
Cycle Accounting Analysis on Intel® Core™2 Processors
By Dr. David Levinthal PhD.
Intel Corp.

Introduction
 In the process of analyzing an applications’ performance with the intention of
improving it, a detailed accounting for how the cpu cycles are used is one of the most
powerful techniques available. Traditional retirement centric analyses have difficulty
doing this when the target architecture has Out of Order (OOO) execution because the
entire objective of OOO execution is to continue executing instructions during the period
that retirement is blocked.
 In order to develop a cycle use based methodology, it is necessary to be
acquainted with the basic mechanisms of OOO execution.
An extremely simplified block diagram is shown in Figure 1 for this purpose.

After instructions are decoded into the executable micro operations (uops) they are issued
downstream if there are adequate resources. This would include (among other
requirements)

1) space in the Reservation Station (RS), where the uops wait until their inputs are
available

2) space in the Reorder Buffer, where the uops wait until they can be retired
3) sufficient load and store buffers in the case of memory related uops (loads and

stores)
Retirement and write back of state to visible registers is only done for instructions and
uops that are on the correct execution path. Instructions and uops of incorrectly predicted
paths are flushed upon identification of the misprediction and the correct paths are then

Decoder RS Execution

Units
dispatch

ROB

Retirement/Writeback

Figure 1

Inst Fetch
Br Pred

António Manuel Silva Pina

processed. Retirement of the correct execution path instructions can proceed when two
conditions are satisfied

1) all the uops associated with the instruction to be retired have completed, allowing
the retirement of the entire instruction

2) all older instructions and their uops of correctly predicted paths have retired
The mechanics of following these requirements ensures that the visible state is always
consistent with in-order execution of the instructions.
The “magic” of this design is that if the oldest instruction is blocked, for example waiting
for the arrival of data from memory, younger independent instructions whose inputs are
available can be dispatched to the execution units and warehoused in the ROB upon
completion. They will then retire when all the older work has completed.
 The difficulty, from the performance analysis perspective, is that this system
results in a burst type of flow in the retirement, where cycles of no retirement are
followed by streams of maximal retirement flow. Thus what happens on an individual
cycle at retirement is not terribly informative and one must use time averages and ratios to
acquire a sense of what is happening. The problem that arises is that when ratios are used
as the performance metric, the process of optimizing an application will inevitably change
both the numerator and denominator, obscuring the progress being made. Consider the
standard retirement metric, Cycles Per Instruction retired (CPI) in the case of optimizing a
loop. A high value of CPI is considered a sign of poor performance while a low value is
considered a sign of good performance. If during the optimization process the loop is
vectorized, i.e. compiled to generate Streaming SIMD Extension instructions (SSE), then
the number of instructions retired will drop significantly (2X or greater). The change in
the cycles consumed is unlikely to decrease at the same rate as this optimization will not
change the things like last level cache misses which will cause progress to stop. The net
result is that vectorizing a loop is virtually guaranteed to make CPI increase. In fact a
technique for minimizing CPI could be to maximize the number of instructions retired!

Rather than focusing on metrics made of ratios of cpu activity events, one can
simply focus on minimizing the cycles consumed to accomplish the desired work. A
cycle accounting simplifies this by allowing the developer to minimize the individual
components of cycle use accounting components. The principal metric is then just cycles
and the process of optimizing an application always lowers the principal metric.

Execution Centric Analysis

An out of order execution engine (figure 1) optimizes the uop flow at the point
where the uops are fed to the execution units. The surrounding buffers accumulate the
unissued and finished uops and reconnect the flow to the originally programmed order.
Uop dispatch is therefore the point in the pipeline from which this methodology will start
the cycle accounting. Such an accounting might also be started from retirement or at any
other point in the instruction flow, but as the point of uop dispatch is optimized by the
hardware to maintain the highest level of activity, it also provides the clearest
understanding of the execution.

For the Intel® Core™2 processor methodology outlined here, execution
measurements from several different points will ultimately be incorporated. This results
in a construction that while not rigorously correct, appears to work as a reasonable
approximation.

The description will focus on the flow of the micro-ops (uops) that the execution
units actually execute, rather than the x86 instructions generated by the compiler. The
role of the pipeline’s front end can be thought of as retrieving the required x86
instructions from the memory subsystem, translating them into the uops actually executed
and buffering them for transfer to the execution stages. This discussion will not cover that
activity in any detail.

