
Introduction to Parallel Computing with MPI (Day 2) 1 MAN T&EC

Introduction to
Parallel

Computing with
MPI

Day 2: The MPI Standard

Introduction to Parallel Computing with MPI (Day 2) 2 MAN T&EC

Course Introduction

Introduction to Parallel Computing with MPI (Day 2) 3 MAN T&EC

 Course Outline

❑ Background to parallel programming.

❑ Programming paradigms.

❑ The background to MPI, why and how?

❑ Message Passing according to MPI

❑ Programming with MPI

❑ Exercise

❑ SPMD & MPI

❑ Message passing

❑ Derived Datatypes

❑ Exercise

❑ Summary

Introduction to Parallel Computing with MPI (Day 2) 4 MAN T&EC

 Timing

10:00 - 10:15 Background to Message Passing

10:15 - 10:45 Background of MPI

10:45 - 11:15 Programming with MPI

11:15 - 12:00 First exercise

12:00 - 1:00 Lunch

1:00 - 1:45 Basic Synchronous M.P.

1:45 - 2:30 Asynchronous MP in MPI

2:30 - 3:15 Deriving New Datatypes

3:15 - 4:00 Exercise 2

Introduction to Parallel Computing with MPI (Day 2) 5 MAN T&EC

Introduction to
Message Passing

Introduction to Parallel Computing with MPI (Day 2) 6 MAN T&EC

 Parallel Programming

❑ Why Parallel Programming?

❑ Certain classes of problems are either:

■ Too large for available serial architectures.

■ Take too long to execute on serial machines.

■ Don’t handle large loads well, e.g., a database
server which operates well with 10 users, but
when 100 people use it the performance suffers.

Introduction to Parallel Computing with MPI (Day 2) 7 MAN T&EC

 The promise of Parallel
programs

❑ So, as a programmer, we are forced to
turn to parallel machines as a possible
solution to our problems.

❑ Parallel processing claims to be

■ Cheaper, in terms of Price/Performance.

■ Faster than equivalently expensive uniprocessor
machines.

■ Scalable : the performance of a particular
program may be improved by execution on a
large machine.

■ Reliable? In theory if processors fail we can
simply use others.

■ Handle bigger problems.

❑ But to use parallel machine we must
employ parallel programming.

Introduction to Parallel Computing with MPI (Day 2) 8 MAN T&EC

 What is Parallel
Programming?

❑ Concurrent operation of elements within a
system

❑ Low-level hardware has been parallel for
many years. e.g., overlapped I/O, multi-
tasking. Traditionally this parallelism is
hidden from the user.

❑ Machines which allow the user to take
advantage of parallelism are normally
referred to as parallel machines, to
distinguish from conventional
architectures.

Introduction to Parallel Computing with MPI (Day 2) 9 MAN T&EC

 How do we take
advantage of parallel

machines?

❑ We must identify potential parallelism in
applications.

❑ If we can find sections of computer code
which can be executed at the same time
as other sections, without changing the
results generated by that program, then
we have found potential parallelism.

❑ Before we can discuss how we exploit this
parallelism we review the machines.

Introduction to Parallel Computing with MPI (Day 2) 10 MAN T&EC

 Parallel Machines

❑ A wide variety of parallel architectures
exist.

❑ Fortunately there exists a useful
taxonomy which we can employ to
categorise them (Flynns taxonomy).

❑ This taxonomy categorises machines
dependent on how each handles
instructions (multiple programs), and
data.

Introduction to Parallel Computing with MPI (Day 2) 11 MAN T&EC

 Flynns Taxonomy

❑ The taxonomy breaks into :

■ SISD - Single Instruction/ Single Data. This
category corresponds to conventional serial
architectures.

■ MISD - Multiple Instruction/ Single Data. Here the
machine lets several processors execute different
instructions on one data stream in a pipeline
fashion.

■ SIMD - Single Instruction/ Multiple Data. Here a
single program is executed on several pieces of
data simultaneously.

■ MIMD - Multiple Executions being executed on
separate data simultaneously.

❑ This abstract taxonomy provides a
general indication of the capabilities and
programming style required for a
particular machine, but more information
is usually needed.

Introduction to Parallel Computing with MPI (Day 2) 12 MAN T&EC

 Other Considerations

❑ Grain Size : The size of processes which
we execute on processors affect how we
can use the machine.

❑ Interconnection : How processors
communicate with one another.

❑ Coupling : How processors communicate
with memory.

❑ Programming Mechanism. Whilst a wide
variety of abstract parallel programming
styles exist (one of which is the principal
topic of this course), not all are useful on
all machines.

Introduction to Parallel Computing with MPI (Day 2) 13 MAN T&EC

 Parallel Programming

❑ As computer science has yet to develop
compilers which automatically use parallel
machines well, we must program in
special ways.

❑ Various paradigms exist, but we are
interested in the message passing
technique.

Introduction to Parallel Computing with MPI (Day 2) 14 MAN T&EC

 Message Passing

❑ For message passing to be a viable
means of exploiting parallelism we
conventionally employ it on MIMD
machines.

❑ The application is split into a number of
programs. Each program operates
‘independently’, usually on different
processors.

❑ The logic of the application is maintained
by coordinating the component programs
through the exchange of messages.

❑ The maintenance of this underlying logic,
which controls how the application works
is the responsibility of the programmer,
not the machine.

❑ This makes this form of programming
hard!

Introduction to Parallel Computing with MPI (Day 2) 15 MAN T&EC

 An Example

❑ Computer animation:

for(time = start; time++; time<end)
{

process_all_bodies;
display_bodies;

}

❑ Both steps are time consuming, they
could be organised as two seperate
programs:

Graphics process

Animation process

for(time=start; ...) {
process_all_bodies;
send_graphics_data()

}

for(...){
receive_data();

display_graphics();
}

Introduction to Parallel Computing with MPI (Day 2) 16 MAN T&EC

 Facilities of MP
Libraries

❑ Application programmers don’t want to
deal with the messy aspects of getting
processors to communicate.

❑ So they use message passing libraries
which provide:

■ the ability to create processes on remote
machines

■ the ability to monitor the state of these remote
processes (More on these two points later in
relation to MPI)

■ routines which enable messages to be sent
reliably from program to program, without the
programmer needing to know how this is
achieved.

Introduction to Parallel Computing with MPI (Day 2) 17 MAN T&EC

 MP Implementations

❑ There are a large range of message
passing libraries in use today, on a wide
range of architectures.

❑ A programmer must choose between
them, though they all perform similar
functions, and so porting is not very
difficult.

❑ We will concentrate on a recent message
passing standard, for which several
implementations are appearing.

❑ The Message Passing Interface MPI.

Introduction to Parallel Computing with MPI (Day 2) 18 MAN T&EC

Introduction to the
Message Passing

Interface (MPI)

Introduction to Parallel Computing with MPI (Day 2) 19 MAN T&EC

 What is MPI?

❑ A proposed standard message passing
interface to libraries.

❑ Provides explicit message passing for
distributed memory machines and
networks of workstations.

