
How to Get Good Performance
by Using OpenMP	

1	

Agenda	

•  	

Loop optimizations	

•  	

Measuring OpenMP performance	

•  	

Best practices	

•  	

Task parallelism 	

	

2	

3	

Correctness versus performance	

It may be easy to write a correctly functioning
OpenMP program, but not so easy to create a program
that provides the desired level of performance.	

4	

Memory access patterns	

A major goal is to organize data accesses so that
values are used as often as possible while they are still
in the cache.	

5	

Two-dimensional array access	

In C, a two-dimensional array is stored in rows.	

6	

Two-dimensional array access	

Empirical test on alvin:	

	

n = 50000	

	

row-wise access: 	

 	

 34.8 seconds	

	

column-wise access: 	

213.3 seconds	

7	

Loop unrolling	

8	

Loop fusion	

9	

Loop fission	

10	

Loop tiling	

cont'd on next page	

n!

11	

12	

Measuring OpenMP performance	

(1) Using the time command available on Unix systems:	

	

 	

$ time program!

! !real !5.4!
! !user !3.2!
! !sys! !2.0 !

(2) Using the omp_get_wtime() function. 	

 	

Returns the wall clock time (in seconds) relative to 	

 	

an arbitrary reference time. 	

13	

Parallel overhead	

The amount of time required to coordinate parallel threads, as
opposed to doing useful work. 	

Parallel overhead can include factors such as:	

•  	

Thread start-up time	

•  	

Synchronization	

•  	

Software overhead imposed by parallel compilers,

	

libraries, tools, operating system, etc.	

•  	

Thread termination time	

14	

A simple performance model	

TCPU (P) = (1+OP ⋅P) ⋅Tserial

TElapsed (P) = (
f
P
− f +1+OP ⋅P) ⋅Tserial

Speedup(P) = TSerial (P)
TElapsed (P)

=
1

f
P
− f +1+OP ⋅P

=
1

0.95
P

+ 0.05 + 0.02 ⋅P

Efficiency(P) = Speedup(P)
P

15	

16	

Performance factors	

•  Manner in which memory is accessed by the individual threads.	

•  Sequential overheads: Sequential work that is replicated.	

•  (OpenMP) Parallelization overheads: The amount of time spent
	

handling OpenMP constructs.	

•  Load imbalance overheads: The load imbalance between
	

synchronization points.	

•  Synchronization overheads: Time wasted for waiting to enter
	

critical regions.	

17	

Overheads of OpenMP directives	

REDUCTION	

PARALLEL	
 FOR	

PARALLEL	

SINGLE	

BARRIER	

FOR	

18	

Overheads of OpenMP directives on alvin (gcc)	

19	

Overhead of OpenMP scheduling	

20	

Overhead of OpenMP scheduling on alvin (gcc)	

21	

Best practices	

22	

Optimize barrier use	

23	

Avoid the ordered construct	

The ordered construct is expensive.	

The construct can often be avoided. It might be better
to perform I/O outside the parallel loop.	

24	

Avoid the critical region construct	

If at all possible, an atomic update is to be preferred.	

25	

25	

#pragma omp parallel!
{!

 #pragma omp critical!
 {!
 ...!
 }!
 ...!
}!

Lost time waiting for locks	

tim
e	

 Busy	

 Idle	

 In Critical	

Avoid large critical regions	

26	

Maximize parallel regions	

27	

Maximize parallel regions	

Large parallel regions offer more opportunities for using data in cache and provide a
bigger context for compiler optimizations.	

28	

Avoid parallel regions in inner loops	

29	

29	

 Unequal work loads lead to idle threads and wasted time.	

tim
e	

#pragma omp parallel!
{!
 #pragma omp for!
 for (; ;) {!

 }!
}!

Load imbalance	

 Busy	

 Idle	

30	

Load balancing	

• 	
 	
 Load balancing is an important aspect of performance	

•  	

For regular expressions (e.g. vector addition), load
	

balancing is not an issue	

•  	

For less regular workloads, care needs to be taken in
	

distributing the work over the threads	

•  	

Examples of irregular workloads:	

 	

 	

 	

 	

 	

	

 	

- multiplication of triangular matrices 	

 	

 	

 	

	

 	

- parallel searches in a linked list	

•  	

For these irregular situations, the schedule clause supports
	

various iteration scheduling algorithms 	

31	

Address poor load balancing	

cont'd on next page	

32	

33	

False sharing	

The state bit of a cache line does not keep track of the cache
line state on a byte basis, but at the line level instead.	

Thus, if independent data items happen to reside on the same
cache line (cache block), each update will cause the cache line
to “ping-pong” between the threads.
	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

This is called false sharing.	

34	

False sharing	

False sharing is likely to significantly impact performance
under the following conditions:	

1.  Shared data are modified by multiple threads.	

2.  The access pattern is such that multiple threads modify
the same cache line(s).	

3.  These modification occur in rapid succession.	

35	

False sharing example	

36	

Array elements are contiguous in memory and hence
share cache lines.	

	

 	

	

	

 	

Result: False sharing may lead to poor scaling	

Solutions:	

•  	

When updates to an array are frequent, work
	

with local copies of the array in stead of an array
	

indexed by the thread ID.	

•  	

Pad arrays so elements you use are on distinct 	

	

cache lines.	

