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Correctness versus performance

It may be easy to write a correctly functioning

1Y,

OpenMP program, but not so easy to create a program

that provides the desired level of performance.




Memory access patterns

A major goal 1s to organize data accesses so that
values are used as often as possible while they are still
in the cache.




Two-dimensional array access

In C, a two-dimensional array is stored in rows.

for (int i=0; i<n; i++)
for (int j=0; j<n; j++)
sum += al[il[j];

Figure 5.1: Example of good memory access — Array a is accessed along the
rows. This approach ensures good performance from the memory system.

for (int j=0; j<n; j++)
for (int i=0; i<n; i++)
sum += al[il[j];

Figure 5.2: Example of bad memory access — Array a is accessed columnwise.

This approach results in poor utilization of the memory system. The larger the array, the
worse 1ts performance will be.




Two-dimensional array access

Empirical test on alvin:
n = 50000

rOw-wise access: 34.8 seconds
column-wise access: 213.3 seconds




Loop unrolling

for (int i=1; i<n; i++) {
ali] = blil + 1;
cli] = ali]l + ali-1] + bl[i-1];

Figure 5.3: A short loop nest — Loop overheads are relatively high when each
iteration has a small number of operations.

for (int i=1; i<n; i+=2) {
alil = bli] + 1;
clil = alil + ali-1] + bli-1];
ali+1] = bli+1] + 1;
cli+1] = ali+i] + alil + blil;

Figure 5.4: An unrolled loop — The loop of Figure 5.3 has been unrolled by a factor
of 2 to reduce the loop overheads. We assume the number of iterations is divisible by 2.




Loop fusion

for (int i=0; i<n; 1i++)
alil = bl[i]l =* 2;
for (int i=0; i<n; 1i++)
{
x[i] = 2 * x[i];
clil] = alil + 2;
}

Figure 5.10: A pair of loops that both access array a — The second loop reuses
element ali], but by the time it is executed, the cache line this element is part of may no

longer be in the cache.

for (int i=0; i<n; i++)

{
a[il = b[i] * 2;
cl[il = alil + 2;
x[i]l = 2 * x[il;
+

Fipgure 5.11: An example of loop fusion — The pair of loops of Figure 5.10 have
been combined and the statements reordered. This permits the values of array a to be

immediately reused.




Loop fission

for (int i=0; i<n: i++)
{
c[i]l = exp(i/m) ;
for (int j=0; j<m; j++)
aljl[i] = b[jI[i] + d[j] * elil;

Figure 5.12: A loop with poor cache utilization and bad memory access —
If we can sphit off the updates to array ¢ from the rest of the work, loop interchange can
be applied to fix this problem.

for (int i=0; i<n; i++)
clil = exp(i/m) ;

for (int j=0; j<m; j++)
for (int i=0; i<n: i++)
aljl1[i] = b[j1[i] + d[j] * elil;

Figure 5.13: Loop fission — The loop nest of Figure 5.12 has been split into a pair of
loops, followed by loop interchange applied to the second loop to improve cache usage.




Loop tiling

for (int i=0; i<n; i++)
for (int j=0; j<n; j++)
blil [j] = aljl[i];

Fipure 5.14: A nested loop implementing an array transpose operation —
Loop interchange does not improve its use of cache or TLB. A fresh approach is needed.

for (int ji1=0; ji<m; ji+=nbj)
for (int i=0; i<n:; i++)
for (int j2=0; j2 < MIN(n-ji,nbj); j2++)
blil [j1+j2] = alj1+j21 [il;

Fipgure 5.15: Loop tiling applied to matrix transpose — Here we have used loop
tiling to split the inner loop into a pair of loops. This reduces TLB and cache misses.

cont'd on next page
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Figure 5.16: Array access pattern — Here we see how arrays a and b are accessed
hefore and after loop tiling. The revised version accesses fewer pages per outer loop
iteration.
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Measuring OpenMP performance

(1) Using the time command available on Unix systems:

$ time program

real 5.4
user 3.2
Sys 2.0

(2) Using the omp get wtime () function.
Returns the wall clock time (in seconds) relative to

an arbitrary reference time.