❑ Developed over two years by an
international consortium to address the
problem of having multiple competing
libraries, all of which performed the same
task, but used different approaches.

Introduction to Parallel Computing with MPI (Day 2) 20 MAN T&EC

 Rationale

❑ The message passing paradigm is widely
understood, if not widely used well.

❑ Unfortunately each vendor has their own
implementation of libraries, which is
optimised for the architecture of their
machine, and so isn’t very portable.

❑ The MPI committee felt that this was
hampering the adoption of message
passing in the wider world.

❑ They identified the need for a generic
portable library which defines a set of
routines which can be efficiently
implemented on a wide range of
machines, and which together provide
sufficient functionality.

Introduction to Parallel Computing with MPI (Day 2) 21 MAN T&EC

 MPI

❑ The result of their efforts, MPI, is intended
to form a widely used standard, gradually
replacing vendor specific interfaces, and
other public domain libraries, such as
PVM and p4.

❑ Vendors, once freed of the burden of
developing their own library designs, may
concentrate on implementing the library
well for their architecture.

❑ However MPI was not sanctioned by any
official standards body, which has the
advantage that it may be modified far
more quickly, but it means MPI is usually
not a government requirement.

❑ Most major p. computer developers
participated.

Introduction to Parallel Computing with MPI (Day 2) 22 MAN T&EC

 The MPI Initiative

❑ Began in April 1992

❑ Met every six weeks during ‘93.

❑ Group formed from over 40 Universities,
commercial vendors and users.

❑ Meetings were open to everyone though.

❑ Significant commercial support from

■ Convex, Cray, Meiko, Intel, Thinking Machines,
IBM, nCube, NAG, Parasoft, Shell & Arco

❑ European involvement was funded by
Esprit.

Introduction to Parallel Computing with MPI (Day 2) 23 MAN T&EC

 Cont.

❑ Rather than start from scratch the MPI
group sought to adopt the best features
from existing implementations, including:

■ Intels NX/2

■ Express

■ PVM

■ p4

■ CHIMP (From Edinburgh)

■ Work at IBM TJ Watson Research centre

■ PICL

❑ This means that existing message
passing developers will probably find
something familiar in MPI!

Introduction to Parallel Computing with MPI (Day 2) 24 MAN T&EC

 What is in MPI

❑ The committee specified in the standard:

■ Point to Point communication

■ Collective communication routines

■ Support for grouping operations, i.e., ways of
telling MPI to use an addressing scheme which
makes sense to your application.

■ Mechanisms to separate communications in the
same program (to enable libraries to be easily
developed).

■ Bindings for C & F77

■ A profiling interface, as an aid to developers.

❑ Note that MPI specifies an interface, not
how is internally implemented.

Introduction to Parallel Computing with MPI (Day 2) 25 MAN T&EC

 What ISN’T in MPI!

❑ Due to time constraints the committee
decided to leave some message passing
concepts out of the first MPI standard,
planning instead to place them in the
forthcoming MPI2. The more significant
elements include:

■ Explicit shared memory operations, i.e., ways in
which your application can take advantage of
operation on certain architectures.

■ Any support for process management!, much
more on this later!

■ Support for threads, i.e, the ability to have multiple
threads of execution operating while sharing
variables without explicit message passing (such
as found on the KSR)

■ Debugging facilities

■ Parallel I/O

Introduction to Parallel Computing with MPI (Day 2) 26 MAN T&EC

 Summary

❑ Having outlined the background for the
development of MPI we can look at the
standard.

❑ An important point to remember at this
stage is that MPI is a piece of paper, not a
library!

❑ You will always be working with
implementations of a library which
conform to MPI.

❑ This pedantic distinction will become
more important as you begin to work with
such libraries!

Introduction to Parallel Computing with MPI (Day 2) 27 MAN T&EC

Fundamentals of MPI

Introduction to Parallel Computing with MPI (Day 2) 28 MAN T&EC

 MPI Implementations

❑ Before we go on to discuss the
fundamentals of MPI we must first outline
the different implementations of MPI
available.

❑ Each was originally written as a proof-of
concept library, which enabled
researchers to check the MPI standard for
any inadequacies.

❑ This means that many of them are poorly
documented, and some of them are
unreliable, and not supported.

❑ Unfortunately until parallel computer
manufacturers ship their own
implementations of MPI libraries these
are all we have to work with.

Introduction to Parallel Computing with MPI (Day 2) 29 MAN T&EC

 Cont.

❑ However, provided you use common
machines, they provide a useful way of
developing code which is ‘future-proof’.

❑ The 3 main implementations at the time of
writing are:

■ Argonne National Labs & MSU library : mpich

■ Edinburgh’s CHIMP Implementation

■ Ohio Supercomputers LAM implementation

❑ Each of these implementations is built on
top of an existing message passing
library, for example mpich sits on top of
either p4 or PVM.

❑ This may cause performance problems,
but has enabled these implementations to
be quickly developed.

Introduction to Parallel Computing with MPI (Day 2) 30 MAN T&EC

 MPICH

❑ For the purposes of this course we will
use the ANL/MSU implementation of
mpich, sitting on top of the p4 system.

❑ This is a popular implementation and was
chosen because it operates on available
hardware.

❑ In theory any implementation could be
used.

Introduction to Parallel Computing with MPI (Day 2) 31 MAN T&EC

 The MPI View of
processes

❑ We have already seen that MPI doesn’t
specify ways of managing processors on
either a parallel computer or network of
workstations.

❑ This is in stark contrast to other libraries,
such as PVM.

❑ PVM programmers will be used to the
system of writing a program which
spawns other programs which execute on
a virtual machine.

❑ An MPI program cannot spawn other
processes, this has to be handled by
other software which is implementation
specific.

Introduction to Parallel Computing with MPI (Day 2) 32 MAN T&EC

 Starting processes

❑ In mpich, like most current MPI
implementations, the user (not the
programmer) specifies how many
processes they want, and where, at start
up time.

❑ This means MPI does not provide any
means of dynamic parallelism, the user
must know in advance how many
processes they wish to use.

❑ This is a limitation which may be
addressed in MPI2.

Introduction to Parallel Computing with MPI (Day 2) 33 MAN T&EC

 The SPMD Model

❑ Recall our simple animation example:

❑ We normally think of this as two
completely separate programs.

❑ However, as MPI doesn’t specify how the
user might cause two different programs
to be executed, it wouldn’t be very
portable.

Graphics process

Animation process

for(time=start; ...) {
process_all_bodies;
send_graphics_data()

}

for(...){
receive_data();

display_graphics();
}

Introduction to Parallel Computing with MPI (Day 2) 34 MAN T&EC

 Cont.

❑ Consequently it is more normal for MPI
programs to use a style of parallelism
called SPMD, which means Single
Program Multiple Data.

❑ This means you write a single program,
which incorporates the functionality of
both the logical programs.

❑ A program suitable for such use must
detect at run time which functionality it
must provide i.e., in this case whether its
an animation or graphics process, and
then do it.