The out of order execution, for the purposes of this discussion, can be thought of
as working roughly as follows: The uops sit in the Reservation Station (RS) until their
inputs are available and proper execution resource free. At that point they are dispatched
to the appropriate port to be executed on the execution unit needed.. A priority scheme is
in place for the case that more than one uop is candidate for execution. On any cycle up
to 6 uops can be dispatched, as there are 6 dispatch ports. Upon completion of a uop the
ROB is updated with the uop result and fault information. When all the uops associated
with an instruction have completed, the set (i.e. the instruction) is marked ready for
retirement. A given instruction can only retire when all older instructions have already
retired, restoring the execution order. At most 4 uops can be retired per cycle.

These cycles can be decomposed into two exclusive sets

Total Cycles = Cycles issuing uops + Cycles not issuing uops

The component of cycles where no uops are issued may be thought of as

execution stalls.
The event CPU_CLK_UNHALTED.CORE counts the core cpu cycles in the unhalted
state. If you are sampling on an executing application or counting in user mode only (to
avoid counting cycles during the null process that is “active” during the halted state) then

 Total Cycles ~ CPU_CLK_UNHALTED.CORE

The component of the cpu cycles issuing uops can be artificially further

decomposed into a component for retiring uops (Retired) and for non retiring uops
(Non_Retired). Of course retiring and non retiring uops may well share cycles, but this
allows a cycle decomposition into productive and non productive components. In this
approximation these components are proportional to the number of uops in each group.
 Thus the sum could be written as:

CPU_CLK_UNHALTED.CORE = Retired + Non_Retired + Stalls (1)

Such a decomposition aligns with existing performance events and each of the

terms can be evaluated. Equation 1 will be the master cycle accounting equation. The
objective of optimizing an existing program is to minimize this sum, by whatever means
are practical.
 The event RS_UOPS_DISPATCHED counts the number of uops dispatched from
the RS on every cycle. The performance event counters in the Performance Monitoring
Unit (PMU) can be programmed to accumulate the total. Alternatively it can compare the
value on each cycle to a reference value and increment the counter by one if the value is

>= or < the reference value. In this mode cycles are counted. If the reference value is set
to 1 (CMASK=1) and the comparison is set to “less than” (INV = 1), then the cycles
where no uops are dispatched are counted. In this discussion, this is defined to be the
stalled cycles. Conversely if the reference is set to 1 (C=1) and the comparison is left in
default mode (INV = 0, >=, default), then the number of cycles dispatching uops is
counted. The sum of these two is the total cycles; since on any given cycle you are either
dispatching uops or you are not. For the purposes of analyzing the performance of an
application we can ignore the difference between total cycles and
CPU_CLK_UNHALTED.CORE, as long as the events for the null process associated
with the halted state can be isolated. This is most easily accomplished by using event
sampling with the VTune™ Performance Analyzer and considering only the samples
associated with the process being analyzed. Thus

 CPU_CLK_UNHALTED.CORE ~ RS_UOPS_DISPATCHED:C=1 +
 RS_UOPS_DISPATCHED:C=1:I=1
Where C=c and I=I, denote the CMASK and INV values.

And the last component of the master cycle accounting equation is

 Stalls = RS_UOPS_DISPATCHED:C=1:I=1 (2)

To simplify the PMU programming the VTune™ Performance Analyzer has predefined

RS_UOPS_DSPATCHED.CYCLES_NONE = RS_UOPS_DISPATCHED:C=1:I=1

 RS_UOPS_DISPATCHED clearly counts both uops that will ultimately be retired
and uops that are speculatively executed but ultimately not retired. The event
UOPS_RETIRED.ANY counts the uops which are retired. The event
UOPS_RETIRED.FUSED counts the number of those that represent the fusions of two
executed uops. Therefore
 retired_uops_executed = UOPS_RETIRED.ANY + UOPS_RETIRED.FUSED
is the total number of uops that are executed in the production of useful work. Similarly
 RS_UOPS_DISPATCHED –

(UOPS_RETIRED.ANY + UOPS_RETIRED.FUSED)
 RS_UOPS_DISPATCHED – retired_uops_executed
is the total number of executed but non retired uops, representing non-productive work.
 If the average rate of issuing uops is the number of dispatched uops divided by the
cycles dispatching uops
 uop_dispatch_rate =
RS_UOPS_DISPATCHED/RS_UOPS_DISPATCHED:C=1
Then the cycles devoted to issuing non retired uops, the second term in the master
equation, can be approximated as