False sharing	

37	
 37	

Array padding	

int a[Nthreads];!
#pragma omp parallel for shared(Nthreads,a) schedule(static,1)!
 for (int i=0; i<Nthreads; i++)!
 a[i] += i;!

int a[Nthreads][cache_line_size];!
#pragma omp parallel for shared(Nthreads,a) schedule(static,1)!
 for (int i=0; i<Nthreads; i++)!
 a[i][0] += i;!

38	

Case study: Matrix times vector product	

39	

40	

41	

42	

43	

44	

Task Parallelism in OpenMP 3.0	

45	

Tasks are independent units of work	

Threads are assigned to perform the work of each task	

•  Tasks may be deferred 	

•  Tasks may be executed immediately	

The runtime system decides which of the above	

•  Tasks are composed of:	

•  code to execute	

•  data environment (it own its data)	

•  internal control variables	

Serial	

 Parallel	

What are tasks?	

46	

Tasks in OpenMP	

OpenMP has always had tasks, but they were not called that.	

•  	

A thread encountering a parallel construct packages up a set of
	

implicit tasks, one per thread.	

•  	

A team of threads is created.	

•  	

Each thread is assigned to one of the tasks (and tied to it).	

•  	

Barrier holds master thread until all implicit tasks are finished.	

OpenMP 3.0 adds a way to create a task explicitly for the team to
execute.	

47	

The task construct	

#pragma omp task [clause [[,] clause] ...]
 structured block

Each encountering thread creates a new task.	

•  Code and data are being packaged up	

•  Tasks can be nested	

An OpenMP barrier (implicit or explicit):	

 	

 	

	

All tasks created by any thread of the current
	

team are guaranteed to be completed at barrier exit.	

Task barrier (taskwait): 	

 	

 	

 	

	

Encountering thread suspends until all child tasks it
	

has generated are 	

complete.	

48	

Simple example of using tasks	

for pointer chasing	

void process_list(elem_t *elem) {!
 #pragma omp parallel!
 {!
 #pragma omp single!
 {!
 while (elem != NULL) {!
 #pragma omp task!
 {!
 process(elem);!
 }!
 elem = elem->next;!
 }!
 }!
 }!
}!

elem is firstprivate by default	

49	

Simple example of using tasks	

in a recursive algorithm	

int fib(int n) {!
 int i, j;!
 if (n < 2)!
 return n;!

 i = fib(n - 1);!

!j = fib(n - 2);!

 return i + j;!
}!

int main() {!
 int n = 10;!

 printf("fib(%d) = %d\n", !
 n, fib(n));!
}!

#pragma omp parallel!
#pragma omp single!

#pragma omp task shared(i)!

#pragma omp task shared(j)!

#pragma omp taskwait!

Computation of Fibonacci numbers	

1,1,2,3,5,8,13,21,34,55,89,144,...	

50	

Using tasks for tree traversal	

struct node {!
 struct node *left, *right;!
};!

void traverse(struct node *p, int postorder) {!
 if (p->left != NULL)!
 #pragma omp task!
 traverse(p->left, postorder);!
 if (p->right != NULL)!
 #pragma omp task!
 traverse(p->right, postorder);!
 if (postorder) {!
 #pragma omp taskwait!
 } !
 process(p);!
}!

51	

Task switching	

Certain constructs have suspend/resume points at defined
positions within them.	

When a thread encounters a suspend point, it is allowed to
suspend the current task and resume another. It can then return
to the original task and resume it.	

A tied task must be resumed by the same task that suspended it.	

Tasks are tied by default. A task can be specified to be untied
using	

	

 	

 	

#pragma omp task untied!

52	

Collapsing of loops	

The collapse clause (in OpenMP 3.0) handles perfectly
nested multi-dimensional loops.	

#pragma omp for collapse(2)!
for (i = 0; i < N; i++)!
 for (j = 0; j < M; j++)!
 for (k = 0; k < K; k++)!
 foo(i, j, k);!

Iteration space from i-loop and j-loop is collapsed into a single
one, if the two loops are perfectly nested and form a rectangular
iteration space. 	

53	

Removal of dependencies	

for (i = 0; i < n; i++) {!
 x = (b[i] + c[i]) / 2;!
 a[i] = a[i + 1] + x;!
}!

Serial version containing anti dependency	

#pragma omp parallel for shared(a,a_copy)!
for (i = 0; i < n; i++)!
 a_copy[i] = a[i + 1];!
#pragma omp parallel for shared(a,a_copy) private(x)!
for (i = 0; i < n; i++) {!
 x = (b[i] + c[i]) / 2;!
 a[i] = a_copy[i] + x;!
}!

Parallel version with dependencies removed	

54	

Removal of dependencies	

for (i = 1; i < n; i++) {!
 b[i] = b[i] + a[i - 1];!
 a[i] = a[i] + c[i];!
}!

Serial version containing flow dependency	

b[1] = b[1] - a[0];!
#pragma omp parallel for shared(a,b,c)!
for (i = 1; i < n; i++) {!

!a[i] = a[i] + c[i]; !!
!b[i + 1] = b[i + 1] + a[i];!

}!
a[n - 1] = a[n - 1] + c[n - 1];!

Parallel version with dependencies removed by loop skewing	

55	

Automatic parallelization	

Some compilers can insert OpenMP can optimize a program
automatically. However, they must be conservative, and
programs spread over several files create difficulties.	

The Intel compilers support automatic parallelization. Example,	

 icc -o matmult -O3 -parallel -par-report3 matmult.c !