Introduction to Parallel Computing with MPI (Day 2) 35 MAN T&EC

 An SPMD Outline

❑ In practice this means you will always
write programs whose main routine looks
like:

❑ In larger examples we may wish to have a
more elaborate outline, but
fundamentally the program must always
decide what it is going to do at run time.

❑ Note that this isn’t strictly a restriction
imposed by MPI, but as the standard
doesn’t specify anything else it tends to
be a portable approach.

if(executing on root processor)
animation_process();

else
graphics_process();

Introduction to Parallel Computing with MPI (Day 2) 36 MAN T&EC

 MPI Preliminaries

❑ A users application makes use of MPI
functionality by calling functions provided
by the implementation.

❑ Each MPI routine returns an error code,
which in C is usually an int, and Fortran
routines have an extra parameter so they
can determine the functions success.

❑ All MPI functions in both languages start
with the prefix MPI_.

❑ Fortran routines are all upper case, while
the C bindings are mixed case.

Introduction to Parallel Computing with MPI (Day 2) 37 MAN T&EC

 Cont.

❑ To conform to the standard the library
hides the internal details of its operation,
and any internal details the application
needs to know about are referred to by
handles.

❑ In Fortran handles are of type INTEGER.

❑ In C each handle is separately
typedef’d .

❑ In Fortran arrays are assumed to index
from 1, in C from 0.

Introduction to Parallel Computing with MPI (Day 2) 38 MAN T&EC

 Communicators

❑ The focus of any message passing library
is the ability to transmit data between
programs.

❑ In MPI such messages can only travel
within a communicator.

❑ A communicator is a set of processes
which are assumed to know about one
another.

0
1

2
3

45

Communicator

Process

Introduction to Parallel Computing with MPI (Day 2) 39 MAN T&EC

 Cont.

❑ Whenever an MPI message transmission
function is called the program must
indicate the communicator it wishes the
message to pass through.

❑ A process may be a member of more than
one communicator.

❑ The program must also indicate which
process in the communicator the
message is intended for (assuming point
to point communication for now).

❑ This number is known as the rank.

❑ The rank is only relevant to one
communicator, so if one process is in
more than one communicator it may have
a different rank in each.

Introduction to Parallel Computing with MPI (Day 2) 40 MAN T&EC

 MPI_COMM_WORLD

❑ When the program calls MPI_INIT the
library will set up an initial default
communicator, which all processes are a
member of.

❑ This communicator is called
MPI_COMM_WORLD.

❑ Why have the complexity of a
communicator, what is wrong with a single
process specific address for messages
(like tid in PVM)?

Introduction to Parallel Computing with MPI (Day 2) 41 MAN T&EC

 Library Construction

❑ We already know that message passing
application construction is painful!

❑ The best of making this easier is to
employ libraries which do the basics for
you (by which we mean higher level than
MPI).

❑ Unfortunately for a library to be useful it
must hide its implementation from you, so
you just need to know what, not how, it
does what you need.

❑ In single-tier message addressing it is
very hard to hide messages from the
application.

❑ For example if the library is sending
messages how do you ensure the
application doesn’t pick up messages not
meant for it?

Introduction to Parallel Computing with MPI (Day 2) 42 MAN T&EC

 Cont.

❑ With MPI this can easily be achieved by
using different communicators for
different libraries, as messages from one
communicator do not interfere with other
comms.

❑ We have now covered the fundamentals
of the MPI standard design, and we can
begin to see how you can write programs
with it.

Introduction to Parallel Computing with MPI (Day 2) 43 MAN T&EC

Programming in MPI

Introduction to Parallel Computing with MPI (Day 2) 44 MAN T&EC

 Starting MPI

❑ The first MPI routine called in any
program must be MPI_INIT (this must
only be called once).

❑ The C version of this takes command line
parameters:

int MPI_Init(int *argc, char **argv);

❑ The Fortran version takes only the error
code.

MPI_INIT(IERROR)
INTEGER IERROR

❑ This call allows the MPI implementation to
perform any necessary initialisation,
though obviously what is required will vary
from implementation to implementation.

Introduction to Parallel Computing with MPI (Day 2) 45 MAN T&EC

 Shutting down MPI

❑ After your program has finished all its
work it must tell the MPI implementation
that it can shut itself down.

❑ This allows MPI to cancel any outstanding
messages, free any memory allocated for
its use and so on.

❑ After this call no more MPI functions may
be used (including MPI_INIT).

MPI_FINALIZE()

❑ Alternatively if one process wishes to
force all processes in a specific
communicator to stop then it calls

MPI_ABORT(comm, errcode)

❑ If MPI_COMM_WORLD is used then the
whole program will stop.

Introduction to Parallel Computing with MPI (Day 2) 46 MAN T&EC

 A Basic Program

❑ Like any other library the application must
include a header file which describes the
functions and variables which may be
used.

❑ In C this requires

#include <mpi.h>

❑ and in Fortran we use

include ‘mpif.h’

Introduction to Parallel Computing with MPI (Day 2) 47 MAN T&EC

 Accessing Comm. Info

❑ As we have mentioned knowing the rank
of processes is critical for us to perform
any message passing.

❑ MPI provides two functions which are
pertinent to this:

MPI_COMM_RANK(comm, rank)

❑ which returns the rank of the calling
process in the named communicator, and,

MPI_COMM_SIZE(comm, size)

❑ which returns in size the number of
processes in the named comm.

Introduction to Parallel Computing with MPI (Day 2) 48 MAN T&EC

 Exercise 1

❑ We have now explained

■ How MPI views addressing issues.

■ The sort of programming model that MPI
encourages.

■ How an MPI implementation is used by the
application.

❑ To reinforce this we now set a very simple
exercise:

Write a program which uses MPI to start 2
child processes, each of which tries to print a
hello message to the screen, and then exits.

Introduction to Parallel Computing with MPI (Day 2) 49 MAN T&EC

 MPI on the HPs

❑ Before you can proceed with this exercise
there are a couple of implementation
specific pieces of information you will
need.

❑ Whilst these may not apply to you when
you come to use MPI for real work,
because you will always be using an
implementation of the spec., there will
always be something you need to know.

❑ For the purposes of this course we are
going to use mpich on a network of HP
workstations, which all use AFS.

Introduction to Parallel Computing with MPI (Day 2) 50 MAN T&EC

 Spawning Processes

❑ For a network of workstations to be useful
for parallel processing it must be possible
to sit at one, and cause processes to
execute on others.

❑ Unfortunately AFS (and Kerberos) gets in
the way of the most common technique
(which is to use UNIX’s rsh command)

❑ Therefore we must ensure that a server
process is executing on each machine in
the network we are going to use.

❑ This server process listens to incoming
requests and messages on a UNIX port.

❑ The server, which is called serv_p4,
must be executed by the user who will
employ it.

Introduction to Parallel Computing with MPI (Day 2) 51 MAN T&EC

 Cont.

❑ To use these the user must have two
UNIX environment variables set, which
indicate to the MPI library how it goes
about using the library.

