
Processor Affinity
Home : Technical Computing : Processor Affinity

Here are some notes on working with thread affinity to assure optimal performance of multithreaded
codes.

Contents
Types of Thread Scheduling

Compact Scheduling
Round-Robin Scheduling
Stupid Scheduling

Determine Current Thread-Core Map
Defining Affinity

The Linux-Portable Way (taskset)
The Other Linux-Portable Way (numactl)
Using OpenMP Runtime Extensions
getfreesocket

Types of Thread Scheduling
Certain types of unevenly loaded applications can experience serious performance degradation
caused by the Linux scheduler treating high-performance application codes in the same way it would
treat a system daemon that might spend most of its time idle.

These sorts of scheduling issues are best described with diagrams. Let's assume we have compute
nodes with two processor sockets, and each processor has four cores:

When you run a multithreaded application with four threads (or even four serial applications), Linux
will schedule those threads for execution by assigning each one to a CPU core. Without being
explicitly told how to do this scheduling, Linux may decide to

1. run thread0 to thread3 on core0 to core3 on socket0
2. run thread0 and thread1 on core0 and core1 on socket0, and run thread2 and thread3 on

http://www.glennklockwood.com/index.php
http://www.glennklockwood.com/comp/index.php
http://www.glennklockwood.com/comp/affinity.php#sched
http://www.glennklockwood.com/comp/affinity.php#sched:compact
http://www.glennklockwood.com/comp/affinity.php#sched:rr
http://www.glennklockwood.com/comp/affinity.php#sched:stupid
http://www.glennklockwood.com/comp/affinity.php#topo
http://www.glennklockwood.com/comp/affinity.php#define
http://www.glennklockwood.com/comp/affinity.php#define:taskset
http://www.glennklockwood.com/comp/affinity.php#define:numactl
http://www.glennklockwood.com/comp/affinity.php#define:kmp
http://www.glennklockwood.com/comp/affinity.php#define:gfs
http://www.glennklockwood.com/comp/affinity.php#sched:compact
http://www.glennklockwood.com/comp/affinity.php#sched:rr
http://www.glennklockwood.com/comp/node-arch.png

socket1
3. run thread0 and thread1 on core0 only, run thread2 on core1, run thread3 on core2, and leave

core3 completely unutilized
4. any number of other nonsensical allocations involving assigning multiple threads to a single

core while other cores sit idle

It should be obvious that option #3 and #4 are very bad for performance, but the fact is that Linux
will happily schedule your multithreaded job (or multiple single-thread jobs) this way if your threads
behave in a way that is confusing to the operating system.

Compact Scheduling

Option #1 is often referred to as "compact"
scheduling and is depicted in the diagram to the
right. It keeps all of your threads running on a single
physical processor if possible, and this is what you
would want if all of the threads in your application
need to repeatedly access different parts of a large
array. This is because all of the cores on the same
physical processor can access the memory banks
associated with (or "owned by") that processor at the
same speed. However, cores cannot access memory
stored on memory banks owned by a different
processor as quickly; this is phenomenon is called NUMA (non-uniform memory access). If your
threads all need to access data stored in the memory owned by one processor, it is often best to put all
of your threads on the processor who owns that memory.

Round-Robin Scheduling

Option #2 is called "scatter" or "round-robin"
scheduling and is ideal if your threads are largely
independent of each other and don't need to access a
lot of memory that other threads need. The benefit to
round-robin thread scheduling is that not all threads
have to share the same memory channel and cache,
effectively doubling the memory bandwidth and
cache sizes available to your application. The
tradeoff is that memory latency becomes higher as
threads have to start accessing memory that might be
owned by another processor.

Stupid Scheduling

Option #3 and #4 are what I call "stupid" scheduling (see diagram to the right) and can often be the
default behavior of the Linux thread scheduler if you don't tell Linux where your threads should run.
This happens because in traditional Linux server environments, most of the proceses that are running
at any given time aren't doing anything. To conserve power, Linux will put a lot of these quiet
processes on the same processor or cores, then move them to their own dedicated core when they
wake up and have to start processing.

