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Introduction  to  OpenMP	
•  OpenMP is an API to support Shared Memory (SM) 

parallelization on multi-core machines.  

o  Based on: Compiler directives, Library routines and Environmental variables; 

o  Supports C/C++ and Fortran programming languages. 

 

•  Uses multithreading based on the fork-join model of 
parallel execution. 

•  It is through directives, added by the programmer to the 
code, that the compiler adds parallelism 
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OpenMP  considerations:	
•  OpenMP itself does not solve problems as : 

o  Starvation, deadlock or poor load balancing (among others). 
o  But, offers routines to solve problems like: 

•  Load balancing or memory consistency. 
o  However, starvation and deadlock are the programmer’s responsibility. 

•  The creation/managing of threads are delegated to the 
compiler & OpenMP runtime: 
o  + Easier to parallelize application; 
o  - Less control over the threads’ behaviour. 

•  By default, the number of parallel activities is defined in run-
time according to available resources 
o  e.g. 2 cores -> 2 threads 
o  HT capability counts as a core 

•  OpenMP does not support distributed memory systems & more 
complex parallelization must resort to library calls. 
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OpenMP:  Programming  Model	

•  The openMP program begins as a single thread (master 
thread). 

•  Parallel regions create a team of parallel activities; 
•  Work-sharing constructs/generates work for the team to 

process; 
•  Data sharing clauses specify how variables are shared within a 

parallel region; 
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OpenMP  Programming  	

•  OpenMP directives format for C/C++ applications: 
o  #pragma omp directive-name [clause[ [,] clause]...] new-line 

•  Parallel Constructs 
o  #pragma omp parallel -> Creates a team of threads. 

•  Work-sharing Constructs 
o  #pragma omp for-> Assignment of iterations to threads. 
o  #pragma omp sections -> Assignment of blocks of code (section) to threads. 
o  #pragma omp single -> Restrict a code of block to be executed by only one thread. 

•  Tasking Constructs 
o  #pragma omp task -> Creation of a pool of tasks to be executed by the thread. 

•  Master & Synchronization Constructs  
o  #pragma omp master    -> A block of code to be executed only the master thread of the team. 
o  #pragma omp critical    -> Restricts the execution of a given block of code to a single thread at a 

time. 
o  #pragma omp barrier    -> Makes all threads in a team to wait for the remaining. 
o  #pragma omp taskwait -> wait for the completion of the current task child's. 
o  #pragma omp atomic   -> Ensures that a specific storage location is accessed atomically. 
o  #pragma omp flush       -> Makes a thread’s temporary view of memory consistent with memory. 
o  #pragma omp ordered -> Specifies a block of code in a loop region that will be executed in the 

order of the loop iterations. 
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Data  Sharing	

•  What happens to variables in parallel regions? 

o  Variables declared inside are local to each thread; 
o  Variables declared outside are shared 

•  Data sharing clauses: 
o  private(varlist) => each variable in varlist becomes private to each 

thread, initial values no specified. 
o  firstprivate(varlist) => Same as private, but variables are initalized with the 

same value outside the region. 
o  lastprivate(varlist) => same as private, but the final value is the last loop 

iteration’s value. 

o  reduction (op:var) => same as lastprivate, but the final value is the result of 
reduction using the operator “op”. 

•  Directives for data sharing: 
o  #pragma omp threadlocal => each thread gets a local copy of the 

value. 

o  copyin clause copies the values from thread master to the others threads. 
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Parallel  Region	
•  When a thread encounters a 

parallel construct, a team of 
threads is created (FORK); 

•  The thread which encounters the 
parallel region becomes the master 
of the new team; 

•  All threads in the team (including 
the master) execute the region; 

 
•  At end of parallel region, all threads 

synchronize, and join master thread 
(JOIN). 

Parallel region syntax 

#pragma omp parallel [clauses]  

   {  

 code_block  

    } 

 

Where clause can be: 

7 



Nested  Parallel  Region	
•  If a thread in a team executing a parallel region 

encounters another parallel directive, it creates a new 
team, and becomes the master of this team; 

•  If nested parallelism is disabled, then no additional team 
of threads will be created. 

•  To enable/disabled -> omp_set_nested(x); 
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Nested  region  example	
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Loop  Construct	
 
•  The for loop iterations are distributed 

across threads in the team; 
o  The distribution is based on: 

•  Chunk_size, by default = 1; 
•  Parallel for schedule, by default = static. 