❑ These have already been set up for the
student accounts, but if you wish to
continue to use MPI on the HP’s you may
need to know about them:

setenv MPI_USEP4SSPORT yes
setenv MPI_P4SSPORT <number of UNIX port>

Introduction to Parallel Computing with MPI (Day 2) 52 MAN T&EC

 Running your program

❑ Once you have compiled your program
you execute it by using the mpirun
command.

mpirun -n <number of processors> <progname>

❑ Note that we specify the number of
processors, and on each an instance of
<progname> is executed.

❑ This constructs a file which indicates what
programs are run where, and then
proceeds to execute them.

❑ This command finds the list of machines
from a file within the MPI installation (out
of your control)

Introduction to Parallel Computing with MPI (Day 2) 53 MAN T&EC

 Makefile

❑ A makefile has been placed in the
relevant subdirectories of each of the
guest accounts.

❑ For this exercise if you intend to write in C
you should call your file ex1.c

❑ If you are more comfortable in Fortran
write a program called fex1.c

Introduction to Parallel Computing with MPI (Day 2) 54 MAN T&EC

 Exercise 1

❑ To reiterate the first exercise requires you
to :

Write a program which uses MPI to start 2
child processes, each of which prints a hello
message to the screen, and then exits.

❑ We provide a makefile in the $HOME/ex1
directory.

❑ Some reminders:

■ You will need to write one single (SPMD)
program.

■ Each program needs to include “mpi.h”, or
“mpif.h” in order to prototype the various MPI
functions.

Introduction to Parallel Computing with MPI (Day 2) 55 MAN T&EC

Message Passing in
MPI

Introduction to Parallel Computing with MPI (Day 2) 56 MAN T&EC

 More advanced MPI

❑ In order for MPI to be any use to use in
our production of parallel applications we
must understand how the message
passing facilities work.

❑ In MPI a message is an array of elements
each of a particular MPI datatype

❑ The messages are typed in the sense that
the contents’ type must be specified in
both send and receives.

❑ So when the programmer comes to make
a send call, they must, at call-time,
specify the contents of the message.

❑ Before discussing how we first look at
what types MPI knows about.

Integer Integer Integer Integer Integer

Introduction to Parallel Computing with MPI (Day 2) 57 MAN T&EC

 MPI Types

❑ The basic C data types in MPI are

❑ Note that the C datatypes do not always
have to be specified in full (i.e., by default
ints are signed).

MPI Datatype C Datatype

MPI_CHAR signed char

MPI_SHORT signed short int

MPI_INT signed int

MPI_LONG singled long int

MPI_UNSIGNED_CHAR unsigned char

MPI_UNSIGNED_SHORT unsigned short int

MPI_UNSIGNED unsigned int

MPI_UNSIGNED_LONG unsigned long int

MPI_FLOAT float

MPI_DOUBLE double

MPI_LONG_DOUBLE long double

MPI_BYTE

MPI_PACKED

Introduction to Parallel Computing with MPI (Day 2) 58 MAN T&EC

 Cont.

❑ Fortran types are

❑ Note that

■ There is some overlap.

■ MPI implementations are assumed to perform any
necessary conversion between different
architectures transparently....as far as the
application is concerned a float is a float is a float!

MPI Datatype Fortran Datatype

MPI_INTEGER INTEGER

MPI_REAL REAL

MPI_DOUBLE_PRECISION DOUBLE PRECISION

MPI_COMPLEX COMPLEX

MPI_LOGICAL LOGICAL

MPI_CHARACTER CHARACTER

MPI_BYTE

MPI_PACKED

Introduction to Parallel Computing with MPI (Day 2) 59 MAN T&EC

 Constructing Messages

❑ As mentioned in MPI messages are
assumed to be a sequence of datatypes.

❑ However, a message can only contain a
sequence of data items, all of which are
the same type.

❑ This is particularly useful if we wish to
send around arrays of data, but for
anything more flexible it seems horribly
restrictive.

❑ MPI provides facilities which allow the
application to describe new datatypes,
and in doing so allows sufficient flexibility
to perform useful work.

❑ Having looked at messages we can
examine the forms of communication
allowed by MPI.

Introduction to Parallel Computing with MPI (Day 2) 60 MAN T&EC

 Point to Point Comms.

❑ There are several styles of
communication available in message
passing, but for now we will concentrate
on point to point.

❑ In other words a single process sending a
message to another single process.

❑ We have already seen that messages
travel between ranked processes in a
common communicator.

0
1

2
3

45

Message

Destination

Source

Introduction to Parallel Computing with MPI (Day 2) 61 MAN T&EC

 Communication Modes

❑ For the construction of satisfactory
parallel applications it is necessary to
have greater control over message
transmission than simply “It goes there”!

❑ MPI provides 4 communication modes
which the application specifies:

■ Synchronous send

■ Buffered Send

■ Standard Send

■ Ready Send

❑ We will discuss each of these in turn, and
attempt to identify why you might want to
use each type in turn.

Introduction to Parallel Computing with MPI (Day 2) 62 MAN T&EC

 Synchronous Send

❑ Quite often in the construction of
distributed applications we need to know
that the destination process has received
the message and is acting on it before
proceeding.

❑ For example we may need to keep a
record of which process is working on
which unit of work, so we can know which
we are waiting for.

❑ We cannot do this easily without being
sure that the relevant processor received
the messages it was sent, and is working
on them.

❑ Before we discuss how this is achieved in
MPI its worth reviewing the basics of
message passing.

Introduction to Parallel Computing with MPI (Day 2) 63 MAN T&EC

 Data Transmission

❑ A large variety of networking technologies
exist, all of which are particularly well
suited to certain situations.

❑ Whilst message passing libraries (like
PVM and MPI) hide this complexity, we
still need to be aware of some of the
details of the networks.

❑ The most important point we need to
understand is the buffering used by most
networking systems.

❑ As most networks cannot guarantee a
particular level of service (speed) they
tend to let each computer place comms.
data in buffers, and all communication
actually goes to and from these buffers,
not the application.

Introduction to Parallel Computing with MPI (Day 2) 64 MAN T&EC

 Cont.

❑ This means that communication takes the
form of

■ Source application places the data in the buffer

■ Network software arranges for contents of buffer
to be transferred to destination buffer.

■ Destination application copies data out of buffer.

❑ Notice that after the first step the source
application has done its work. However it
cannot know how long it will take for the
third step to be reached.

■ The network may be congested and the data may
take a long time to reach the destination.

■ The destination application may still be working
on something else.

Introduction to Parallel Computing with MPI (Day 2) 65 MAN T&EC

 Back to S. Send.

❑ The MPI version of the synchronous send
style hides the buffering, and won’t let the
source application continue work until the
destination application has received the
data into the application, not just its local
buffer.

❑ Note that in extreme cases the
synchronous send operation may cause
the source to wait for a long time!

Ti
m

e

Source Destination

Synchronous Send

Receive

Useful work

Introduction to Parallel Computing with MPI (Day 2) 66 MAN T&EC

 S. Send in MPI

❑ In MPI the synchronous send call looks
like

MPI_SSEND(buf, count, datatype, dest, tag, comm)

❑ Taking each parameter in turn:

■ The ‘buf’ is the address in the application where
the data is currently residing.