Cycles Dispatching Non_retired Uops =

(RS_UOPS_DISPATCHED -retired_uops_executed)/uop_dispatch_rate (3)

and with CPU_CLOCK_UNHALTED.CORE, all three components of the master cycle
accounting equation can be determined. Again, it should be pointed out that this does not
represent a rigorous cycle decomposition, but rather a division of the cycles into useful
sets for the purposes of performance analysis.
 An overall description of the optimization process might then be given as a three
part process.
1) Minimizing the “Retired” component by minimizing the instructions generated by the
compiler by vectorization and other techniques.
2) Minimizing the “Stalls” by removing memory access and other bottlenecks.
3) Minimizing the “Non-retired” component by reducing the branch mispredictions

Decomposition of Stalls
 The decomposition of the stall cycles is accomplished through another level of
approximation. If the assumption that the cycle penalties for each performance impacting
event occur sequentially, then the total loss of cycles available for useful work is simply
the number of events, Ni, times the average penalty for each type of event, Pi.

 Counted_Stall_Cycles = Σ Pi * Ni

 This only accounts for the performance impacting events that can be counted with
a PMU event. Ultimately there will be several sources of stalls that cannot be counted,
however their total contribution can be estimated by the difference of

 Unaccounted = Stalls – Counted_Stall_Cycles
 = RS_UOPS_DISPATCHED.CYCLES_NONE - Σ Pi * Ni

The unaccounted component can become negative as the sequential penalty model is
overly simple and usually over counts the contributions of the individual architectural
issues. It is meant to represent the components that were either not counted due to lack of
performance events or simply neglected during the data collection.
 There are several stall cycle components which cannot be counted reliably on the
Intel® Core™2 processor. These fall into three main classes:

1) stalls due to instruction starvation
2) stalls due to dependent chains of multi cycle instructions (other than divide)
3) stalls related to FSB saturation.

This last term is only an issue on extremely high bandwidth applications and typically
requires heavy use of either the HW prefetchers or SW prefetch intrinsics.
 Measuring FSB saturation is straightforward. This can be done in terms of the
fraction of bus cycles used for data transfer:
 BUS_DRDY_CLOCKS.ALL_AGENTS/CPU_CLK_UNHALTED.BUS
Or by directly counting the number of cachelines transferred:

Bandwidth_from_cachelines ~
64*BUS_TRANS_BURST.ALL_AGENTS*freq

/CPU_CLK_UNHALTED.CORE

 Due to the large number of factors that effect the maximum achievable bandwidth
on a given system it is always best to at least first measure the actual limit on a given
system by using a simple triad test case.

If the above metrics are used, it will turn out that the limits are the essentially the
same whether the compiler generates SSE streaming stores or regular stores that result in
reads for ownership.
The events BUS_TRANS_* can be used in a hierarchical manner to break down the
contributions to the front side bus utilization. This is outlined in the following table and is
explained in greater detail in the VTune™ Performance Analyzer online help facility.
These events can be used to count all transactions on the bus (.ALL_AGENTS), or just
those due to the particular core doing the counting (.SELF).
EVENT Explanation
BUS_TRANS_ANY All bus transactions: Mem, IO, Def,Partial
BUS_TRANS_MEM Whole $lines, Partials and Inval
BUS_TRANS_BURST Whole $lines: Brd, RFO, WB, Write Combines
BUS_TRANS_BRD Whole $line reads: Data, Ifetch
BUS_TRANS_IFETCH Whole Instruction $lines
BUS_TRANS_RFO Whole $lines Read For Ownership
BUS_TRANS_WRB Whole $line Write Backs (modified $lines)

 The stalls due to chains of long latency instructions can be estimated with static
analysis of the instructions and basic block execution counts.
 Instruction starvation can be seen to some degree by an anti correlation with the
event RESOURCE_STALLS.ANY.
Branch Mispredictions and Speculative Execution
 In a decomposition of execution inefficiency, the treatment of mispredicted
branching and incorrect speculation needs to be specifically addressed. In the simplified
OOO engine described in figure 1, branches are “executed” by the front end, and the
prediction is checked by the jump execution unit in the OOO machine. This is started by
the branch prediction, upstream of the decoding, selecting the expected instruction stream,
which is then decoded. In the stream of uops through the OOO engine all that needs to be
determined is that the branch was correctly predicted. In the case of a fused compare and
branch operation, the compare must also be executed and also goes through the RS. This
style of execution results in three components of unused work by the processor in the
case of a branch misprediction.

1) Some number of the mispredicted uops are routed through the execution units.
This component is included in what has been called the Non-Retired
component identified in equation 3.

2) The ROB and RS must then be purged of these incorrect uops. These stall
cycles can be approximated with the event
RESOURCE_STALLS.BR_MISS_CLEAR and can be easily included in the
stall decomposition as the units of the event are cycles

3) Finally, there may be some number of cycles where nothing is dispatched as
the pipeline waits for the correct uops to arrive at the front end, be decoded
and pushed through the RS. There are no events that allow a direct estimate of
this instruction starvation component.