Parallel overhead

The amount of time required to coordinate parallel threads, as
opposed to doing useful work.

Parallel overhead can include factors such as:

* Thread start-up time

*  Synchronization

* Software overhead imposed by parallel compilers,
libraries, tools, operating system, etc.

* Thread termination time
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A simple performance model

T.,,(P)=(1+0,-P)-T

erial

f

TElapsed (P) — (F B f + 1 + OP . P) . Tserial

In this model, Taeriar 15 the CPU time of the original serial version of the appli-
cation. The number of processors is given by FP. The parallel overhead is denoted
by Op - P, with Oy assumed to be a constant percentage (this is a simplification, as
the overheads may well increase as the number of processors grows).

The fraction of execution time that has been parallelized is specified by f < [0, 1].
Both f = 0 and f = 1 are extreme cases. A value of zero for f implies that
application is serial. A perfectly parallel applicati-::m corresponds to f = 1.
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Table 5.1: Parallel performance and speedup for f=0.95 and 2% overhead
— The elapsed time goes down, whereas the total CPU time goes up. Parallel speedup is

A%

calculated from the elapsed time, using the serial version as the reference.

Efficiency(P) =

TElapsed(P) i_f+1+0PP
P

Speedup(P)

P

—+0.05+0.02-P
P

Version | Number of | CPU time | Elapsed time | Speedup | Efficiency
Processors | (seconds) (seconds) (%)
Serial 1 10.20 10.20 1.00 100
Parallel 1 10.40 10.40 0.98 08
2 10.61 h.76 1.77 88
4 11.02 3.75 2.72 68
8 11.83 3.35 3.04 38
Speedup(P) = Tooria(P) _ 1 S— 1
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Performance factors

* Manner in which memory is accessed by the individual threads.
* Sequential overheads: Sequential work that is replicated.

* (OpenMP) Parallelization overheads: The amount of time spent
handling OpenMP constructs.

e Load imbalance overheads: The load imbalance between
synchronization points.

* Synchronization overheads: Time wasted for waiting to enter
critical regions.




Overheads of OpenMP directives
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Figure 5.18: Owverheads of some OpenMP directives

common directives and constructs 1s given in microseconds.

The overhead of several
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Overhead of OpenMP scheduling
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Figure 5.19: Owverhead of OpenMP scheduling — The overheads for the different
kinds of loop schedules are shown. Note that the scale to the left is logarithmic.
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Best practices
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Optimize barrier use

#pragma omp parallel default(none) \
shared(n,a,b,c,d,sum) private(i)
{
#pragma omp for nowait
for (i=0; i<n; i++)
alil += blil;

#pragma omp for nowait
for (i=0; i<m; i++)
cli]l += d[il;

#pragma omp barrier

#pragma omp for nowait reduction(+:sum)
for (i=0; i<mn; i++)
sum += al[i] + clil;
} /*-— End of parallel region --*/

Figure 5.21: A reduced number of barriers — Before reading the values of vectors
a and b all updates on these vectors have to be completed. The barrier ensures this.
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Avoid the ordered construct

The ordered construct is expensive.

The construct can often be avoided. It might be better
to perform I/O outside the parallel loop.
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Avoid the critical region construct

#pragma omp parallel shared(a,b) private(c,d)

{
#pragma omp critical
{
a += 2 % C;
c=d * d;
}

} /*-- End of parallel region --%/

Figure 5.22: A critical region — Without the critical region, the first statement
here leads to a data race. The second statement however involves private data only and
unnecessarily increases the time taken to execute this construct. To improve performance
it should be removed from the critical region.

