
University of Minho
Informatics Department
	

OpenMP
João Luís Ferreira Sobral
Bruno Medeiros

Parallel Computing Paradigms
(UCE CPD) 	

1

Introduction to OpenMP	
•  OpenMP is an API to support Shared Memory (SM)

parallelization on multi-core machines.

o  Based on: Compiler directives, Library routines and Environmental variables;

o  Supports C/C++ and Fortran programming languages.

•  Uses multithreading based on the fork-join model of
parallel execution.

•  It is through directives, added by the programmer to the
code, that the compiler adds parallelism

2

OpenMP considerations:	
•  OpenMP itself does not solve problems as :

o  Starvation, deadlock or poor load balancing (among others).
o  But, offers routines to solve problems like:

•  Load balancing or memory consistency.
o  However, starvation and deadlock are the programmer’s responsibility.

•  The creation/managing of threads are delegated to the
compiler & OpenMP runtime:
o  + Easier to parallelize application;
o  - Less control over the threads’ behaviour.

•  By default, the number of parallel activities is defined in run-
time according to available resources
o  e.g. 2 cores -> 2 threads
o  HT capability counts as a core

•  OpenMP does not support distributed memory systems & more
complex parallelization must resort to library calls.

3

OpenMP: Programming Model	

•  The openMP program begins as a single thread (master
thread).

•  Parallel regions create a team of parallel activities;
•  Work-sharing constructs/generates work for the team to

process;
•  Data sharing clauses specify how variables are shared within a

parallel region;

4

OpenMP Programming 	

•  OpenMP directives format for C/C++ applications:
o  #pragma omp directive-name [clause[[,] clause]...] new-line

•  Parallel Constructs
o  #pragma omp parallel -> Creates a team of threads.

•  Work-sharing Constructs
o  #pragma omp for-> Assignment of iterations to threads.
o  #pragma omp sections -> Assignment of blocks of code (section) to threads.
o  #pragma omp single -> Restrict a code of block to be executed by only one thread.

•  Tasking Constructs
o  #pragma omp task -> Creation of a pool of tasks to be executed by the thread.

•  Master & Synchronization Constructs
o  #pragma omp master -> A block of code to be executed only the master thread of the team.
o  #pragma omp critical -> Restricts the execution of a given block of code to a single thread at a

time.
o  #pragma omp barrier -> Makes all threads in a team to wait for the remaining.
o  #pragma omp taskwait -> wait for the completion of the current task child's.
o  #pragma omp atomic -> Ensures that a specific storage location is accessed atomically.
o  #pragma omp flush -> Makes a thread’s temporary view of memory consistent with memory.
o  #pragma omp ordered -> Specifies a block of code in a loop region that will be executed in the

order of the loop iterations.

5

Data Sharing	

•  What happens to variables in parallel regions?

o  Variables declared inside are local to each thread;
o  Variables declared outside are shared

•  Data sharing clauses:
o  private(varlist) => each variable in varlist becomes private to each

thread, initial values no specified.
o  firstprivate(varlist) => Same as private, but variables are initalized with the

same value outside the region.
o  lastprivate(varlist) => same as private, but the final value is the last loop

iteration’s value.

o  reduction (op:var) => same as lastprivate, but the final value is the result of
reduction using the operator “op”.

•  Directives for data sharing:
o  #pragma omp threadlocal => each thread gets a local copy of the

value.

o  copyin clause copies the values from thread master to the others threads.

6

Parallel Region	
•  When a thread encounters a

parallel construct, a team of
threads is created (FORK);

•  The thread which encounters the
parallel region becomes the master
of the new team;

•  All threads in the team (including
the master) execute the region;

•  At end of parallel region, all threads

synchronize, and join master thread
(JOIN).

Parallel region syntax

#pragma omp parallel [clauses]

 {

 code_block

 }

Where clause can be:

7

Nested Parallel Region	
•  If a thread in a team executing a parallel region

encounters another parallel directive, it creates a new
team, and becomes the master of this team;

•  If nested parallelism is disabled, then no additional team
of threads will be created.

•  To enable/disabled -> omp_set_nested(x);

8

Nested region example	

9

Parallel Region level 0	

Parallel Region level 1	 Parallel Region level 1	

T 0	

T 0	 T 1	

T 0	 T 1	 T 0	 T 1	

Team 1	

Team 2	 Team 3	

(Master)	

(Master)	

(Master)	 (Master)	

Thread marked with red is	
slave on team 1 but 	
master on team 2.	