■ The ‘count’ is the number of data items, of type
‘datatype’ (which is one of the MPI types we
talked about earlier) which is in ‘buf’ that we want
to send.

■ The ‘dest’ is the rank of the destination relative to
the communicator ‘comm’.

■ The ‘tag’ is an application specific identifier which
we associate with the message. We’ll go into
more detail about this when we discuss receives.

❑ In this function MPI copies the data from
buf into the comms buffers, so this
increases the overhead.

Introduction to Parallel Computing with MPI (Day 2) 67 MAN T&EC

 Performance Issues

❑ As we mentioned synchronous sends can
be very useful, but they can slow down
our application.

❑ We would like to do useful work in the
time it may take the message to reach the
destination machine, and the destination
application to receive the message.

❑ MPI (like all other messaging libraries)
allows us to achieve this by buffered
sends.

❑ Essentially these work by adding an extra
buffer, which is within the application,
which the communication library will load
the data from when it comes around to
sending the data across the network.

Introduction to Parallel Computing with MPI (Day 2) 68 MAN T&EC

 Buffered Send

❑ Essentially we can think of this as:

❑ Note that the underlying network
software, which is operating as another
task in the OS, will eventually copy the
data from the app. buffer into its own
internal buffer for eventualy transmission.

❑ Meanwhile the application can work on.
(The completion is local)

Ti
m

e

Source

Call buffered send
operation

MPI Implementation

Copy data from
app buffer to

Introduction to Parallel Computing with MPI (Day 2) 69 MAN T&EC

 In MPI

❑ For buffering to be useful in MPI the
application programmer must manage the
app. buffer him or herself.

❑ This is achieved by the programmer
allocating space in the program (in ‘C’
using malloc, and in Fortran an array),
which we then tell MPI about.

❑ We inform MPI about this space using

MPI_BUFFER_ATTACH(buffer, size)

❑ This tells MPI to use the space of size
bytes starting at address buffer as the
app. buffer for subsequent buffering
sends.

Introduction to Parallel Computing with MPI (Day 2) 70 MAN T&EC

 Cont.

❑ Once we have finished, or we wish to
change the buffer in some way, we must
tell MPI to stop using that buffer.

MPI_BUFFER_DETACH(buffer,size)

❑ Note that this doesn’t deallocate the
actual memory from the applications use.

❑ If you wish to do that use C’s free()

❑ Once we have our buffer set up we call
the buffering send function:

MPI_BSEND(buf, count, datatype, dest, tag, comm)

❑ Remember that MPI copies your data
from buf to the current application buffer,
not you!

❑ There is an overhead to this.

Introduction to Parallel Computing with MPI (Day 2) 71 MAN T&EC

 Other Comms Modes

❑ The two communication modes we’ve
talked about so far are the most
important, but MPI provides 2 more
modes for specialist uses.

❑ You probably won’t use these very much
when you start programming in MPI, so
we won’t devote too much time to them.

❑ They are

■ Standard Mode

■ Ready Mode

Introduction to Parallel Computing with MPI (Day 2) 72 MAN T&EC

 Standard Send

❑ MPI provides another, less
straightforward, communication mode,
the standard send.

❑ The standard send completes once the
message has been sent, which may or
may not imply that the message has
arrived at its destination.

❑ The message may ‘lie in the network’ for
some time.

❑ Internally MPI implementations may use
either buffered or synchronous sends.

Introduction to Parallel Computing with MPI (Day 2) 73 MAN T&EC

 Ready Sends

❑ The point to point communication modes
we have discussed so far all ensure that
eventually the message will be received.

❑ In some circumstances we can relax this
restriction to “the message will be
received if the destination can take it”.

❑ A ready send completes immediately. If
the destination has already posted a
receive (i.e., is waiting for incoming data)
then it receives the message.

❑ If the destination isn’t waiting, then what
happens isn’t defined.

❑ This ambiguous statement in the spec.
can normally be taken to mean that the
message may be dropped.

Introduction to Parallel Computing with MPI (Day 2) 74 MAN T&EC

 Cont.

❑ But the sender has no way of knowing
what happens.

❑ Obviously this strange form of
communication is only useful in very
restricted cases, and most MPI users will
never need to use it.

Introduction to Parallel Computing with MPI (Day 2) 75 MAN T&EC

 Receiving in MPI

❑ We have now discussed, at some length,
some of the ways in which an MPI
program can send messages.

❑ We can now discuss the manner in which
messages can be received.

❑ In MPI the most common form of a
receive function is the blocking receive
(we will discuss more advanced forms
later).

❑ This form of receive is a function which
the application calls, passing as
parameters the type of message it
expects to receive.

❑ But how does it know what type a
message is before it receives it?

Introduction to Parallel Computing with MPI (Day 2) 76 MAN T&EC

 Tags

❑ When we first introduced sends we
mentioned the concept of applying a tag
to a send call.

❑ A tag is a piece of information associated
with a message, but which isn’t contained
within it.

❑ The most apt real-world example of this
being lettering placed on an envelope
which you can read before opening.

❑ This is useful if you wish to ignore bills!

The Occupant,
No. 10 Downing St,
London

Council Tax Bill

Address

Tag

Introduction to Parallel Computing with MPI (Day 2) 77 MAN T&EC

 Cont.

❑ In much the same way real-world labels
help you classify post, tags in MPI
messages enable your application to
choose which messages it wishes to deal
with.

❑ In MPI, like most message passing
libraries, messages arriving at a particular
host are buffered (yet another buffer!).

❑ These messages are normally arranged
in queues (the ordering being based on
the time of receipt), with different queues
for different tags.

Bills

Birthday cards

Junk

Introduction to Parallel Computing with MPI (Day 2) 78 MAN T&EC

 Receives

❑ In MPI when we wish to receive
messages the receive function looks at
these queues, and decides which one to
return to the application.

❑ If we specify a particular tag then MPI will
return the first from that queue (or wait
until a message of that tag arrives).

❑ If we aren’t specific about the tag type
then MPI will examine each of the
queues, find the message which arrived
first, and return that.

❑ We indicate our preferences by a
parameter to the receive function.

❑ Tags in MPI are Integers, so the
application must choose meaninful
numbers.

Introduction to Parallel Computing with MPI (Day 2) 79 MAN T&EC

 Cont.

❑ The blocking receive function in MPI is

MPI_RECV(buf, count, datatype, source, tag, comm,
status)

❑ The parameters being:

■ Return a message of tag ‘tag’, which came from
the ‘source’ (which is specified as a rank in the
communicator ‘comm’).

■ Place the message, which consists of ‘count’
instances of type ‘datatype’, in ‘buf’.

❑ The tag and source params. can be

■ Source is either a rank, or MPI_ANY_SOURCE

■ Tag is either a meaningful number of
MPI_ANY_TAG

❑ The ‘status’ parameter is of type
MPI_Status, which we will now discuss.