Estimating Penalties for Countable Performance Issues
It is essential to know the penalties associated with the countable events in order

to estimate their relative impacts. A description of the memory access related stalls will
illustrate the technique and highlight the use of several very useful performance events.
The memory subsystem of the Intel® Core™2 processor has a 2-level cache. The precise
events for counting the line misses due to demand (not SW prefetch) load operations that
retired are MEM_LOAD_RETIRED.L1D_LINE_MISS and
MEM_LOAD_RETIRED.L2_LINE_MISS respectively. These events are precise in that
they use the Precise Event Based Sampling (PEBS) collection to determine the precise IP
of the load that triggered the event when the data is collected in sampling mode
(discussed later in this paper). The 2-level DTLB system has separate entries for both
large and small pages and performance events capable of counting a variety of actions
associated with their use. For this discussion only the L1 DTLB misses to small pages
will be considered.

As an example of how penalties might be evaluated, consider the class of memory
access penalties. To measure memory access latencies, a pointer chasing linked list
access is very effective at isolating the memory subsystem and ensuring the OOO engine
does not effectively prefetch data by speculatively executing loads well in advance. Such
a linked data list might be constructed with a loop like:
 arr = buf;
 LinesCnt=1;
 while(LinesCnt < Numaccess)
 {
 *arr = ((INT_PTR)arr + buf_offset);
 arr = (INT_PTR*)((INT_PTR)arr + buf_offset);
 LinesCnt++;
 }
 *arr = (INT_PTR)buf; // make it a loop

Then a simple loop, like the following, chasing the pointer list a fixed number of
ITERATIONS, can be timed
void do_read(INT_PTR count, INT_PTR* a){

 //zero out COUNTER and arrayPOSITION
 xor eax, eax
 mov rdx, a
LOOP1:
 //quit if loop has run allotted number of times
 cmp eax, ITERATIONS
 jge STOP
 //increment iteration counter
 inc eax
 //load value in a[arrayPOSITION] into arrayPOSITION
 mov rdx, [rdx]
 //goto LOOP
 jmp LOOP1

A similar loop with the load removed and replaced by a nop can be used to measure a
baseline time. The difference in times for the two asm loops, divided by the number of
iterations is defined as the penalty. The value of LinesCnt determines where in the
memory hierarchy the data will reside (L1, L2, or main memory) and the stride will

determine how the DTLB subsystem is invoked. Thus the penalties for both the memory
access latency and the DTLB subsystem can be extracted with a single test. The penalties
for other architectural pitfalls discussed in this document can be evaluated with similar
kinds of micro benchmarks.
It should be noted that the penalty values evaluated in this way are only approximations.
They are the typical values observed for a specific set of tests. In a real application the
penalties may vary due to precise details of the application and the platform (chipset,
DIMMS etc), may overlap, or even be completely hidden by the combination of the OOO
engine and the compiler. Any values shown here are strictly what was measured with the
particular tests used, were evaluated on the particular platforms available for the testing
and are for illustrative purposes only.
Example issues and penalties
Issue Performance Counter Approximate Penalty

L2 Hit
MEM_LOAD_RETIRED.L1D_LINE_MISS-
MEM_LOAD_RETIRED.L2_LINE_MISS ~12

L2 Miss MEM_LOAD_RETIRED.L2_LINE_MISS ~165 desktop/~300 server
L1 DTLB Miss MEM_LOAD_RETIRED.DTLB_MISS ~10
store to unknown addr precedes
load LOAD_BLOCKS.STA ~5
store forwarding 4 bytes from
middle of 8 LOAD_BLOCKS.OVERLAP_STORE ~6
store to known address
precedes load offset by N*4096 LOAD_BLOCKS.OVERLAP_STORE ~6
load from 2 cachelines (not in
L1D) LOAD_BLOCKS.UNTIL_RETIRE ~20
Length Changing Prefix (16 bit
imm ILD_STALL 6