Loop Construct	

•  The for loop iterations are distributed

across threads in the team;
o  The distribution is based on:

•  Chunk_size, by default = 1;
•  Parallel for schedule, by default = static.

•  Loop schedule:
o  Static – Iterations divided into chunks of size

chunk_size assigned to the threads in a team
in a round-robin fashion;

o  Dynamic – the chunks are assigned to threads
in the team as the threads request them;

o  Guided - similar to dynamic but the chunk size
decreases during execution.

o  Auto – the chose scheduling is delegated to
the compiler.

10

Parallel region syntax

#pragma omp for[clauses]

 {

 code_block

 }

Where clause can be:

Loop Constructors	

11

•  schedule(static) vs schedule(dynamic)
o  Static has lower overhead;
o  Dynamic has a better load balance approach;
o  Increasing the chuck size in the dynamic for:

•  Diminishing of the scheduling overhead;
•  Increasing the possibility of load balancing problems.

•  Lets f() be a given function and we want to parallelize
the loop using 2 threads:

 #pragma omp parallel for schedule (?)

 for(I = 0; I < 100; I++)
 f();

What is the most appropriated type of scheduling?

Parallel for with ordered clause	

12

•  #pragma omp for schedule(static) ordered
 for (i = 0; i < N; ++i)
 {
 // Do something here.
 #pragma omp ordered
 {
 printf("test() iteration %d\n", i);
 }

 }

Parallel execution of code sections	

•  Supports heterogeneous tasks:

#pragma omp parallel
{

 #pragma omp sections
 {
 #pragma omp section

 {
 taskA();
 }
 #pragma omp section

 {
 taskB();
 }
 #pragma omp section

 {
 taskC();
 }
 }

}

Ø  The section blocks are divided

among threads in the team;

Ø  Each section is executed only

once by threads in the team.

Ø  There is an implicit barrier at the

end of the section construct

unless a nowait clause is specified

Ø  Allow the following clauses:
Ø  private (list);
Ø  firstprivate(list);
Ø  lastprivate(list);

Ø  reduction(operator:list)

13

Task constructor: 	

Ø  When a thread encounters a task

construct, a task is generated;

Ø  Thread can immediately execute the
task, or can be executed latter one by

any thread on the team;

Ø  OpenMP creates a pool of tasks to be
executed by the active threads in the

team;

Ø  The taskwait directive ensures that the

2 tasks generated are completed

before the return statements.

Ø  Although, only one thread executes
the single directive and hence the call

to fib(n), all four threads will participate

in executing the tasks generated.

14

Execution Tree Exemplified 	

15

fib (5)	

fib (4)	 fib (3)	

fib (3)	 fib (2)	 fib (2)	 fib (1)	

fib (2)	 fib (1)	 fib (1)	 fib (0)	 fib (1)	 fib (0)	

fib (1)	 fib (0)	

T 0	

T 3	 T 1	

T 0	 T 3	
T 2	 T 1	

T 2	

T 0	T 2	 T 3	T 0	T 2	

T 2	T 2	

Synchronization Constructs:	

•  Critical regions (executed in mutual exclusion):
o  #pragma omp critical [name]

updateParticles();
o  Restricts execution of the associated structured blocks to a single thread

at a time;
o  Works inter-teams.
o  An optional name may be used to identify the critical construct, all critical

without name are considered to have the same unspecified name.

•  Atomic Operations (fine-grain synchronization):
o  #pragma omp atomic

A[i] += x;

o  The memory in will be updated atomically. It does not make the entire
statement atomic; only the memory update is atomic.

o  A compiler might use special hardware instructions for better performance
than when using critical.