If your application is running at full bore 100% of the time, Linux will probably keep it on its own

http://www.glennklockwood.com/comp/node-arch-compact.png
http://www.glennklockwood.com/comp/node-arch-scatter.png
http://www.glennklockwood.com/comp/affinity.php#sched:rr
http://www.glennklockwood.com/comp/affinity.php#sched:stupid
http://www.glennklockwood.com/comp/affinity.php#sched:stupid

dedicated CPU core. However, if your application
has an uneven load (e.g., threads are mostly idle
while the last thread finishes), Linux will see that the
application is mostly quiet and pack all the quiet
threads (e.g., t0 and t1 in the diagram to the right) on
to the same CPU core. This wouldn't be so bad, but
the cost of moving a thread from one core to another
requires context switches which get very expensive
when done hundreds or thousands of times a minute.

Determine current thread-core map
If your application (let's call it application.x) has already been launched, you can easily see what
cores each thread is using by issuing the following command in bash:

$ for i in $(pgrep application.x); do ps -mo pid,tid,fname,user,psr -p
$i;done

The PSR field is the OS identifier for the core each TID (thread id) is utilizing.

Defining affinity

The Linux-Portable Way (taskset)

If you want to launch a job (e.g., simulation.x) on a certain set of cores (e.g., core0, core2, core4,
and core6), issue

$ taskset -c 0,2,4,6 simulation.x

If your process is already running, you can define thread affinity while in flight. It also lets you bind
specific TIDs to specific processors at a level of granularity greater than specifying -c 0,2,4,6
because Linux may still schedule two threads on core2 and nothing on core0. For example,

$ for i in $(pgrep application.x);do ps -mo pid,tid,fname,user,psr -p
$i;done

 PID TID COMMAND USER PSR
21654 - applicat glock -
 - 21654 - glock 0
 - 21655 - glock 2
 - 21656 - glock 2
 - 21657 - glock 6
 - 21658 - glock 4

$ taskset -p -c 0 21654
$ taskset -p -c 0 21655
$ taskset -p -c 2 21656
$ taskset -p -c 4 21657
$ taskset -p -c 6 21658

http://www.glennklockwood.com/comp/node-arch-bad.png

This sort of scheduling will happen under certain conditions, so specifying a set of cpus to a set of
threads without specifically assigning each thread to a physical core may not always behave
optimally.

The Other Linux-Portable Way (numactl)

The emerging standard for easily binding processes to processors on Linux-based supercomputers is
numactl. It can operate on a coarser-grained basis (i.e., CPU sockets rather than individual CPU
cores) than taskset (only CPU cores) because it is aware of the processor topology and how the CPU
cores map to CPU sockets. Using numactl is typically easier--after all, the common goal is to confine
a process to a numa pool (or "cpu node") rather than specific CPU cores. To that end, numactl also
lets you bind a processor's memory locality to prevent processes from having to jump across NUMA
pools (called "memory nodes" in numactl parlance).

Whereas if you wanted to bind a specific process to one processor socket with taskset you would
have to

$ taskset -c 0,2,4,6 simulation.x

the same operation is greatly simplified with numactl:

$ numactl --cpunodebind=0 simulation.x

If you want to also restrict simulation.x's memory use to the numa pool associated with cpu node 0,
you can do

$ numactl --cpunodebind=0 --membind=0 simulation.x

or just

$ numactl -C 0 -N 0 simulation.x

You can see what cpu nodes and their corresponding memory nodes are available on your system by
using numactl -H:

$ numactl -H
available: 2 nodes (0-1)
node 0 size: 32728 MB
node 0 free: 12519 MB
node 1 size: 32768 MB
node 1 free: 16180 MB
node distances:
node 0 1
 0: 10 21
 1: 21 10

numactl also lets you supply specific cores (like taskset) with the --physcpubind or -C. Unlike
taskset, though, numactl does not appear to let you change the CPU affinity of a process that is
already running.

An alternative syntax to numactl -C is something like

$ numactl -C +0,1,2,3 simulation.x

By prefixing your list of cores with a +, you can have numactl bind to relative cores. When combined
with cpusets (which are enabled by default for all jobs on Gordon), the above command will use the
0th, 1st, 2nd, and 3rd core of the job's given cpuset instead of literally core 0,1,2,3.