•  Loop schedule: 
o  Static – Iterations divided into chunks of size 

chunk_size assigned to the threads in a team 
in a round-robin fashion; 

o  Dynamic – the chunks are assigned to threads 
in the team as the threads request them; 

o  Guided  - similar to dynamic but the chunk size 
decreases during execution. 

o  Auto – the chose scheduling is delegated to 
the compiler. 
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Parallel region syntax 

#pragma omp for[clauses]  

     {  

 code_block  

     } 

 

Where clause can be: 



Loop  Constructors	

11 

•  schedule(static) vs schedule(dynamic) 
o  Static has lower overhead; 
o  Dynamic has a better load balance approach; 
o  Increasing the chuck size in the dynamic for: 

•  Diminishing of the scheduling overhead; 
•  Increasing the possibility of load balancing problems. 

•  Lets f() be a given function and we want to parallelize 
the loop using 2 threads: 

 
     #pragma omp parallel for schedule ( ?) 

   for(I = 0; I < 100; I++) 
        f(); 
 
What is the most appropriated type of scheduling?  
 



Parallel  for  with  ordered  clause	
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•  #pragma omp for schedule(static) ordered  
      for (i = 0; i < N; ++i)  
       { 
         // Do something here.  
          #pragma omp ordered  
          { 
           printf("test() iteration %d\n", i);  
          }  

       } 
 



Parallel  execution  of  code  sections	

•  Supports heterogeneous tasks: 
 

#pragma omp parallel  
{ 

 #pragma omp sections 
  { 
  #pragma omp section 

        { 
   taskA(); 
  } 
  #pragma omp section  

        { 
   taskB(); 
  } 
  #pragma omp section 

        { 
   taskC(); 
  } 
 } 

} 

Ø  The section blocks are divided 

among threads in the team; 

Ø  Each section is executed only 

once by threads in the team. 

Ø  There is an implicit barrier at the 

end of the section construct 

unless a nowait clause is specified 

Ø  Allow the following clauses: 
Ø  private (list); 
Ø  firstprivate(list); 
Ø  lastprivate(list); 

Ø  reduction(operator:list) 
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Task  constructor:  	

Ø  When a thread encounters a task 

construct, a task is generated; 

Ø  Thread can immediately execute the 
task, or can be executed latter one by 

any thread on the team; 

Ø  OpenMP creates a pool of tasks to be 
executed by the active threads in the 

team; 

Ø  The taskwait directive ensures that the 

2 tasks generated are completed 

before the return statements. 

Ø  Although, only one thread executes 
the single directive and hence the call 

to fib(n), all four threads will participate 

in executing the tasks generated.  
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Execution  Tree  Exemplified  	
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Synchronization  Constructs:	

•  Critical regions (executed in mutual exclusion): 
o  #pragma omp critical [name] 

updateParticles(); 
o  Restricts execution of the associated structured blocks to a single thread 

at a time; 
o  Works inter-teams. 
o  An optional name may be used to identify the critical construct, all critical 

without name are considered to have the same unspecified name. 

•  Atomic Operations (fine-grain synchronization): 
o  #pragma omp atomic 

A[i] += x; 

o  The memory in will be updated atomically. It does not make the entire 
statement atomic; only the memory update is atomic.  

o  A compiler might use special hardware instructions for better performance 
than when using critical. 
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Computação Paralela 17 

Avoid/reduce  synchronisation	

 

o  Reduction of multiple values (in parallel): 
 sum = 0; 

# pragma omp parallel for reduction(+:sum) 
 for(int i = 0;  i<100; i++) { 
  sum += array[i]; 
 } 

 
o  Thread reuse across parallel regions 

# pragma omp parallel { 
#pragma omp for 

 for(int i = 0;  i<100; i++) 
  … 

#pragma omp for 
 for(int j= 0; j<100; j++) 
  … 

} 



Environment  variables	
o  OMP_SCHEDULE 

•   sets the run-sched-var ICV for the runtime schedule type and chunk size. It can be set to 
any of the valid OpenMP schedule types (i.e., static, dynamic, guided, and auto). 

o   OMP_NUM_THREADS  
•  sets the nthreads-var ICV for the number of threads to use for parallel regions. 

o   OMP_DYNAMIC 
•  sets the dyn-var ICV for the dynamic adjustment of threads to use for parallel regions. 

o   OMP_NESTED  
•  sets the nest-var ICV to enable or to disable nested parallelism. 

o   OMP_STACKSIZE 
•   sets the stacksize-var ICV that specifies the size of the stack for threads created by the 

OpenMP implementation. 
o  OMP_WAIT_POLICY 

•  sets the wait-policy-var ICV that controls the desired behavior of waiting threads. 
o  OMP_MAX_ACTIVE_LEVELS  

•  sets the max-active-levels-var ICV that controls the maximum number of nested active 
parallel regions. 

o  OMP_THREAD_LIMIT  
•  sets the thread-limit-var ICV that controls the maximum number of threads participating 

in the OpenMP program. 



