
3.10 Programming Assignments 147

3.26. Serial odd-even transposition sort of an n-element list can sort the list in con-
siderably fewer than n phases. As an extreme example, if the input list is
already sorted, the algorithm requires 0 phases.
a. Write a serial Is sorted function that determines whether a list is sorted.
b. Modify the serial odd-even transposition sort program so that it checks

whether the list is sorted after each phase.
c. If this program is tested on a random collection of n-element lists, roughly

what fraction get improved performance by checking whether the list is
sorted?

3.27. Find the speedups and efficiencies of the parallel odd-even sort. Does the
program obtain linear speedups? Is it scalable? Is it strongly scalable? Is it
weakly scalable?

3.28. Modify the parallel odd-even transposition sort so that the Merge functions
simply swap array pointers after finding the smallest or largest elements. What
effect does this change have on the overall run-time?

3.10 PROGRAMMING ASSIGNMENTS
3.1. Use MPI to implement the histogram program discussed in Section 2.7.1. Have

process 0 read in the input data and distribute it among the processes. Also have
process 0 print out the histogram.

3.2. Suppose we toss darts randomly at a square dartboard, whose bullseye is at the
origin, and whose sides are 2 feet in length. Suppose also that there’s a circle
inscribed in the square dartboard. The radius of the circle is 1 foot, and it’s area
is ⇡ square feet. If the points that are hit by the darts are uniformly distributed
(and we always hit the square), then the number of darts that hit inside the circle
should approximately satisfy the equation

number in circle
total number of tosses

= ⇡

4
,

since the ratio of the area of the circle to the area of the square is ⇡/4.
We can use this formula to estimate the value of ⇡ with a random number

generator:

number in circle = 0;
for (toss = 0; toss < number of tosses; toss++) {

x = random double between �1 and 1;
y = random double between �1 and 1;
distance squared = x⇤x + y⇤y;
if (distance squared <= 1) number in circle++;

}
pi estimate = 4⇤number in circle/((double) number of tosses);



148 CHAPTER 3 Distributed-Memory Programming with MPI

This is called a “Monte Carlo” method, since it uses randomness (the dart
tosses).

Write an MPI program that uses a Monte Carlo method to estimate ⇡ .
Process 0 should read in the total number of tosses and broadcast it to the
other processes. Use MPI Reduce to find the global sum of the local variable
number in circle, and have process 0 print the result. You may want to use
long long ints for the number of hits in the circle and the number of tosses,
since both may have to be very large to get a reasonable estimate of ⇡ .

3.3. Write an MPI program that computes a tree-structured global sum. First write
your program for the special case in which comm sz is a power of two. Then,
after you’ve gotten this version working, modify your program so that it can
handle any comm sz.

3.4. Write an MPI program that computes a global sum using a butterfly. First write
your program for the special case in which comm sz is a power of two. Can you
modify your program so that it will handle any number of processes?

3.5. Implement matrix-vector multiplication using a block-column distribution of
the matrix. You can have process 0 read in the matrix and simply use a loop
of sends to distribute it among the processes. Assume the matrix is square of
order n and that n is evenly divisible by comm sz. You may want to look at the
MPI function MPI Reduce scatter.

3.6. Implement matrix-vector multiplication using a block-submatrix distribution
of the matrix. Assume that the vectors are distributed among the diagonal pro-
cesses. Once again, you can have process 0 read in the matrix and aggregate
the sub-matrices before sending them to the processes. Assume comm sz is a
perfect square and that

p
comm sz evenly divides the order of the matrix.

3.7. A ping-pong is a communication in which two messages are sent, first from
process A to process B (ping) and then from process B back to process A
(pong). Timing blocks of repeated ping-pongs is a common way to estimate
the cost of sending messages. Time a ping-pong program using the C clock
function on your system. How long does the code have to run before clock
gives a nonzero run-time? How do the times you got with the clock function
compare to times taken with MPI Wtime?

3.8. Parallel merge sort starts with n/comm sz keys assigned to each process. It ends
with all the keys stored on process 0 in sorted order. To achieve this, it uses
the same tree-structured communication that we used to implement a global
sum. However, when a process receives another process’ keys, it merges the
new keys into its already sorted list of keys. Write a program that implements
parallel mergesort. Process 0 should read in n and broadcast it to the other
processes. Each process should use a random number generator to create a
local list of n/comm sz ints. Each process should then sort its local list, and