Using OpenMP Runtime Extensions

Multithreaded programs compiled with Intel Compilers can utilize Intel's Thread Affinity Interface
for OpenMP applications. Set and export the KMP_AFFINITY env variable to express binding
preferences. KMP_AFFINITY has three principal binding strategies:

compact fills up one socket before allocating to other sockets
scatter evenly spreads threads across all sockets and cores
explicit allows you define exactly which cores/sockets to use

Using KMP_AFFINITY=compact will preferentially bind all your threads, one per core, to a single
socket before it tries binding them to other sockets. Unfortunately, it will start at socket0 regardless
of if other processes (such as another SMP job) is already bound to that socket. You can explicitly
specify an offset to force the job to bind to a specific socket, but you need to know exactly what is
running on what cores and sockets on your node in order to specify this in your submit script.

You can also explicitly define which cores your job should use. Combined with a little knowledge of
your system's CPU topology (Intel's Processor Topology Enumeration tool is great for this). If you
wanted to run on cores 0, 2, 4, and 6, you would do

export KMP_AFFINITY='proclist=[0,2,4,6],explicit'

GNU's implementation of OpenMP has a environment variable similar to KMP_AFFINITY called
GOMP_CPU_AFFINITY. Incidentally, Intel's OpenMP supports GOMP_CPU_AFFINITY, so using this
variable may be a relatively portable way to specify thread affinity at runtime. The equivalent
GOMP_CPU_AFFINITY for the KMP_AFFINITY I gave above would be:

export GOMP_CPU_AFFINITY='0,2,4,6'

getfreesocket

I wrote a small perl script called getfreesocket that uses KMP_AFFINITY=explicit (or
GOMP_CPU_AFFINITY) and some probing of the Linux OS at runtime to intelligently bind SMP jobs to
free processor sockets. It should be invoked in a run script something like this:

#!/bin/bash

NPROCS=1
BINARY=${HOME}/bin/whatever

nprocs=$(grep '^physical id' /proc/cpuinfo | sort -u | wc -l)
ncores=$(grep '^processor' /proc/cpuinfo | sort -u | wc -l)
coresperproc=$((ncores/nprocs))

http://software.intel.com/sites/products/documentation/studio/composer/en-us/2011Update/compiler_c/optaps/common/optaps_openmp_thread_affinity.htm
http://software.intel.com/en-us/articles/intel-64-architecture-processor-topology-enumeration
https://github.com/glennklockwood/sdsc/blob/master/getfreesocket

Last updated Saturday, June 28, 2014 at 5:23 PM glenn@glennklockwood.comglenn@glennklockwood.com

OMP_NUM_THREADS=$((NPROCS*coresperproc))

freesock=$(getfreesocket -explicit=${NPROCS})
if ["z$freesock" == "z"]
then
 echo "Not enough free processors! aborting"
 exit 1
else
 KMP_AFFINITY="granularity=fine,proclist=[$freesock],explicit"
 GOMP_CPU_AFFINITY="$(echo $freesock | sed -e 's/,/ /g')"
fi

export KMP_AFFINITY OMP_NUM_THREADS GOMP_CPU_AFFINITY

${BINARY}

This was a very simple solution to get single-socket jobs to play nicely on the shared batch system
we were using at the Interfacial Molecular Science Laboratory. While numactl is an easier way to
accomplish some of this, it still requires that you know what other processes are sharing your node
and on what CPU cores they are running. I've experienced problems with Linux's braindead thread
scheduling so this getfreesocket intelligently finds completely unused sockets that can be fed into
taskset, KMP_AFFINITY, or numactl.

This is not as great an issue if your resource manager supports launching jobs within cpusets. Your
resource manager will provide a cpuset, and using relative specifiers for numactl cores (e.g., numactl
-C +0-3) will bind to the free socket provided by the batch environment. Of course, this will not
specifically bind one thread to one core, so using KMP_AFFINITY or GOMP_CPU_AFFINITY may remain
necessary.

mailto:glenn@glennklockwood.com
mailto:glenn@glennklockwood.com
http://glass.rutgers.edu/
http://glennklockwood.blogspot.com/2012/07/braindead-thread-scheduling-in-linux.html