OpenMP  Rotines	
•  omp_set_num_threads / omp_get_num_threads 
•  omp_get_max_threads 
•  omp_get_thread_num. 
•  omp_get_num_procs. 
•  omp_in_parallel. 
•  omp_set_dynamic / omp_get_dynamic. 
•  omp_set_nested / omp_get_nested. 
•  omp_set_schedule / omp_get_schedule 
•  omp_get_thread_limit. 
•  omp_set_max_active_levels /  omp_get_max_active_levels 
•  omp_get_level. 
•  omp_get_ancestor_thread_num. 
•  omp_get_team_size. 
•  omp_get_active_level 

o  Locks 
•  void omp_init_lock(omp_lock_t *lock); 
•  void omp_destroy_lock(omp_lock_t *lock); 
•  void omp_set_lock(omp_lock_t *lock); 
•  void omp_unset_lock(omp_lock_t *lock); 
•  int omp_test_lock(omp_lock_t *lock); 

o  Timers 
•  double omp_get_wtime(void); 
•  double omp_get_wtick(void); 



OpenMP  versions  and  compiler  support	
OpenMP  
version	

Principal  new  features	 Compiler  support	

2.5  (May  2005)	 gcc  4.2	
3.0  (May  2008)	 -‐‑  Task  /  taskwait	 gcc4.4	 Icc  11.1	
3.1  (July  2011)	 -‐‑  Final/mergeable	

-‐‑  Taskyield	
-‐‑  Min/max  reductions  in  C++	
-‐‑  OMP_PROC_BIND	

gcc4.7	 Icc  12.1	

4.0  (July  2013)	 -‐‑  Cancel	
-‐‑  Declare  reduction	
-‐‑  SIMD	
-‐‑  Taskgroup	
-‐‑  Device  construct	

gcc4.8.2  /  
gcc4.9	

Icc  13.1  (?)	
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Molecular  Dynamic	
•  Simulation of particle’s 

interactions; 

•  Use of mathematical 
models such as  
Lennard-Jones 
Potential; 

•  Interaction calculation 
based on: 
o  Position; 
o  Velocity; 
o  Force. 



MD:  Call  Graph	



MD  code	
Molecular  Dynamic  Simulation	 Force  Calculation  of  all  Particles	

…	

Force  Calculation  of  one  particle  with  the  remaining	



Parallelizing  the  Application	
Ø  Load balancing problems 

(due 3º Newton's  Law). 

Ø  Solution ? 

#pragma  omp  parallel  for	



Parallelizing  the  Application	
Ø  Load balancing problems 

(due 3º Newton's  Law). 

Ø  There is the overhead 

problem L  

Ø  Solution ? #pragma  omp  parallel  for  schedule  (dynamic)  	



Parallelizing  the  Application	
Ø  Load balancing problems 

(due 3º Newton's  Law). 

Ø  There is the overhead 

problem L  

Ø  No task distribution 

synchronization 

overhead! 

Ø  But there are cases of 

load balancing -> 
halfPart % numThr != 0 



Checking  data  Dependencies  
(Critical  clause)	

Ø  Mutual exclusion is 

ensured. 
Ø  Very high synchronization 

overhead; 
Ø  Unnecessary 

synchronization.  

Ø  Solution ? 
Ø  Fine grain  synchronization. 
 
 



Ø  Mutual exclusion is 

ensured. 
Ø  Very high synchronization 

overhead; 
Ø  Unnecessary 

synchronization.  

Ø  Solution ? 
Ø  Fine grain  synchronization. 
 

Ø  Lot less synchronization. 
Ø  But there is still overhead L 
 

Ø  Solution?. 
Ø  Data redundancy. 
 

Checking  data  Dependences  	
(Lock  per  Particle)	



Removing  some  synchronization  
overhead	


