An Introduction to Parallel Programming
Solutions, Chapter 5

Krichaporn Srisupapak and Peter Pacheco
June 21, 2011

1. The value of _OPENMP is a date having the form yyyymm, where yyyy is a 4-digit year
and mm is a 2-digit month. For example, 200505. The OpenMP standard states that
when the macro is defined, it will be the year and month of the version of the OpenMP
standard that has been implemented. See ex5.1_omp_macro.c.

2. The answer here will depend on the system, the number of trapezoids, and the number
of threads. On one of our systems, with 1000 trapezoids, we didn’t start seeing non-
deterministic results until the number of threads was 250, while for another system,
we saw nondeterministic results with 100 threads. With only 100 trapezoids, the first
system produced unpredictable results with 50 threads, while the second produced
unpredictable results with 10. See ex5.2_omp_trapl_no_crit.c

3. See ex5.3_omp_trapl_slow.c for the version of omp_trapl.c that puts the call to
Local_trap in a critical section. Note that in order to avoid problems with two critical
sections (one for the trapezoidal rule result and one for the maximum elapsed time)
we simply put the calls to omp_get_wtime outside the parallel block.

When this version is run on one of our systems with 1 thread and n = 10°, the run-time
is 2.7 milliseconds, while with 2 threads its run-time is 2.8 milliseconds.

With the same input both omp_trap2a_time.c and omp_trap2b_time.c take 2.7 mil-
lisecond with 1 thread and 1.4 milliseconds with 2 threads.

The version that puts the call to Local_trap in a critical section forces the threads
to execute their parts of the trapezoidal rule sequentially: first one thread executes
Local_trap, then the other. On the other hand, both of the other two versions allow
the threads to do most of their work simultaneously, and they obtain much better
performance.

4. The following table shows the identity values for the various operators:

’ Operator \ Identity Value ‘

&k 1
|l 0
& 11.. .11,
| 0
= 0

5. Recall that floating point numbers are stored in the computer in something that’s
similar to scientific notation. So it’s convenient to think of the array a as

al]l] = {2.00e+00, 2.00e+00, 4.00e+00, 1.00e+03}

When a value is stored in a register, we can add an additional digit. For example,
when a[0] is loaded into a register, we can think of it as 2.000e+00.

(a)

When the values are added using the serial for loop, the value stored in sum will
be

After 1 = 0: sum = 2.00e+00
After i = 1: sum = 4.00e+00
After i = 2: sum = 8.00e+00

When i = 3, the value 1.008e+03 will be stored in a register, and when it’s
stored in main memory it will be rounded to 1.01e+00. So the output will be

sum = 1010.0

When the values are added using the parallel for, recall that the run-time system
will create a private variable for each thread. This private variable will be used
to store that thread’s partial sum. Let’s call these private variables local_sum0
on thread 0 and local_sumil on thread 1. Then after thread 0 has completed its
iterations, local_sumO = 4.00e+00. After thread 1 has completed its iterations
local_suml = 1.00e+03 since the register sum 1.004e+03 will be rounded down.
Now when the two private variables are added the value stored in the register will
be 1.004e+03 and when it’s stored in main memory, we’ll have sum = 1.00e+03.
So the output of the code will be

sum = 1000.0

6. See ex5.6_omp_schedule.c.

7. When the program is run with one thread, the parallel for directive has no effect,
and the program is effectively the same as the preceding serial program. In particular,
there’s no loop-carried dependence, since there’s only one thread.

8. Observe that

al0] =0
al1] = al[0] +1 =0+ 1
al2] = a1l +2=0+1+ 2
al3] = a2l +3=0+1+2+ 3
al4] = a3l +4=0+1+2+3 + 4
etc. In general, then .
ali] = j.
j=0
But ‘
N (4 1)
ZJ_ 2
7=0

So we can rewrite the code as

for (i = 0; i < n; i++)
ali]l = ix(i+1)/2;

In this loop, the result of any iteration isn’t used again. So the code can be parallelized
with a parallel for directive:

pragma omp parallel for num_threads(thread_count) \
default(none) private(i) shared(a, n)
for (i = 0; 1 < n; i++)
alil = ix(i+1)/2;

9. See the source file ex5.9_omp_trap3_schedule.c.

On our system if no schedule clause is used, the default schedule is approximately a
block partition. However, the run-time system seems to invariably assign slightly more
iterations to thread 0 and slightly fewer to thread thread_count-1.

If the schedule clause is included, but the environment variable OMP_SCHEDULE isn’t
defined, then the assignment of iterations to threads seems to be dynamic: the exact
assignment changes from run to run.

10.

11.

12.