The DTLB penalty can be more accurately evaluated (instead of merely assigning 10
cycles) by using the event PAGE_WALKS.CYCLES to incorporate cases where complex
page walks cause an increased penalty. This event counts the duration of the page walks
required to resolve the DTLB miss, and can be sampled to localize the cycles in IP. The
approximation of
 Penalty ~ MEM_LOAD_RETIRED.DTLB_MISS * 4 +
PAGE_WALKS.CYCLES
has been observed to work fairly well
 The length changing prefix penalty occurs in the decoder, so its impact is
weakened by having uop buffer (the RS) between where it occurs and the execution. In
addition if the Intel® compilers are used, this almost never occurs.
 These approximate penalties are likely to over count, particularly for the events
with smaller penalties. It is easier for the compiler and OOO engine to obscure their
relatively small effects. To identify real performance problems it is best to use sampling
and correlate the stalled cycles, as measured by
RS_UOPS_DISPATHED.CYCLES_NONE, to these events in the VTune Analyzer’s
source or asm view spread sheets. If there are no stalled cycle counts in the vicinity of the
event counts, then modifying the code or compilation to reduce the event counts is
unlikely to change the performance, as the hardware has already hidden their impact.
This is the critical point of having a stall cycle measurement and a cycle accounting
methodology. It allows a developer to identify where their optimization efforts are likely

to be fruitful and more importantly to identify where they would waste their time and
effort.

Analyzing an Application
 The virtue of the above discussion is that it immediately leads to a systematic
approach to selecting which events to monitor and how to interpret the data. This can be
broken down into a series of options, where the decision of what data to collect is based
on knowledge of some simple properties of the application and the experience of the
analyst.
 When collecting sampling data with a performance analysis tool, like the
VTune™ Analyzer, one of the critical inputs is what is known as the “Sample After
Value” or SAV. This determines the frequency with which an interrupt is generated,
allowing the tool to sample the locations in the application (instruction pointer or IP)
associated with the event occurrences. The counter is programmed to the SAV value and
decrements with each subsequent event. After SAV events an interrupt is raised on the
underflow. A driver then collects the required data and reprograms the counter to the
SAV. This is repeated throughout the applications execution or until the desired analysis
time is reached. The VTune Analyzer can easily sample at a rate of ~ 1 KHz/event, so for
Intel® Core™2 processors the event CPU_CLK_UNHALTED.CORE can be 2 million.
If the other events selected are assigned SAV values equal to the SAV value of cycle
event divide by the penalty, then the user will only see a significant number of samples if
the event is actually causing a significant performance impact. Lowering the SAV value
due to insignificant samples only results in determining how irrelevant that event is to
performance, and an excessive amount of disk space being wasted. The other virtue is
that the ratio of the event sample counts to the cycle sample counts is the ratio of the
penalty cycles to the total.
 A simple overview analysis can be performed with just 4 events, the big 4.
BIG 4 Sample After Value
CPU_CLK_UNHALTED.CORE 2,000,000
RS_UOPS_DISPATCHED.CYCLES_NONE 2,000,000
BUS_TRANS_ANY.SELF 100,000
MEM_LOAD_RETIRED.L2_LINE_MISS 10,000

Thus the SAV for MEM_LOAD_RETIRED.L2_LINE_MISS is set to the value for
CPU_CLK_UNHALTED.CORE/200 (10,000) as a penalty of 200 cycles for an L2 miss
is about right. This event selection measures cycles, stalls, bandwidth and long latency
memory accesses, delivering the most information for the fewest events. It will take two
data collections as it requires 3 events that must be programmed into the two general
counters.
 Applications can for the most part be divided into two classes, data layout
dominated and data value dominated . The first class can be thought of as loop dominated
applications that walk through a fixed data layout, typified by HPC, bandwidth
dominated applications. The second set is more typified by pointer chasing, latency
dominated applications such as data base transaction processing. These can also be
thought of as being loop vs. branch dominated.
 A more profound analysis could start with the following list:
FIRST PASS EVENTS Sample After Value

CPU_CLK_UNHALTED.CORE 2,000,000
RS_UOPS_DISPATCHED.CYCLES_NONE 2,000,000
UOPS_RETIRED.ANY 2,000,000
UOPS_RETIRED.FUSED 2,000,000
RS_UOPS_DISPATCHED 2,000,000
MEM_LOAD_RETIRED.L2_LINE_MISS 10,000
INST_RETIRED.ANY_P 2,000,000

Where the last event INST_RETIRED.ANY_P is the instructions retired event that uses
the Precise Event Based Sampling (PEBS) mechanism. This event will not produce a
uniform distribution of samples over a basic block, but the average value of this event
over a basic block tends to be a better measure of the basic block execution in loops. This
allows an estimate of the average loop tripcount for example, which is extremely
important knowledge for loop optimization.
 These events should be supplemented with events allowing a bandwidth or bus
traffic measurement for loop dominated applications. For example:
Loops Sample After Value
BUS_TRANS_ANY.SELF 100,000
BUS_TRANS_ANY.ALL_AGENTS 100,000