Introduction to Parallel Computing with MPI (Day 2) 80 MAN T&EC

 MPI_Status

❑ If an application decides to use a wildcard
in either the source or tag then it may
receive a variety of different messages.

❑ However we may still need to know either
what the message is, or who it is from,
before looking at the buffer.

❑ MPI allows this by setting a structure (the
status) with these pieces of information.

❑ In C this is a structure, which contains:

status.MPI_SOURCE /* The rank of the source */
status.MPI_TAG /* The Tag of the message */

❑ In Fortran we query this using two
functions:

STATUS(MPI_SOURCE)
STATUS(MPI_TAG)

Introduction to Parallel Computing with MPI (Day 2) 81 MAN T&EC

 An Example

❑ An extract from an MPI program sending
a single float to the process rank 0 in
MPI_COMM_WORLD would be:

float sum = 10.0;
MPI_Ssend(&sum, 1, MPI_FLOAT, 0,

1,MPI_COMM_WORLD);

❑ An extract from the rank 0 process:

float result;
int result_from;
MPI_Status status;

MPI_Recv(&result, 1, MPI_FLOAT, MPI_ANY_SOURCE,
MPI_ANY_TAG,
MPI_COMM_WORLD, &status);

result_from = status.MPI_SOURCE;

❑ Note that the receive doesn’t care what
tag or source, but can determine these
later on using the status variable.

Introduction to Parallel Computing with MPI (Day 2) 82 MAN T&EC

 Cont.

❑ The wildcard source and tag parameters
seem to provide us with great flexibility in
constructing our parallel programs.

❑ However it is worth remembering that the
receive operation for wildcards still copies
the data into the buffer.

❑ If the buffer isn’t large enough, or the
wrong datatype is there, an error still
occurs.

❑ Therefore wildcards must only be used
where all the messages could fit into the
buffer, and have exactly the same
datatype.

❑ Obviously this is very restrictive!

Introduction to Parallel Computing with MPI (Day 2) 83 MAN T&EC

Non-Blocking
Comms.

Introduction to Parallel Computing with MPI (Day 2) 84 MAN T&EC

 Blocking vs. Non

❑ The modes synchronous, standard and
ready sends are called blocking comms.

❑ This means that the program will only
carry on executing when the comms.
have been successful.

❑ As we discussed in the buffered mode
this causes performance penalties. One
way round this problem is to use buffered
send.

❑ But

■ The user must manage the buffers, and,

■ it takes some time to copy the data into buffers.

❑ So MPI provides an additional suite of
comms modes, which are non-blocking.

Introduction to Parallel Computing with MPI (Day 2) 85 MAN T&EC

 Theory

❑ A non-blocking communication in MPI
(like most MP libraries) is a two step
process.

❑ You call the send function, with the usual
send parameters, which completes
immediately.

❑ At some point in the future you may call
another function which will tell you
whether that data has been sent out..

❑ Essentially this second call tells you
whether you can reuse the memory you
were sending from.

❑ It does not always mean that the
destination application is acting on that
message.

Introduction to Parallel Computing with MPI (Day 2) 86 MAN T&EC

 Non-Blocks in MPI

❑ There are 3 special non-blocking sends in
MPI, and a non-blocking receive.

❑ We deal first with the sends.

❑ Each of the 3 send types terminates
immediately (form the calling
programmers point of view) but the whole
communication is only complete later.

❑ With synchronous sends it completes
when the matching receive on the
destination has started.

❑ The situation is slightly more confused if
there is a non-blocking receive at the
other end..more on this later.

Introduction to Parallel Computing with MPI (Day 2) 87 MAN T&EC

 NB Sync. Sends

❑ The non-blocking synchronous send call

MPI_ISSEND(buf, count, datatype, dest, tag,
comm, request);

❑ There are two items worthy of note:

■ The I in the title denotes non-blocking
(immediate), and all non blocking comms have
this.

■ There is an additional ‘request’ data item in the
call.

❑ The ‘request’ data item is the ‘magic
token’ that MPI attaches to this particular
message.

❑ Each non-blocking send has a request
associated with it, of type MPI_Request.

❑ Recall that the second stage of n.b.
comms involves asking whether the
comm. finished....request allows this.

Introduction to Parallel Computing with MPI (Day 2) 88 MAN T&EC

 Completion

❑ After we call a non-blocking
communication we will need to find out
whether it completed.

❑ To do this we call an MPI function. There
are two functions, MPI_WAIT will block
until the relevant message has completed

MPI_WAIT(request, status)

❑ and MPI_TEST will return immediately.

MPI_TEST(request, flag, status)

❑ Here flag is set to TRUE or FALSE.

❑ An example program might be:

MPI_request my_request;
MPI_Issend(....., &my_request)

/* Do some useful work */
/* Then wait for message to have been sent */
MPI_Wait(my_request, status);

Introduction to Parallel Computing with MPI (Day 2) 89 MAN T&EC

 N.B. Receives

❑ We have now looked at the basic forms of
non-blocking sends. However MPI also
provides non-blocking receives.

❑ Such operations are occasionally needed
because receives can be time-
consuming, particularly where large
amounts of data must be moved, and
some conversion is required.

❑ The receive is initiated by:

MPI_IRECV(buf, count, datatype, source, tag,
comm, request)

❑ Note that requests are also associated
with receives, and the same query
routines (WAIT & TEST) are used to
determine success.

Introduction to Parallel Computing with MPI (Day 2) 90 MAN T&EC

 Cont.

❑ We have already mentioned the
difference between a send call
terminating (which should occur
immediately) and terminating (which
occurs when an MPI_Test determines
success).

❑ This termination condition for
synchronous sends and blocking receives
is straightforward.

❑ But for ssends and irecvs the send
terminates when the receive call has been
made, not when it terminates.

❑ This means that the destination may not
actually be dealing with the message, in
fact the application may be working on
something else.

❑ This may make a difference to you!

Introduction to Parallel Computing with MPI (Day 2) 91 MAN T&EC

 Other NB Info

❑ There are also non-blocking forms of
standard and ready sends.

❑ However, buffered, synchronous and n.b.
synchronous are likely to be of most use
to the MPI programmer, so we won’t
cover the other send modes.

❑ MPI also provides more advanced
completion test routines, which allow the
programmer to determine the success of
a sequence of sends and receives.

❑ These operate by being provided with
arrays of requests, which the routines
test, and set arrays of successes.

Introduction to Parallel Computing with MPI (Day 2) 92 MAN T&EC

 Completion Tests.

❑ The additional completion tests are:

❑ *ANY will return with information about
the first item of interest, it will block until
the first change.

❑ *ALL will either block until they have all
succeeded, or return info about all.

❑ *SOME is similar to ANY, but instead of
only dealing with the first, will return
information about any that have
completed.

Test Wait type Test type
At least one, return

exactly one
MPI_WAITANY MPI_TESTANY

Every one MPI_WAITALL MPI_TESTALL

At least one, return all
which completed

MPI_WAITSOME MPI_TESTSOME

Introduction to Parallel Computing with MPI (Day 2) 93 MAN T&EC

 Cont.

