
66 CHAPTER 2 Parallel Hardware and Parallel Software

Unfortunately, there isn’t some mechanical process we can follow; if there were, we
could write a program that would convert any serial program into a parallel program,
but, as we noted in Chapter 1, in spite of a tremendous amount of work and some
progress, this seems to be a problem that has no universal solution.

However, Ian Foster provides an outline of steps in his online book Designing

and Building Parallel Programs [19]:

1. Partitioning. Divide the computation to be performed and the data operated on by
the computation into small tasks. The focus here should be on identifying tasks
that can be executed in parallel.

2. Communication. Determine what communication needs to be carried out among
the tasks identified in the previous step.

3. Agglomeration or aggregation. Combine tasks and communications identified in
the first step into larger tasks. For example, if task A must be executed before task
B can be executed, it may make sense to aggregate them into a single composite
task.

4. Mapping. Assign the composite tasks identified in the previous step to processes/
threads. This should be done so that communication is minimized, and each
process/thread gets roughly the same amount of work.

This is sometimes called Foster’s methodology.

2.7.1 An example
Let’s look at a small example. Suppose we have a program that generates large quan-
tities of floating point data that it stores in an array. In order to get some feel for the
distribution of the data, we can make a histogram of the data. Recall that to make
a histogram, we simply divide the range of the data up into equal sized subinter-
vals, or bins, determine the number of measurements in each bin, and plot a bar
graph showing the relative sizes of the bins. As a very small example, suppose our
data are

1.3,2.9,0.4,0.3,1.3,4.4,1.7,0.4,3.2,0.3,4.9,2.4,3.1,4.4,3.9,0.4,4.2,4.5,4.9,0.9.

Then the data lie in the range 0–5, and if we choose to have five bins, the histogram
might look something like Figure 2.20.

A serial program
It’s pretty straightforward to write a serial program that generates a histogram. We
need to decide what the bins are, determine the number of measurements in each
bin, and print the bars of the histogram. Since we’re not focusing on I/O, we’ll limit
ourselves to just the first two steps, so the input will be

1. the number of measurements, data count;
2. an array of data count floats, data;
3. the minimum value for the bin containing the smallest values, min meas;
4. the maximum value for the bin containing the largest values, max meas;
5. the number of bins, bin count;



2.7 Parallel Program Design 67

0

2

4

6

1 2 3 4 5

FIGURE 2.20

A histogram

The output will be an array containing the number of elements of data that lie in each
bin. To make things precise, we’ll make use of the following data structures:

� bin maxes. An array of bin count floats
� bin counts. An array of bin count ints

The array bin maxes will store the upper bound for each bin, and bin counts will
store the number of data elements in each bin. To be explicit, we can define

bin width = (max meas � min meas)/bin count

Then bin maxes will be initialized by

for (b = 0; b < bin count; b++)
bin maxes[b] = min meas + bin width⇤(b+1);

We’ll adopt the convention that bin b will be all the measurements in the range

bin maxes[b�1] <= measurement < bin maxes[b]

Of course, this doesn’t make sense if b = 0, and in this case we’ll use the rule that
bin 0 will be the measurements in the range

min meas <= measurement < bin maxes[0]

This means we always need to treat bin 0 as a special case, but this isn’t too onerous.
Once we’ve initialized bin maxes and assigned 0 to all the elements of

bin counts, we can get the counts by using the following pseudo-code:

for (i = 0; i < data count; i++) {
bin = Find bin(data[i], bin maxes, bin count, min meas);
bin counts[bin]++;

}

The Find bin function returns the bin that data[i] belongs to. This could be a
simple linear search function: search through bin maxes until you find a bin b that
satisfies

bin maxes[b�1] <= data[i] < bin maxes[b]



68 CHAPTER 2 Parallel Hardware and Parallel Software

(Here we’re thinking of bin maxes[�1] as min meas.) This will be fine if there aren’t
very many bins, but if there are a lot of bins, binary search will be much better.

Parallelizing the serial program
If we assume that data count is much larger than bin count, then even if we use
binary search in the Find bin function, the vast majority of the work in this code will
be in the loop that determines the values in bin counts. The focus of our paralleliza-
tion should therefore be on this loop, and we’ll apply Foster’s methodology to it. The
first thing to note is that the outcomes of the steps in Foster’s methodology are by no
means uniquely determined, so you shouldn’t be surprised if at any stage you come
up with something different.

For the first step we might identify two types of tasks: finding the bin to which an
element of data belongs and incrementing the appropriate entry in bin counts.

For the second step, there must be a communication between the computation
of the appropriate bin and incrementing an element of bin counts. If we represent
our tasks with ovals and communications with arrows, we’ll get a diagram that looks
something like that shown in Figure 2.21. Here, the task labelled with “data[i]”
is determining which bin the value data[i] belongs to, and the task labelled with
“bin counts[b]++” is incrementing bin counts[b].