If at all possible, an atomic update is to be preferred.
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Avoid large critical regions

Lost time waiting for locks

#pragma omp parallel

{
#pragma omp critical
{ =
e o o a
}

B Busy
M [dle
M In Critical
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Maximize parallel regions

I IJIVQ'.‘:V :
#pragma omp parallel for | [

for (..... ) | ]

{ |
/#*—— Work-sharing loop 1 —--*/

}

#pragma omp parallel for

for (..... )

{

---------

#pragma omp parallel for
for (..... )
{
/*-— Work-sharing loop N --*/
}

Figure 5.23: Multiple combined parallel work-sharing loops — Each par-
allelized loop adds to the parallel overhead and has an implied barrier that cannot be
omitted.
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Maximize parallel regions

#pragma omp parallel

{

#pragma omp for /#-- Work-sharing loop 1 —--%/

Fipure 5.24: Single parallel region enclosing all work-sharing for loops
The cost of the parallel region is amortized over the various work-sharing loops.

Large parallel regions offer more opportunities for using data in cache and provide a
bigger context for compiler optimizations.
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Avoid parallel regions in inner loops

for (i=0; i<m; i++)
for (j=0; j<n; j++)
#pragma omp parallel for
for (k=0; k<n; k++)

Figure 5.25: Parallel region embedded in a loop nest — The overheads of the

parallel region are incurred n? times.

#pragma omp parallel
for (i=0; i<n; i++)
for (j=0; j<n; j++)
#pragma omp for
for (k=0; k<n; k++)

The parallel

Figure 5.26: Parallel region moved outside of the loop nest

construct overheads are minimized.
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Unequal work loads lead to idle threads and wasted time.

Load imbalance

#pragma omp parallel

{

}

#pragma omp for
for ( 7 7 ) A

own

}

E Busy
HIdle
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Load balancing

 Load balancing is an important aspect of performance

* For regular expressions (e.g. vector addition), load
balancing 1s not an issue

* For less regular workloads, care needs to be taken in
distributing the work over the threads

* Examples of irregular workloads:
- multiplication of triangular matrices
- parallel searches in a linked list

* For these irregular situations, the schedule clause supports
various iteration scheduling algorithms
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Address poor load balancing

for (i=0; i<N; i++) {
ReadFromFile(i,...);
for (j=0; j<Processinglium; j++ )
ProcessData(); /+ lots of work here =*/
WriteResultsToFile(i);

}

Figure 5.27: Pipelined processing — This code reads data in chunks, processes each
chunk and writes the results to disk before dealing with the next chunk.

cont'd on next page
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#pragma omp parallel
i

/* preload data to be used in first iteration of the i-loop #*/
#pragma omp single
{ReadFromFile(0,...);}

for (i=0; i<N; i++) {

/* preload data for next iteration of the i-loop #*/
#pragma omp single nowait
{ReadFromFile(i+1...):}

#pragma omp for schedule(dynamic)
for (j=0; j<ProcessingNum; j++)
ProcessChunkOfData(); /* here is the work */
/* there is a barrier at the end of this loop */

#pragma omp single nowait
{WriteResultsToFile(i);}

} /* threads immediately move on to next iteration of i-loop #*/
} /* one parallel region encloses all the work */

Fipgure 5.28: Parallelized pipelined processing — This code uses a dynamic work-
sharing schedule to overlap I/0 and computation.
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False sharing

Main Memory

The state bit of a cache line does not keep track of the cache
line state on a byte basis, but at the line level instead.

Thus, if independent data items happen to reside on the same
cache line (cache block), each update will cause the cache line

to “ping-pong” between the threads.

This is called false sharing.




False sharing m

False sharing 1s likely to significantly impact performance
under the following conditions:

1. Shared data are modified by multiple threads.

2. The access pattern is such that multiple threads modify
the same cache line(s).

3. These modification occur in rapid succession.




False sharing example

#pragma omp parallel for shared(Nthreads,a) schedule(static,1)
for (int i=0; i<Nthreads; i++)
alil += i;

Figure 5.29: Example of false sharing — Nthreads equals the number of threads
executing the for-loop. The chunk size of 1 causes each thread to update one element of
a, resulting in false sharing.
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False sharing

Array elements are contiguous in memory and hence
share cache lines.