16

Computação Paralela 17

Avoid/reduce synchronisation	

o  Reduction of multiple values (in parallel):
 sum = 0;

pragma omp parallel for reduction(+:sum)
 for(int i = 0; i<100; i++) {
 sum += array[i];
 }

o  Thread reuse across parallel regions

pragma omp parallel {
#pragma omp for

 for(int i = 0; i<100; i++)
 …

#pragma omp for
 for(int j= 0; j<100; j++)
 …

}

Environment variables	
o  OMP_SCHEDULE

•  sets the run-sched-var ICV for the runtime schedule type and chunk size. It can be set to
any of the valid OpenMP schedule types (i.e., static, dynamic, guided, and auto).

o  OMP_NUM_THREADS
•  sets the nthreads-var ICV for the number of threads to use for parallel regions.

o  OMP_DYNAMIC
•  sets the dyn-var ICV for the dynamic adjustment of threads to use for parallel regions.

o  OMP_NESTED
•  sets the nest-var ICV to enable or to disable nested parallelism.

o  OMP_STACKSIZE
•  sets the stacksize-var ICV that specifies the size of the stack for threads created by the

OpenMP implementation.
o  OMP_WAIT_POLICY

•  sets the wait-policy-var ICV that controls the desired behavior of waiting threads.
o  OMP_MAX_ACTIVE_LEVELS

•  sets the max-active-levels-var ICV that controls the maximum number of nested active
parallel regions.

o  OMP_THREAD_LIMIT
•  sets the thread-limit-var ICV that controls the maximum number of threads participating

in the OpenMP program.

OpenMP Rotines	
•  omp_set_num_threads / omp_get_num_threads
•  omp_get_max_threads
•  omp_get_thread_num.
•  omp_get_num_procs.
•  omp_in_parallel.
•  omp_set_dynamic / omp_get_dynamic.
•  omp_set_nested / omp_get_nested.
•  omp_set_schedule / omp_get_schedule
•  omp_get_thread_limit.
•  omp_set_max_active_levels / omp_get_max_active_levels
•  omp_get_level.
•  omp_get_ancestor_thread_num.
•  omp_get_team_size.
•  omp_get_active_level

o  Locks
•  void omp_init_lock(omp_lock_t *lock);
•  void omp_destroy_lock(omp_lock_t *lock);
•  void omp_set_lock(omp_lock_t *lock);
•  void omp_unset_lock(omp_lock_t *lock);
•  int omp_test_lock(omp_lock_t *lock);

o  Timers
•  double omp_get_wtime(void);
•  double omp_get_wtick(void);

OpenMP versions and compiler support	
OpenMP
version	

Principal new features	 Compiler support	

2.5 (May 2005)	 gcc 4.2	
3.0 (May 2008)	 -‐‑ Task / taskwait	 gcc4.4	 Icc 11.1	
3.1 (July 2011)	 -‐‑ Final/mergeable	

-‐‑ Taskyield	
-‐‑ Min/max reductions in C++	
-‐‑ OMP_PROC_BIND	

gcc4.7	 Icc 12.1	

4.0 (July 2013)	 -‐‑ Cancel	
-‐‑ Declare reduction	
-‐‑ SIMD	
-‐‑ Taskgroup	
-‐‑ Device construct	

gcc4.8.2 /
gcc4.9	

Icc 13.1 (?)	

20

Molecular Dynamic	
•  Simulation of particle’s

interactions;

•  Use of mathematical
models such as
Lennard-Jones
Potential;

•  Interaction calculation
based on:
o  Position;
o  Velocity;
o  Force.

MD: Call Graph	

MD code	
Molecular Dynamic Simulation	 Force Calculation of all Particles	

…	

Force Calculation of one particle with the remaining	

Parallelizing the Application	
Ø  Load balancing problems

(due 3º Newton's Law).

Ø  Solution ?

#pragma omp parallel for	

Parallelizing the Application	
Ø  Load balancing problems

(due 3º Newton's Law).

Ø  There is the overhead

problem L

Ø  Solution ? #pragma omp parallel for schedule (dynamic) 	

Parallelizing the Application	
Ø  Load balancing problems

(due 3º Newton's Law).

Ø  There is the overhead

problem L

Ø  No task distribution

synchronization

overhead!

Ø  But there are cases of

load balancing ->
halfPart % numThr != 0

Checking data Dependencies
(Critical clause)	

Ø  Mutual exclusion is

ensured.
Ø  Very high synchronization

overhead;
Ø  Unnecessary

synchronization.

Ø  Solution ?
Ø  Fine grain synchronization.

Ø  Mutual exclusion is

ensured.
Ø  Very high synchronization

overhead;
Ø  Unnecessary

synchronization.

Ø  Solution ?
Ø  Fine grain synchronization.

Ø  Lot less synchronization.
Ø  But there is still overhead L

Ø  Solution?.
Ø  Data redundancy.

Checking data Dependences 	
(Lock per Particle)	

Removing some synchronization
overhead	