If the schedule clause is included and OMP_SCHEDULE is defined to be guided, then
roughly n/thread_count iterations are assigned to one thread, and successive blocks
of consecutive iterations are roughly half the size of the previous block. In this case
also, the exact assignment changes from run to run.

See the file ex5.10_omp_atomic. c.

Our implementation doesn’t enforce exclusive access across all atomic regions: updates
in independent atomic regions can occur simultaneously on different threads. This
behavior isn’t guaranteed by the standard, however. Also if two different atomic regions
update the same variable, then the OpenMP standard requires that a thread executing
either update must be given exclusive access to the variable. In our example, if the
private variable my_sum is replaced by a shared variable sum, then only one thread at
at time will execute the update to sum.

The following code will do the job:

pragma omp parallel for num_thread(thread_count) \
default(none) private(i, j) shared(A, x, y, m, n)
for (i = 0; 1 < m; i++) {
y[i]l = 0.0;
for (j = 0; j < mn; j++)
// y[il += A[i1[3] * x[3];
y[i] += Ali*n+j] * x[j];

Notes:

e Weve only looked at data cache misses. There are differences in the total number
of instructions executed, but the number of instruction cache misses is relatively
small and about the same for all three inputs.

e The initialization of A and = will substantially increase the number of misses. It
will also make it difficult to determine the state of the cache when the matrix-
vector multiplication begins. There are a number of possible solutions to this. We
chose the simplest: we omitted initialization and used the default values assigned
by the system (0).

We chose k = 8. So the orders of the three matrices are 8 8 million, 8000 8000, and
8 million 8, respectively. All of the data were taken with one thread. The following
table shows the number of data cache misses. M = million(s), K = thousand(s). The
numbers in parentheses are percentages of the total number of data-reads or writes.

The system on which these data were collected has a 64 Kbyte L1 data-cache and a
1024 Kbyte L2 cache.

Data Cache Misses

Matrix L1-Write | L2-Write | Ll-Read | L2-Read
8 x 8M 16K (0.0) | 570 (0.0) | 16M (12.5) | 16M (12.4)
8K x 8K | 4K (0.0) | 2K (0.0) | 16M (12.5) | 8M (6.2)
8M x 8 IM (14) 1M (1.3) | 8M (5.2) | 8M (5.2)

c. The largest number of write-misses occur with the 8 M x 8 system. This makes
sense, since for this system the array y has order 8,000,000, while for the other two
systems, it has order 8000 and 8, respectively. Furthermore, among the variables
A, x, and y, y is the only one that is written by the matrix-vector multiplication
code.

f. The largest number of read-misses occur with the 8 x 8 M ystem. This also makes
sense. Each element of the array A will be read exactly once with all three inputs,
and for each input A has 64,000,000 entries. Also, the updatesy[i] += . . . will
be executed exactly 64,000,000 times for each set of input, and these are unlikely
to cause read-misses since before the inner loop is executed, y[i] is initialized,
and hence is probably already in cache. On the other hand, the reads of x[j] may
cause cache misses, and in the 8 x 8 M system x has 8,000,000 entries as opposed
to only 8000 and 8 for the other two systems.

g. The table on page 253 has the following run-times (in seconds) when the program
is run with one thread on one of our systems:
| Threads || 8 x 8M [8K x 8K | 8M x 8 |
1 | 033 | 026 | 032 |

So we see that the program is slowest (although not by much) with the 8 x 8 M
input and fastest with the 8 ' x 8 K input. Read-misses tend to be more expensive
than write-misses. When a program needs data to carry out a computation, it
must either try executing another computation or wait for the data. On the
other hand, the data created by a write can often be simply queued up and the
computation can proceed. So its not surprising that the program is slowest with
the data that results in the most read misses.

On the other hand the program with the 8 M x 8 input has vastly more write
misses than the program with the 8 K x 8 K data. Furthermore the number of 1.2
read-misses for the two programs is identical. They do differ in the number of L1
read-misses, but these are substantially less expensive than L2 read-misses. So
its not surprising that the program is fastest with the 8 K x 8 K input.

13.

14.

With 8000 elements y will be partitioned (approximately) as follows

Thread 0: y[0], y[1], .. ., y[1999]
Thread 1: y[2000], y[2001], . . . , y[3999]
Thread 2: y[40001, y[40011, . . . , y[5999]
Thread 3: y[6000]1, y[60011, . . . , y[7999]

In order for false-sharing to occur between thread 0 and thread 2, there must be
elements of y that belong to the same cache line, but are assigned to different threads.
On thread 0, the cache line thats “closest” to the elements assigned to thread 2 is the
line that contains y[1999]. But even if this is the first element of the cache line, the
highest possible index for an element of y that belongs to this line is 2006:

| ¥[1999] | ¥[2000] | y[2001] | y[2002] | y[2003] | y[2004] | y[2005] | y[2006] |

Since the least index of an element of y assigned to thread 2 is 4000, there cant possibly
be a cache line that has elements belonging to both thread 0 and thread 2. Similar
reasoning applies to threads 0 and 3.