Or of the cycles lost flushing the pipeline after branch mispredictions in the case of
branch dominated applications:
Branch Dominated Sample After Value
RESOURCE_STALLS.BR_MISS_CLEAR 2,000,000

If more details are desired the following events might prove useful:
SECOND LEVEL EVENTS Sample After Value
MEM_LOAD_RETIRED.DTLB_MISS 20,000
MEM_LOAD_RETIRED.L1D_LINE_MISS 200,000
BR_CND_EXEC, BR_CND_MISSP_EXEC 2,000,000
BR_CALL_EXEC 200,000
BR_CALL_MISSP_EXEC 200,000
ILD_STALL 200,000
LOAD_BLOCK.STORE_OVERLAP 200,000

The SAV value for MEM_LOAD_RETIRED.DTLB_MISS is a factor of ten smaller than
would be indicated by the 10-cycle penalty indicated earlier in this paper. In practice this
event occurs quite rarely, allowing the lower SAV and higher accuracy. Knowing the
locations of data page changes can sometimes help a developer reconfigure data layout to
improve memory access performance.

For floating point intensive codes, it may be of interest to identify the component
of the stalls associated with divides, square roots and software assists for handling
denormals and such. The stalled cycles that occur while the divide or sqrt unit is
executing are measured by the event IDLE_DURING_DIV. One might argue that the
cycles spent issuing the uops for floating point software assists should be added to stalls
and subtracted from the uop issuing component. This is actually a relatively easy
correction to generate.

The count of such software assists can be evaluated with the event FP_ASSIST, which
has a penalty of approximately 200 cycles.
Divides, Sqrts and FP SW Assists Sample After Value
IDLE_DURING_DIV 2,000,000
FP_ASSIST 10,000

These tables of events should serve as a reasonable guide for identifying the most
common performance issues in applications. The optimizations that result will almost
always prove to be architecture independent. Thus the Intel® Core™2 processor should
be considered the analysis platform of choice for any application targeted for the x86
instruction set.

General Comments on Code Optimization
 Starting with the basic equations, 1-3, evaluating the three terms of the cycle
accounting is straightforward. The tables just discussed can guide the developer in the
data collection with the VTune Analyzer. The process of optimizing an application is
minimizing all three terms.
 Minimizing the instruction count in the critical sections of the code is one of the
easier optimizations. Using the Intel® compiler at high optimization levels will do this
for you through the generation of Streaming SIMD Extensions 3 (SSE3) instructions. For
this to work in an optimal fashion it is important to have data 16-byte aligned and to
ensure that unrolling loops by 2 (doubles) or 4 (floats) is straightforward for the
optimization logic of the compiler.
 Another typical strategy is to avoid recalculating quantities and group calculations
around the temporal availability of data. Again it is possible to assist the compiler by
avoiding complex data access and tricky algorithms, which really just succeeds in
confusing the compiler and any other code developers forced to read and/or support the
source.
 Minimizing stalls is dominated by optimizing memory access in the vast majority
of cases. The largest problem is the use of linked lists. Large numbers of disjoint memory
allocations connected by linked pointers defeat the HW prefetchers, and further can cause
them to retrieve data that will not be used. This in turn may evict data that could have
been reused. Allocating large blocks and navigating them in fixed patterns both enables
the HW prefetchers and minimizes the instruction counts required for the address
calculations.

Another typical issue is clustering data elements together (by address) that are not
used simultaneously in the code. The data layout and data consumption should be tightly
coupled. It is far better to have multiple parallel structures defined by data usage as this
leads to more complete cacheline consumption.

Both of the optimizations discussed above will lead to reducing DTLB misses as
well.

Prefetching data is required to overcome the latency to main memory. In the case
of indirectly addressed arrays (of structures, or single elements) it is possible to use the
software prefetch instruction to good effect. With the Intel compiler this can be invoked
with the mm_prefetch intrinsic from either C/C++ or Fortran. For a simple gather/copy

there is no gain, but as long as there is just a reasonable amount of work/gather, it can be
extremely effective.

