
252 CHAPTER 5 Shared-Memory Programming with OpenMP

Here, my y is a private variable defined by both threads. Now suppose thread 0
executes the statement

x++;

Finally, suppose that thread 1 now executes

my z = x;

where my z is another private variable.
What’s the value in my z? Is it 5? Or is it 6? The problem is that there are

(at least) three copies of x: the one in main memory, the one in thread 0’s cache,
and the one in thread 1’s cache. When thread 0 executed x++, what happened to the
values in main memory and thread 1’s cache? This is the cache coherence prob-
lem, which we discussed in Chapter 2. We saw there that most systems insist that the
caches be made aware that changes have been made to data they are caching. The line
in the cache of thread 1 would have been marked invalid when thread 0 executed x++,
and before assigning my z = x, the core running thread 1 would see that it’s value of
x was out of date. Thus, the core running thread 0 would have to update the copy
of x in main memory (either now or earlier), and the core running thread 1 would
get the line with the updated value of x from main memory. For further details, see
Chapter 2.

The use of cache coherence can have a dramatic effect on the performance of
shared-memory systems. To illustrate this, let’s take a look at matrix-vector multipli-
cation. Recall that if A = (a

ij

) is an m ⇥ n matrix and x is a vector with n components,
then their product y = Ax is a vector with m components, and its ith component y

i

is
found by forming the dot product of the ith row of A with x:

y

i

= a

i0x0 + a

i1x1 + ·· · + a

i,n�1x

n�1.

See Figure 5.5.
So if we store A as a two-dimensional array and x and y as one-dimensional arrays,

we can implement serial matrix-vector multiplication with the following code:

for (i = 0; i < m; i++) {
y[i] = 0.0;

a00 a01 · · · a0,n�1
a10 a11 · · · a1,n�1

...
...

...

a

i0

a

i1

· · · a

i,n�1

...
...

...
a

m�1,0 a

m�1,1 · · · a

m�1,n�1

x

0

x

1

.

.

.

x

n�1

=

y0
y1
...

y

i

= a

i0

x

0

+ a

i1

x

1

+ ·· ·a
i,n�1

x

n�1

...
y

m�1

FIGURE 5.5

Matrix-vector multiplication