If we look at the location of y[0] in the first cache line containing all or part of y we
see that y can be distributed across cache lines in eight different ways. If y[0] is the
first element of the cache line, then we’ll have the following assignment of y to cache
lines:

first line | y[0] [y[1] | y[2] | y[3] [y[4] [y[5] | y[6] | y[7] |

If y [0] is the second element of the cache line, then we’ll have the following assignment:

first line | — | y[0] | y[1] | y[2] | y[3] | y[4] | y[5] | y[6]
second line | y[7] — — — — — _ —

As a final example, if y[0] is the last element of the first line, then we’ll have the
following assignment

first line | — — — — — — — | ylo]
second line | y[1] | y[2] | y[3] | y[4] | y[5] | y(6] |y[7] | —

(a) From our first example, we see it’s possible for y to fit into a single cache line.

(b) However, in most cases, y will be split across two cache lines.

()
()

There are eight ways the doubles can be assigned: the eight ways correspond to
the eight different possible locations for y[0] in the first line.

We can choose two of the threads and assign them to one of the processors: 0
and 1, or 0 and 2, or 0 and 3. Note that this covers all possibilities. For example,
choosing 2 and 3 and assigning them to one processor is the same as choosing 0
and 1. So there are three possible assignments of threads to processors.

Yes. Suppose threads 0 and 1 share one processor and threads 2 and 3 share
another. Then if y[0], y[1], y[2], and y[3] are in one cache line and y[4],
y[5], y[6], and y[7] are in another, any write by thread 0 or thread 1 won't
invalidate the line storing the data in the cache line of threads 2 and 3. Similarly,
writes by 2 and 3 won’t invalidate the data in the cache of 0 and 1.

For each of the 3 assignments of threads to processors, there are 8 possible as-
signments of y to cache lines. So we get a total of 24.

Note first that if the execution of the threads is serialized (e.g., first thread 0 runs,
then thread 1 runs, etc.), there may not be any false sharing. So we’ll assume
that all four threads are running simultaneously.

If 0 and 1 are assigned to different processors, then any assignment of y that puts
y[1] and y[2] in the same cache line will cause false sharing between 0 and 1.
The only way this can fail to happen is if y[0] and y[1] are in one line and the
remainder of y is another. But when this happens threads 2 and 3 will be on
different processors, and hence there will be false sharing between them.

So 0 and 1 must be assigned to the same processor. Furthermore, if any component
of y with subscript > 3 is assigned to this processor or if any component with
subscript < 4 is assigned to the other processor, there will be false sharing. So
the assignment from the previous part is the only one that doesn’t result in false
sharing.

See the file ex5.15_omp_mat_vect_pad.c.

See the file ex5.15_omp_mat_vect_private.c. Also see the file ex5.15_omp_
mat_vect_scalar.c for an implementation that uses a temporary private scalar
instead of a subvector.

The following table shows the run-times (in seconds) of the versions with different
input matrices. “Orig” denotes the original implementation; “Pad” is the imple-
mentation that pads y with extra storage; “Priv Vect” is the implementation that
has each thread allocate a private copy of its local part of y; and “Priv Scal” is
the implementation that has each thread use a private scalar to store the contents
of a component of y during the computation. In most cases, the private vector

implementation performs the worst. No doubt this is due to the costs of allocat-
ing and freeing the temporary storage, and copying the temporary storage into
y. On the other hand, using a private scalar does as well or better than the other
implementations in almost every case. In particular, it seems to do the best job
in avoiding problems with false sharing when the matrix has order 8 x 8M.

Matrix Order
Threads || Impl 8M x 8 ‘ 8K x 8K ‘ 8 x 8M
1 Orig 0.32 0.26 0.33
Pad 0.33 0.26 0.33
Priv Vect 0.42 0.26 0.33
Priv Scal 0.30 0.25 0.32
2 Orig 0.22 0.19 0.30
Pad 0.22 0.19 0.26
Priv Vect 0.28 0.19 0.26
Priv Scal 0.21 0.18 0.26
4 Orig 0.14 0.12 0.30
Pad 0.14 0.12 0.23
Priv Vect 0.18 0.12 0.25
Priv Scal 0.14 0.12 0.24

16. See the file ex5.16_omp_tokenize_r.c.