For any fixed element of data, the tasks “find the bin b for element of data” and
“increment bin counts[b]” can be aggregated, since the second can only happen
once the first has been completed.

However, when we proceed to the final or mapping step, we see that if two pro-
cesses or threads are assigned elements of data that belong to the same bin b, they’ll
both result in execution of the statement bin counts[b]++. If bin counts[b] is
shared (e.g., the array bin counts is stored in shared-memory), then this will result
in a race condition. If bin counts has been partitioned among the processes/threads,
then updates to its elements will require communication. An alternative is to store
multiple “local” copies of bin counts and add the values in the local copies after all
the calls to Find bin.

If the number of bins, bin count, isn’t absolutely gigantic, there shouldn’t be a
problem with this. So let’s pursue this alternative, since it is suitable for use on both
shared- and distributed-memory systems.

In this setting, we need to update our diagram so that the second collection of
tasks increments loc bin cts[b]. We also need to add a third collection of tasks,
adding the various loc bin cts[b] to get bin counts[b]. See Figure 2.22. Now we

data[i] data[i+1]

bin_counts[b–1]++ bin_counts[b]++

data[i–1]Find_bin

Increment
bin_counts

FIGURE 2.21

The first two stages of Foster’s methodology



2.7 Parallel Program Design 69

loc_bin_cts[b–1]++ loc_bin_cts[b]++

bin_counts[b–1]+= bin_counts[b]+=

loc_bin_cts[b]++

data[i] data[i+1] data[i+2]data[i–1]Find_bin

loc_bin_cts[b–1]++

FIGURE 2.22

Alternative definition of tasks and communication

see that if we create an array loc bin cts for each process/thread, then we can map
the tasks in the first two groups as follows:

1. Elements of data are assigned to the processes/threads so that each process/thread
gets roughly the same number of elements.

2. Each process/thread is responsible for updating its loc bin cts array on the basis
of its assigned elements.

To finish up, we need to add the elements loc bin cts[b] into bin counts[b].
If both the number of processes/threads is small and the number of bins is small, all
of the additions can be assigned to a single process/thread. If the number of bins is
much larger than the number of processes/threads, we can divide the bins among the
processes/threads in much the same way that we divided the elements of data. If the
number of processes/threads is large, we can use a tree-structured global sum similar
to the one we discussed in Chapter 1. The only difference is that now the sending pro-
cess/threads are sending an array, and the receiving process/threads are receiving and
adding an array. Figure 2.23 shows an example with eight processes/threads. Each

0

+

+

+

+ +

+

+

1 2 3 4 5 6 7

FIGURE 2.23

Adding the local arrays



70 CHAPTER 2 Parallel Hardware and Parallel Software

circle in the top row corresponds to a process/thread. Between the first and the
second rows, the odd-numbered processes/threads make their loc bin cts available
to the even-numbered processes/threads. Then in the second row, the even-numbered
processes/threads add the new counts to their existing counts. Between the sec-
ond and third rows the process is repeated with the processes/threads whose ranks
aren’t divisible by four sending to those whose are. This process is repeated until
process/thread 0 has computed bin counts.

2.8 WRITING AND RUNNING PARALLEL PROGRAMS
In the past, virtually all parallel program development was done using a text edi-
tor such as vi or Emacs, and the program was either compiled and run from the
command line or from within the editor. Debuggers were also typically started from
the command line. Now there are also integrated development environments (IDEs)
available from Microsoft, the Eclipse project, and others; see [16, 38].

In smaller shared-memory systems, there is a single running copy of the operat-
ing system, which ordinarily schedules the threads on the available cores. On these
systems, shared-memory programs can usually be started using either an IDE or the
command line. Once started, the program will typically use the console and the key-
board for input from stdin and output to stdout and stderr. On larger systems,
there may be a batch scheduler, that is, a user requests a certain number of cores, and
specifies the path to the executable and where input and output should go (typically
to files in secondary storage).

In typical distributed-memory and hybrid systems, there is a host computer that
is responsible for allocating nodes among the users. Some systems are purely batch

systems, which are similar to shared-memory batch systems. Others allow users to
check out nodes and run jobs interactively. Since job startup often involves com-
municating with remote systems, the actual startup is usually done with a script.
For example, MPI programs are usually started with a script called mpirun or
mpiexec.

As usual, RTFD, which is sometimes translated as “read the fine documentation.”

2.9 ASSUMPTIONS
As we noted earlier, we’ll be focusing on homogeneous MIMD systems—systems in
which all of the nodes have the same architecture—and our programs will be SPMD.
Thus, we’ll write a single program that can use branching to have multiple different
behaviors. We’ll assume the cores are identical but that they operate asynchronously.
We’ll also assume that we always run at most one process or thread of our program
on a single core, and we’ll often use static processes or threads. In other words, we’ll
often start all of our processes or threads at more or less the same time, and when
they’re done executing, we’ll terminate them at more or less the same time.