❑ We have now described the basic
messaging infrastructure provided by
MPI, including

■ The addressing scheme,

■ The different send modes

■ Receives

■ Non-blocking sends and receives

■ More advanced completion tests

❑ We can now go on to discuss higher level
messaging ops which build on this
foundation.

Introduction to Parallel Computing with MPI (Day 2) 94 MAN T&EC

Derived Datatypes

Introduction to Parallel Computing with MPI (Day 2) 95 MAN T&EC

 Derived Datatypes

❑ We have now examined some of the
ways in which arrays of certain datatypes
can be sent between processes using
MPI.

❑ Whilst this is useful we also need to be
able to send more complicated
sequences of data.

❑ To give a useful example, in our second
exercise we construct a simple program
which integrates under a curve using a
Newton-Raphson approximation.

❑ Our application consists of a single ‘root’
process, which divides the work up, and a
number of worker processes (though
obviously this is all combined in a single
SPMD program).

Introduction to Parallel Computing with MPI (Day 2) 96 MAN T&EC

 Cont.

❑ At some stage then the root process
needs to send information to the workers
telling them:

■ At what parameter value to begin integrating,and,

■ How many strips (of fixed width) to calculate (this
is a very simple program!)

❑ These are essentially two numbers, which
in C we could represent as a structure,
and in Fortran as elements of arrays:

typedef struct work_packet
{
 int num_strips;
 float start_value;
} work_packet;

❑ We wish to send this ‘work packet’ to our
workers. But in MPI we have only seen
how to send messages of a single
datatype.

Introduction to Parallel Computing with MPI (Day 2) 97 MAN T&EC

 Multiple Messages

❑ We could send two separate messages
(one with an integer, and another with a
float) to each worker.

❑ In our simple application this might be
sufficient.

❑ But, as we have seen, messages arriving
on MPI hosts are queued dependent on
arrival time. If a message arrived between
these two messages, the programmer
would have to sort out the mess!

❑ We would like to bundle these two
separate data items into a single,
‘application meaningful’, item.

❑ MPI allows this by derived datatypes

Introduction to Parallel Computing with MPI (Day 2) 98 MAN T&EC

 New Datatypes

❑ In MPI it is possible to define new
datatypes, which are meaningful to our
application, which we can then tell MPI
about.

❑ From then on we can use this new type
exactly as we might use MPI_FLOAT and
the other types.

❑ So for example we might send an array
containing 5 of our new types using:

MPI_Ssend(&my_array, 5, MYNEWTYPE, 0,
1,MPI_COMM_WORLD);

❑ For this to be possible both source and
recipient of the message must know
about this new type (i.e., have defined it),
so type definitions tend to take place in
the portion of SPMD code common to all
processes.

Introduction to Parallel Computing with MPI (Day 2) 99 MAN T&EC

 Cont.

❑ Whilst it is easy to see (potentially) how
we might use this to transmit structures
(in C), it is also possible to define more
flexible datatypes.

❑ It is also possible to

■ Define a datatype to be an arbitrary region of an
array. This is extremely useful for matrix
operations.

■ Have an datatype consisting of arbitrary data,
which aren’t necessarily obviously connected in
the languages view (C or Fortran) but make sense
for the application.

❑ In theory the concept of building new
datatypes can clarify the message
passing application, as it is easier to see
what is being passed around.

Introduction to Parallel Computing with MPI (Day 2) 100 MAN T&EC

 Making a new type

❑ The datatype construction process
consists of two stages, performed at run-
time:

■ Construct the datatype in an MPI structure
designed for such a process. Rather than filling in
its contents yourself you achieve this by calling
MPI functions.

■ Commit the datatype, i.e., tell MPI about the type.

❑ After this you may use the type as though
it was an MPI intrinsic type.

❑ Finally you may

■ Free the datatype, i.e., tell MPI to forget about it.

❑ This is good practice, as it allows the MPI
implementation to reuse memory.

❑ We will now discuss these stages in turn.

Introduction to Parallel Computing with MPI (Day 2) 101 MAN T&EC

 Constructing a Type

❑ As you may know data, which is
meaningful to computer languages such
as C or Fortran, is simply stored in
memory by a sequence of bytes.

❑ For example in C it is quite common for a
float to require 4 bytes of storage.

❑ However unless you know that, at location
0x4025 (for example) the following 4
bytes together constitute a float, you
would just see a sequence of 0’s and 1’s.

❑ The intrinsic MPI datatypes (MPI_FLOAT)
for example, tell MPI this information.

❑ When you construct a new datatype you
are essentially providing this very low
level of information, which allows MPI to
access your data.

Introduction to Parallel Computing with MPI (Day 2) 102 MAN T&EC

 Cont.

❑ The most important thing to remember is
that you are providing machine specific
byte oriented information, which allows
MPI to interpret your datatype once it
knows the start address.

❑ Why does it have to be this contorted?

❑ MPI internally has to be prepared to work
with

■ Optimised communication hardware which
requires this sort of information, and

■ languages which have difficulty providing higher
level concepts such as structures.

❑ This makes your job of defining datatypes
rather more confusing, but provided you
are aware that you are calling functions,
which determine byte offsets (etc) you
should be ok!

Introduction to Parallel Computing with MPI (Day 2) 103 MAN T&EC

 Type Maps

❑ A derived datatype is defined
(conceptually) using a type map:

❑ When you come to call a send with this
new type, this map will be used to find the
individual items which constitute you map.

❑ MPI will be provided with a start address
in such a call, to which it will apply the
displacements which it has been told
about.

❑ The type map functions as a sort of stencil
over memory.

Basic type 0 (e.g., MPI_INT) Displacement of type 0

Basic type 1 (eg MPI_FLOAT) Displacement of type 1

.. ..

Basic type n-1 Displacement of tyoe n-1

Introduction to Parallel Computing with MPI (Day 2) 104 MAN T&EC

 Cont.

❑ Rather than require you to understand
how your intrinsic datatypes are held in
memory, MPI provides functions to
determine this information in a form
suitable for inclusion in a derived
datatype.

❑ Awkwardly such information is easy to
find in C, but MPI insists you use its
functions!

❑ This function is

MPI_TYPE_EXTENT(datatype, extent)

❑ This places the length of the defined
‘datatype’ in the ‘extent’ variable.

Introduction to Parallel Computing with MPI (Day 2) 105 MAN T&EC

 Structures

❑ Now we have discussed the
fundamentals of deriving datatypes we
can begin to talk about building different
types. One of the more useful (for our
exercise) is that of structures.

❑ The first thing we need to construct is our
array of displacements for the structure
we discussed earlier.

MPI_Aint array_of_displacements[2];
MPI_Type_extent(MPI_INT, &int_length);
array_of_displacements[0] = 0;
array_of_displacements[1] = int_length;

❑ Note that the first item is the integer, and
the second the float, but we are looking
for the offset, and therefore the offset for
the float is the length of the int!

