set
�  Minimizes data movements

◦ Regular sampling (p*(p-1) keys)
�  Not effective for large p

◦ Random sampling
◦ Histogram sampling

Parallel	 Sor)ng	 by	 Regular	 Sampling	

1.  Divide	 the	 set	 into	 p	
disjoint	 sets	 and	 locally	
order	 each	 set	
◦  Applies	 a	 local	 QuickSort	
◦  Selects	 p-‐1	 local	 samples	

that	 uniformly	 divide	 each	
set	 into	 p	 subsets	

2.  Order	 p*(p-‐1)	 samples	 and	
select	 best	 p-‐1	 pivot	 keys	

3.  Partition	 each	 set	 using	 the	
p-‐1	 pivot	 keys	

4.  Merge	 p*p	 sets	
◦  Processor	 i	 merges	 the	 i	 	

partition	

Parallel Sorting

� Parallel radix sort
◦  Each processor is responsible by a subset of

digit values

◦  Sort and count the number of digit values
◦ All-reduce the total number of digits
◦  Send keys to the processor responsible for

each digit range
◦ Repeat for the next digit

