
5.12 Exercises 265

5.10. Recall that all structured blocks modified by an unnamed critical directive
form a single critical section. What happens if we have a number of atomic
directives in which different variables are being modified? Are they all treated
as a single critical section?

We can write a small program that tries to determine this. The idea is to
have all the threads simultaneously execute something like the following code

int i;
double my sum = 0.0;
for (i = 0; i < n; i++)

pragma omp atomic
my sum += sin(i);

We can do this by modifying the code by a parallel directive:

pragma omp parallel num threads(thread count)
{

int i;
double my sum = 0.0;
for (i = 0; i < n; i++)

pragma omp atomic
my sum += sin(i);

}

Note that since my sum and i are declared in the parallel block, each
thread has its own private copy. Now if we time this code for large n when
thread count = 1 and we also time it when thread count > 1, then as long
as thread count is less than the number of available cores, the run-time for
the single-threaded run should be roughly the same as the time for the mul-
tithreaded run if the different threads’ executions of my sum += sin(i) are
treated as different critical sections. On the other hand, if the different exe-
cutions of my sum += sin(i) are all treated as a single critical section, the
multithreaded run should be much slower than the single-threaded run. Write
an OpenMP program that implements this test. Does your implementation of
OpenMP allow simultaneous execution of updates to different variables when
the updates are protected by atomic directives?

5.11. Recall that in C, a function that takes a two-dimensional array argument must
specify the number of columns in the argument list, so it is quite common
for C programmers to only use one-dimensional arrays, and to write explicit
code for converting pairs of subscripts into a single dimension. Modify the
OpenMP matrix-vector multiplication so that it uses a one-dimensional array
for the matrix.

5.12. Download the source file omp mat vect rand split.c from the book’s web-
site. Find a program that does cache profiling (e.g., Valgrind [49]) and compile
the program according to the instructions in the cache profiler documentation.
(For example, with Valgrind you will want a symbol table and full optimiza-
tion. (With gcc use, gcc �g �O2 . . .). Now run the program according to
the instructions in the cache profiler documentation, using input k ⇥ (k · 106),

266 CHAPTER 5 Shared-Memory Programming with OpenMP

(k · 103) ⇥ (k · 103), and (k · 106) ⇥ k. Choose k so large that the number of
level 2 cache misses is of the order 106 for at least one of the input sets
of data.
a. How many level 1 cache write-misses occur with each of the three inputs?
b. How many level 2 cache write-misses occur with each of the three inputs?
c. Where do most of the write-misses occur? For which input data does the

program have the most write-misses? Can you explain why?
d. How many level 1 cache read-misses occur with each of the three inputs?
e. How many level 2 cache read-misses occur with each of the three inputs?
f. Where do most of the read-misses occur? For which input data does the

program have the most read-misses? Can you explain why?
g. Run the program with each of the three inputs, but without using the cache

profiler. With which input is the program the fastest? With which input is
the program the slowest? Can your observations about cache misses help
explain the differences? How?

5.13. Recall the matrix-vector multiplication example with the 8000 ⇥ 8000 input.
Suppose that thread 0 and thread 2 are assigned to different processors. If
a cache line contains 64 bytes or 8 doubles, is it possible for false sharing
between threads 0 and 2 to occur for any part of the vector y? Why? What
about if thread 0 and thread 3 are assigned to different processors; is it possible
for false sharing to occur between them for any part of y?

5.14. Recall the matrix-vector multiplication example with an 8 ⇥ 8,000,000
matrix. Suppose that doubles use 8 bytes of memory and that a cache line is 64
bytes. Also suppose that our system consists of two dual-core processors.
a. What is the minimum number of cache lines that are needed to store the

vector y?
b. What is the maximum number of cache lines that are needed to store the

vector y?
c. If the boundaries of cache lines always coincide with the boundaries of

8-byte doubles, in how many different ways can the components of y be
assigned to cache lines?

d. If we only consider which pairs of threads share a processor, in how
many different ways can four threads be assigned to the processors in our
computer? Here, we’re assuming that cores on the same processor share
cache.

e. Is there an assignment of components to cache lines and threads to proces-
sors that will result in no false-sharing in our example? In other words, is it
possible that the threads assigned to one processor will have their compo-
nents of y in one cache line, and the threads assigned to the other processor
will have their components in a different cache line?

f. How many assignments of components to cache lines and threads to
processors are there?

g. Of these assignments, how many will result in no false sharing?