Int Float

Introduction to Parallel Computing with MPI (Day 2) 106 MAN T&EC

 Types

❑ Once we have constructed our array of
displacements the next thing we need to
describe is the array of existing types.

❑ This should look like:

MPI_Datatype array_of_types[2];
array_of_types[0] = MPI_INT;
array_of_types[1] = MPI_FLOAT;

❑ You should notice that we can use
previously defined datatypes here, so we
could build new types out of the type we
are currently defining!

❑ Once we have built this we need to build
up one more array!

Introduction to Parallel Computing with MPI (Day 2) 107 MAN T&EC

 Blocks

❑ We have previously indicated that the
entries in the arrays we have built up
(displacement and types) correspond to
entries in the structure (or memory).

❑ In fact this isn’t quite true!

❑ MPI allows us to simplify our definition by
letting us treat chunks of our structures
as single items.

❑ Take the structure (which could equally be
specified in Fortran):

struct {
int count;
float minimas[10];
int tmp;

}

❑ We might think this contains 12 different
data items, so we have to fill in 12 entries
in our arrays.

Introduction to Parallel Computing with MPI (Day 2) 108 MAN T&EC

 Cont.

❑ MPI lets us do this if we want, but also
provides a short cut.

❑ As far as MPI is concerned a structure (in
its way of thinking) is a sequence of
blocks.

❑ Each block consists of 1-n datatypes, all
of which must be of a single existing type.

❑ In other words a block is the sort of type
we could send using a simple send
function.

❑ Another way of thinking of that structure is

■ An integer

■ A block of 10 floats

■ An integer

Introduction to Parallel Computing with MPI (Day 2) 109 MAN T&EC

 Defining Blocks

❑ The entries in the displacement and type
arrays correspond to blocks, not single
datatypes.

❑ To tell MPI how many of the basic
datatypes are in each block we define
another array.

int array_of_blocklengths[2] = {1, 1};

❑ For our exercise this is very simple.

❑ For the other structure this might look like:

int array_of_blocklengths[3] = {1,10,1};
array_of_displacements[0] = 0;
array_of_displacements[1] = int_length;
array_of_displacements[2] = int_length +

(10 * float_length);
array_of_types[0] = MPI_INT;
array_of_types[1] = MPI_FLOAT;
array_of_types[2] = MPI_INT;

❑ Which requires less typing than it
otherwise might!

Introduction to Parallel Computing with MPI (Day 2) 110 MAN T&EC

 Describing the
Structure

❑ Having built up these arrays we can finally
describe the structure to MPI, which fills in
a datatype array

MPI_Datatype MyNewType;

MPI_Type_struct(2,
 array_of_blocklengths,
 array_of_displacements,
 array_of_types,
 &MyNewType);

❑ The first parameter (‘2’) indicates the
number of entries in each array.

❑ Finally we ‘commit’ the datatype, which
tells MPI about it

MPI_Type_commit(&MyNewType);

❑ We can now use MyNewType anywhere
we would otherwise use an intrinsic type.

Introduction to Parallel Computing with MPI (Day 2) 111 MAN T&EC

 Describing a Vector

❑ Fortunately describing a vector to MPI is
slightly simpler!

❑ Imagine the case where you have a long
sequence of data items stored in memory
(such as in a matrix) and you wish to
extract certain items from it.

❑ You could copy these out manually into
another array, and send this.

❑ To save you the effort of doing this MPI
allows you to define a vector datatype,
which includes the extraction information!

❑ Unfortunately this means you have to
describe the datatype yourself.

Introduction to Parallel Computing with MPI (Day 2) 112 MAN T&EC

 A Vector

❑ A vector, in MPI terms appears as:

❑ The datatype description is generated by

MPI_TYPE_VECTOR(count, blocklength, stride,
oldtype, newtype)

❑ In the above example blocklength = 3,
stride = 5 and count = 2.

❑ Obviously the vector is useful for
extracting elements from matrices.

Oldtype

3 elements of oldtype
per block

5 element stride
between block

2 Blocks

Introduction to Parallel Computing with MPI (Day 2) 113 MAN T&EC

 Other Types

❑ MPI allows other datatypes to be defined,
but for the purposes of this introductory
course we will skip the details.

❑ The vast majority of MPI programs will
only derive datatypes which correspond
to either structures or vectors, so this isn’t
too critical!

Introduction to Parallel Computing with MPI (Day 2) 114 MAN T&EC

 Exercise 2

❑ Now, to reinforce how MPI programs send
messages, we want to write an
application which performs a very simple
integration function in parallel.

❑ To help focus on the message passing
part of the problem we provide skeleton
programs which can already do most of
the calculations, all you need to do is
coordinate them!

Introduction to Parallel Computing with MPI (Day 2) 115 MAN T&EC

 Cont.

❑ The integration is performed by a simple
Newton-Raphson approximation. The
parameter range is split up into strips.

■ The integrate range operation is coded into the
slave function. This subroutine has functions
which enable it to integrate a number of strips, of
fixed width, starting at a particular value. Note that
the ‘function’ is hard-coded in, we never pass it
about.

■ The master function reads in the number of
processors the user wants, splits the strips into
groups for each processor.

❑ We already provide a skeleton function
which splits the range selected by the
user into the required number of strips,
and calculates which ones to send to
which slave.

❑ You must write the message passing
code to actually send the information.

Introduction to Parallel Computing with MPI (Day 2) 116 MAN T&EC

 Cont.

❑ As we have mentioned before the master
process sends a derived datatype to the
workers.

❑ We have already derived the type for you,
but you might want to examine the code
to see what you place in the structure.

❑ You must write the code to:

■ Send the relevant structure from the master to the
workers.

■ Receive this structure on the worker.

■ Send the resulting integration of the sub-range
from each worker to the master.

■ Receive each integration on the master.

Introduction to Parallel Computing with MPI (Day 2) 117 MAN T&EC

Conclusions

Introduction to Parallel Computing with MPI (Day 2) 118 MAN T&EC

 Course Summary

❑ This course has covered:

■ The basic concept of a message passing library

■ The background to MPI

■ How MPI ‘has learnt’ from other library

■ The philosophy of programming in MPI

■ How applications are created using MPI (SPMD)

■ How messages are sent and received by
programs operating with MPI

■ Deriving datatypes for MPI.

❑ MPI is an extremely large standard, we
have left out quite a lot of detail, including
group operations, profiling, global
reduction.

Introduction to Parallel Computing with MPI (Day 2) 119 MAN T&EC

 The state of MPI

❑ MPI is an extremely new standard, and is
likely to improve in the future, but at the
moment it has 2 principal problems:

■ Public domain implementations tend to be poorly
documented, and not very efficient. There are few
commercial implementations as yet, so this is
hampering MPI.

■ MPI leaves out of the standard some very
important details, notably spawning and process
management. This limits the applicability of MPI in
areas like workstation clusters.

❑ At the time of writing (May ‘94) MPI is
more suited for use with applications
which will have a long life....if you need
results in 6 months time you may be
better off using PVM.