Understanding this example has a general value for loop dominated applications.
The reason the SW prefetch does not help for the simple gather copy

For(i=0; i<len; i++)a[i] = b[addr[i]];
is that the OOO engine will automatically unroll the loop and execute all the loads first.
This happens by the decoder filling up the RS and then the loads execute as their inputs
can all be evaluated in parallel. This effectively acts like a prefetch.
 For a loop using indirectly accessed data that actually does some work, the finite
size of the RS restricts the degree of unrolling that the OOO engine can create, and the
“effective” prefetching accomplished by RS unrolling is no longer accomplished.
To illustrate this point consider a loop that indirectly (gather) accesses an array of
structures that contain an array of FP data that looks like:
 for(i=0; i<len; i++){
 *a1 += a[adr[i]].data[0]*a[adr[i]].data[1];
 }
The amount of work per gather can be varied in such a synthetic test to go from the 2 FP
operations per iteration in the loop above, to 16 FP operations per iteration with the
following:
 for(i=0; i<len; i++){
 *a1 += a[adr[i]].data[0]*a[adr[i]].data[1]
 + a[adr[i]].data[2]*a[adr[i]].data[3]
 + a[adr[i]].data[4]*a[adr[i]].data[5]
 + a[adr[i]].data[6]*a[adr[i]].data[7]
 + a[adr[i]].data[0]*a[adr[i]].data[7]
 + a[adr[i]].data[2]*a[adr[i]].data[1]
 + a[adr[i]].data[4]*a[adr[i]].data[3]
 + a[adr[i]].data[6]*a[adr[i]].data[5];
 }
In all such cases a version invoking a SW prefetch can easily be encoded, to use the Intel
compiler supported intrinsic _mm_prefetch as:
 for(i=0; i<len; i++){
 _mm_prefetch(&a[adr[i+pref]].data[0],1);
 *a1 += a[adr[i]].data[0]*a[adr[i]].data[1]
 + a[adr[i]].data[2]*a[adr[i]].data[3];
 }
Where the variable “pref” is a prefetch distance in iteration counts which can be varied to
allow an estimate of an optimal prefetch distance. The results, in cysles per iteration are
shown below.
 no prefetch pref = 8 pref = 16 pref = 32 pref = 64 pref = 96
2 fp ops 34.5 34.9 34.2 37.2 38.7 38.9
4 fp ops 44.5 34.5 33.6 38 42.2 41.4
8 fp ops 74.8 34.8 34.1 38.7 42.7 41.7
16 fp ops 108.9 34.6 34 42.2 50.9 45.6

 The realization that the RS achieves an automatic loop unrolling immediately
highlights the virtue of simplifying individual inner loops by loop distribution to the
largest degree possible. This both allows the OOO engine to achieve a greater degree of
Instruction Level Parallelism (ILP) and simplifies the effort required of the compiler to
generate SSE3 instructions. This may require “blocking” the inner loops to keep
temporary variables (that became arrays through the loop splitting) in cache along with
data values used in separate parts of the chained calculation.
 To illustrate this idea consider another synthetic benchmark that creates a nearly
endless chain of dependent FP operations. Such a test could be written as
 for(i=0; i<8192 - 1; i++){
 for(j=0;j<1000;j++){
 var1 = bb[i][j] + 5.*cc[i][j];
 var2 = 5.*bb[i+1][j] + 2.*dd[i+1][j];
 var3 = var2 * cc[i][j] + var1* dd[i][j];
 var4 = (var3+var1)*dd[i][j] + bb[i][j];

 var1 = (var4 + var2)*cc[i][j] + 5.*bb[i][j];
 var2 = (var3 + var1)*dd[i+1][j] + 2.*cc[i][j];
 var3 = (var1 + var2)*dd[i][j] - 5.*bb[i+1][j];
 var4 = (var3 + var1)*bb[i][j] - 2.*cc[i][j];

 var1 = (var4 + var2)*bb[i][j] + 5.*cc[i][j];
 var2 = (var3 + var1)*bb[i+1][j] + 2.*cc[i][j];
 var3 = (var1 + var2)*cc[i][j] - 5.*dd[i+1][j];
 var4 = (var3 + var1)*bb[i][j] - 2.*cc[i][j];
continually reproducing the last 8 lines as many times as desired. Such a loop of chained
operations can be easily distributed by the use of 4 temporary arrays to hold the values of
the variables var1-var4 as:
 for(i=0; i<8192 - 1; i++){
 for(j=0;j<1000;j++){
 var1 = bb[i][j] + 5.*cc[i][j];
 var2 = 5.*bb[i+1][j] + 2.*dd[i+1][j];
 var3 = var2 * cc[i][j] + var1* dd[i][j];
 var4 = (var3+var1)*dd[i][j] + bb[i][j];
 var1 = (var4 + var2)*cc[i][j] + 5.*bb[i][j];
 var2 = (var3 + var1)*dd[i+1][j] + 2.*cc[i][j];
 var3 = (var1 + var2)*dd[i][j] - 5.*bb[i+1][j];
 var4 = (var3 + var1)*bb[i][j] - 2.*cc[i][j];
 var6[j] = var1;
 var7[j] = var2;
 var8[j] = var3;
 var9[j] = var4;
 }
 for(j=0;j<1000;j++){
 var1 = var6[j];
 var2 = var7[j];
 var3 = var8[j];
 var4 = var9[j];