Result: False sharing may lead to poor scaling

Solutions:

* When updates to an array are frequent, work
with local copies of the array in stead of an array
indexed by the thread ID.

* Pad arrays so elements you use are on distinct
cache lines.




Array padding

int a[Nthreads];
#pragma omp parallel for shared(Nthreads,a) schedule(static,l)
for (int i=0; i<Nthreads; i++)
a[fi] += i;

int a[Nthreads][cache line size];
#pragma omp parallel for shared(Nthreads,a) schedule(static,1)
for (int i=0; i<Nthreads; i++)
afi][0] += i;




Case study: Matrix times vector product

1 void mxv(int m, int n, double * restrict a,
2 double * restrict b, double * restrict c)
3 {

4 int i, j;

b

6 #pragma omp parallel for default(none) \

7 shared(m,n,a,b,c) private(i,j)

8 for (i=0; i<m; i++)

9 {
10 ali]l = bl[i*nl=*c[0];
11 for (j=1; j<mn; j++)
12 ali]l += bli*n+jl=*c[j];
13 } /*-- End of parallel for --=*/
14 }

Figure 5.31: OpenMP version of the matrix times vector product in C
The result vector 1s initialized to the first computed result here.
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Fipure 5.33: Single-thread overheads for the matrix times vector product
in C — Formula (5.3) has been used to compute the overhead for a wide range of matrix
sizes. For a matrix of size 200 x 200 the overhead is 2%. It is less for larger matrices.

ElapsedTime(OpenM Pingie thread)

Overheadsingle thread = 100 % ElapsedTime(Sequential)

—1) % (5.3)
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Figure 5.34: OpenMP performance of the matrix times vector product
in C — If the memory footprint is less than 0.05 MByte, the single thread performance is
higher than the performance for multiple threads. For a certain range of problem sizes, a
superlinear speedup is realized. For problem sizes exceeding this range, the performance
curves follow Amdahl’s law.
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Figure 5.35: Parallel efficiency of the matrix times vector product in C -
Several interesting effects are observed. Up to a specific memory footprint, the efficiency
increases as the matrix gets larger. A superlinear speedup is even observed. The higher
the number of threads, the longer this lasts. At a certain point, however, the efficiency
drops, basically following Amdahl’s law.
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1 #include "globals.h"

2

3 void mxv(int m, int n, double * restrict a,

4 double #* restrict b, double #* restrict c)
5 A

6 int i, j;

T

8 #pragma omp parallel for if (m > threshold_omp) \
9 default(none) \
10 shared(m,n,a,b,c) private(i,j)
11 for (i=0; i<m; i++)
12 {
13 ali]l = bli*n]l#*c[0];
14 for (j=1; j<m; j++)
15 a[i]l += bli*n+jl*c[j];
16 } /#-— End of parallel for --*/
17}

Figure 5.36: Second OpenMP wversion of the matrix times vector product
in C — Compared to the source listed in Figure 5.31, the if-clause has been included.
The threshold_omp variable can be used to avoid a performance degradation for small
matrices. If the clause evaluates to false, only one thread executes the code.
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Figure 5.37: OpenMP performance of the matrix times vector product in
C — The performance is now either equal to or higher than single-thread performance.
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Task Parallelism in OpenMP 3.0




What are tasks?

Tasks are independent units of work

Threads are assigned to perform the work of each task

e Tasks may be deferred

e Tasks may be executed immediately

The runtime system decides which of the above

e Tasks are composed of:

e code to execute

e data environment (it own its data) Serial Parallel
e internal control variables




Tasks in OpenMP

OpenMP has always had tasks, but they were not called that.

* A thread encountering a parallel construct packages up a set of
implicit tasks, one per thread.