 var1 = (var4 + var2)*bb[i][j] + 5.*cc[i][j];
 var2 = (var3 + var1)*bb[i+1][j] + 2.*cc[i][j];

 var3 = (var1 + var2)*cc[i][j] - 5.*dd[i+1][j];
 var4 = (var3 + var1)*bb[i][j] - 2.*cc[i][j];
and so on.
Using the events RS_UOPS_DISPATCHED and CPU_CLK_UNHALTED.CORE and
correcting for any compiler loop unrolling it is straight forward to measure the total
cycles for one iteration of the original work vs. the number of uops dispatched on average
by the distributed work. The result

cycles/iter vs uops/loop

0

50

100

150

200

0 50 100 150 200

uops/loop

cy
cl

es
/it

er

shows a very clear minimum when the number of uops in the inner loop is slightly larger
than the RS, meaning that two iterations of the dependent chains of FP operations could
be interleaved by the RS.
Instruction Level Parallelism
 The ability to compare an events’ value to a reference value on every cycle allows
the measurement of the instruction level parallelism (ILP) that an application or even a
single loop achieves. If data is collected for all possible values of CMASK, the
differences of sequential CMASK values is the frequency that unique value was seen.
Thus for RS_UOPS_DISPATCHED, which can have a value between 0 and 6 one could
collect data for:
RS_UOPS_DISPATCHED:cmask=1:inv=1
RS_UOPS_DISPATCHED:cmask=2:inv=1
RS_UOPS_DISPATCHED:cmask=3:inv=1
RS_UOPS_DISPATCHED:cmask=4:inv=1
RS_UOPS_DISPATCHED:cmask=5:inv=1
RS_UOPS_DISPATCHED:cmask=6:inv=1
RS_UOPS_DISPATCHED:cmask=7:inv=1
And by subtracting the sequential values of the data collected for simple loops evaluating
the basic math functions evaluating an array of inputs like:
 For(i=0;i<len;i++)a[i] = exp(b[i]);
You can produce the distribution of the ILP achieved

ILP for Vector Math Functions

-0.05
0

0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0 1 2 3 4 5 6 7

Fr
ac

tio
n

of
 C

yc
le

s
pow exp log

Thus a strategy for optimization would be to minimize the area under a non-normalized
form of such a curve by shifting the curve to the right, and achieving greater parallel use
of the processors execution units.

Conclusion
 The use of cycle accounting allows a systematic minimization of an applications’
consumption of processor cycles. Intel® Core™2 processors are the first x86 processors
to provide support for this style of performance analysis and application optimization. It
should consequently be a developer’s first choice for a development platform.

Acknowledgement
I would like to thank Andy Glew, Anat Shemer and Wayne Smith for their invaluable
assistance in developing the ideas and techniques that were presented here. This would
not have been so successful without their input.

Appendix
A few more useful events:
For more detailed descriptions please consult the Software Developers’ Manual or the
online VTune™ Analyzer documentation. All the BUS_TRANS* events have additional
modifiers.
EVENT Precise Description
CPU_CLK_UNHALTED
INST_RETIRED.ANY_P P
INST_RETIRED.LOADS
INST_RETIRED.STORES
BUS_TRANS_ANY all bus transactions
BUS_TRANS_MEM bus trans to memory
BUS_TRANS_BURST whole cache line data transfers
BUS_TRANS_BRD whole cache line reads

BUS_TRANS_WB
Whole cache line writebacks (no
NT writes)

BUS_TRANS_RFO
Cache lines in for RFO (no HW
pref)

BUS_DRDY_CLOCKS.ALL_AGENTS
 all bus cycles used for data

transfer
BUS_DRDY_CLOCKS.THIS_AGENT all bus cycles due to writes
MEM_LOAD_RETIRED.L2_LINE_MISS P L2 demand misses
SSE_PRE_MISS.T1 SW prefetch to L1 inst
SSE_PRE_MISS.T2 SW prefetch to L2 inst
SSE_PRE_MISS.STORES Non Temporal Stores executed

L2_LINES_IN.SELF.DEMAND
 L2$lines in for rfo, load, sw

prefetch
L2_LINES_IN.SELF.PREFETCH L2$lines in for hw prefetch
L2_LINES_OUT.SELF.DEMAND demanded L2$Lines evicted
L2_LINES_OUT.SELF.PREFETCH HW prefetch L2$lines evicted