* A team of threads is created.
* Each thread is assigned to one of the tasks (and fied to it).
 Barrier holds master thread until all implicit tasks are finished.

OpenMP 3.0 adds a way to create a task explicitly for the team to
execute.




The task construct

#pragma omp task [clause [[,] clause] ... ]
structured block

Each encountering thread creates a new task.
* Code and data are being packaged up
* Tasks can be nested

An OpenMP barrier (implicit or explicit):
All tasks created by any thread of the current
team are guaranteed to be completed at barrier exit.

Task barrier (taskwait):
Encountering thread suspends until all child tasks it
has generated are complete.




Simple example of using tasks
for pointer chasing

void process list(elem t *elem) {
#pragma omp parallel
{
#pragma omp single
{
while (elem != NULL) {
#pragma omp task
{
process(elem);
}
elem = elem#>next;
}
}
}
}

/

elemis firstprivate by default




Simple example of using tasks
in a recursive algorithm

int fib(int n) { int main() {
int i, 3J; int n = 10;
if (n < 2) #pragma omp parallel
return n; #pragma omp single
#pragma omp task shared(i) printf("fib(%d) = %d\n",
i = fib(n - 1); n, fib(n));
#pragma omp task shared(j) }

j = fib(n - 2);

#pragma omp taskwait
return i + Jj;

Computation of Fibonacci numbers
1,1,2,3,5,8,13,21,34,55,89,144,...
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Using tasks for tree traversal

struct node {
struct node *left, *right;

}i

void traverse(struct node *p, int postorder) {
if (p->left != NULL)
#pragma omp task
traverse(p->left, postorder);
if (p->right != NULL)
#pragma omp task
traverse(p->right, postorder);
if (postorder) {
#pragma omp taskwait

}

process(p);




Task switching

Certain constructs have suspend/resume points at defined
positions within them.

When a thread encounters a suspend point, it is allowed to
suspend the current task and resume another. It can then return
to the original task and resume it.

A tied task must be resumed by the same task that suspended it.
Tasks are tied by default. A task can be specified to be untied

using
#pragma omp task untied




Collapsing of loops

The collapse clause (in OpenMP 3.0) handles perfectly
nested multi-dimensional loops.

#pragma omp for collapse(2)
for (1 = 0; 1 < N; i++)
for (j = 0; j < M; j++)
for (k = 0; k < K; kt++)
foo(i, J, k)i

Iteration space from i-loop and j-loop is collapsed into a single
one, if the two loops are perfectly nested and form a rectangular
iteration space.




Removal of dependencies

Serial version containing anti dependency

for (1 = 0; 1 < n; i++) {
x = (b[i] + c[i]) / 2;
a[i] = a[i + 1] + x;

Parallel version with dependencies removed

#pragma omp parallel for shared(a,a copy)
for (i = 0; i < n; i++)
a _copy[i] = a[i1 + 1];
#pragma omp parallel for shared(a,a copy) private(x)
for (1 = 0; 1 < n; i++) {
x = (b[i] + c[i]) / 2;
a[i] = a copy[i] + x;




Removal of dependencies

Serial version containing flow dependency

for (1 = 1; i < n; i++) {
b[i] = b[i] + a[i - 1];
a[i] = a[i] + c[i];

}

Parallel version with dependencies removed by loop skewing

b[1l] = b[1l] - a[0];
#pragma omp parallel for shared(a,b,c)
for (1 = 1; 1 < n; i++) {
a[i] = a[i] + c[i];
b[i+ 1] = Db[1 + 1] + a[i];
}

aln - 1] = a[n - 1] + ¢c[n - 1];




Automatic parallelization

Some compilers can insert OpenMP can optimize a program
automatically. However, they must be conservative, and
programs spread over several files create difficulties.

The Intel compilers support automatic parallelization. Example,

icc -o matmult -03 -parallel -par-report3 matmult.c




