Scalable Shared Memory
Programming with OpenMP

and Current Trends ...

Workshop on Large-Scale Computer Simulation
March 9-11, 2001
Aachen / Julich

Dieter an Mey, Christian Terboven
{anmey,terboven}@rz.rwth-aachen.de

Center for Computing and Communication (RZ)

Overview

» OpenMP in a Nutshell

» Scalable OpenMP Programming
» Hybrid Parallelization

» New Features in OpenMP 3.0/ 3.1
» Towards OpenMP 4.0

» Summary

RZ: Dieter an Mey Scalable Shared Memory Programming with OpenMP Folie 2

Overview

» OpenMP in a Nutshell

» Scalable OpenMP Programming
» Hybrid Parallelization

» New Features in OpenMP 3.0/ 3.1
» Towards OpenMP 4.0

» Summary

RZ: Dieter an Mey Scalable Shared Memory Programming with OpenMP Folie 3

OpenMP — What is it about? RWTH

» OpenMP is an Application Progam Interface (API) for
» explicit
» portable
» shared-memory parallel programming
» in C/C++ and Fortran.

» OpenMP consists of
» compiler directives,
» runtime calls and
» environment variables.

» Today it is supported by all major compilers
on Unix and Windows platforms

» GNU, IBM, Oracle, Intel, PGI, Absoft, Lahey/Fujitsu, PathScale, HP, MS, Cray

http://openmp.org/wp/openmp-specifications/

RZ: Dieter an Mey Scalable Shared Memory Programming with OpenMP Folie 4

OpenMP - Organisations RWTH

» OpenMP Architecure Review Board www.openmp.org

» Non-profit corporation which owns the OpenMP brand
and controls the specification

» Directors: Josh Simons (Vmware), Sanjiv Shah (Intel), Koh Hotta (Fujitsu)
» CEO: Larry Meadows (Intel)

» OpenMP Language Committee

» works on the specification

» OpenMP User Community — cOMPunity www.compunity.org

» cOMPunity has one vote in the ARB

» Non-ARB-members are invited to contribute through cOMPunity
» Int‘l Workshop on OpenMP (IWOMP) www.iwomp.org

» Annual OpenMP Workshop organized by cOMPunity and the ARB
» IWOMP 2011, June 13-15 in Chicago, USA

RZ: Dieter an Mey Scalable Shared Memory Programming with OpenMP Folie 5

OpenMP Architecture Review Board

RWTH

19 LANL

18 Development of the OpenMP ARB Membership cOMPunilANL

17 RWTH A4 cOMPuni

16 permanent members (HW or SW vendors) cOMPuni|cOMPuni| NASA RWTH Aa

15 auxiliary members (non-vendors) RWTH AQRWTH A4 EPCC NASA

14 cOMPuni| NASA NASA LLNL (DO[EPCC

13 RWTH AgEPCC EPCC Tl LLNL (DO

12 cOMPuni{cOMPuni| NASA LLNL (DOJ|LLNL (DO|CAPS Tl

11 NASA NASA EPCC Cray Cray Cray CAPS

10 cOMPuni|cOMPunifEPCC EPCC LLNL (DO[|AMD AMD AMD Cray

9 EPCC EPCC LLNL (DO|LLNL (DO[Microsoff Microsof{ Microsof{ Microsoff AMD

8 cOMPuni| LLNL (DO|LLNL (DO|PGI/STM|PGI/STM|PGI/STM|PGI/STM|PGI/STM|PGI/STM|Micro sofi

7 EPCC NEC NEC NEC NEC NEC NEC NEC NEC PGI/STM

5 LLNL (DO|LLNL (DOJ|Fujitsu |Fujitsu [Fujitsu [Fujitsu [Fujitsu [Fujitsu [Fujitsu [Fujitsu |NEC

5 SGI SGl SGl SGl SGl SGl SGl SGl SGl SGl Fujitsu

4 HP HP HP HP HP HP HP HP HP HP HP

3 IBM IBM IBM IBM IBM IBM IBM IBM IBM IBM IBM

2 KAl/Intel| KAl/Intel[KAl/Intel| KAl/Intel| KAl/Intel| KAl/Intel | KAl /Intel | KAl/Intel| KAl /Intel| KAl/Intel | KAl/Intel

1 Sun/OraqSun/Orad Sun/OradSun/OradSun/OraqdSun/OradSun/OradSun/OradSun/OradSun/OraqSun/Orac
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

RZ: Dieter an Mey Scalable Shared Memory Programming with OpenMP Folie 6

OpenMP - History RWTH

» October 1997 OpenMP version 1.0 for Fortran.
» October 1998 OpenMP version 1.0 for C/C++.

» November 2000 OpenMP version 2.0 for Fortran.

» March 2002 OpenMP version 2.0 for C/C++.

» May 2005 OpenMP version 2.5 combined for C/C++ and Fortran
» May 2008 OpenMP Version 3.0 for C/C++ and Fortran

» February 2011 OpenMP Draft Version 3.1 for public comment

RZ: Dieter an Mey Scalable Shared Memory Programming with OpenMP Folie 7

OpenMP in a Nutshell RWTHAACHEN

Execution Model UNIVERSITY
» Fork-join model of parallel execution ‘
Serial Part
» Parallel regions are executed
(redundantly) by a team of threads.
» Work can be distributed among the threads Worker | 1 |
of a team by worksharing constructs Threads :
» like the parallel loop construct, which Eae?i!il
provides powerful scheduling mechanisms. Serial part | *
» Since V3.0 (2008) Tasks (code plus data) parallel
can be enqueued by a task construct and their Region
execution by any thread of the team can be deferred.
» Support for Nested parallelism has been improved with V3. .ume \

RZ: Dieter an Mey Scalable Shared Memory Programming with OpenMP Folie 8

OpenMP in a Nutshell RWTHAACHEN
Memory Model UNIVERSITY

» Shared-Memory model
» All threads share a common address space (shared memory)
» Threads can have private data
» Relaxed memory consistency
» Temporary View ("Caching").
Memory consistency is guaranteed only after synchronization points,
namely implicit and explicit f1ushes

» Each OpenMP barrier includes a flush

» Exit from worksharing constructs include barriers by default (but not entries!)
» Entry to and exit from critical regions include a flush

» Entry to and exit from lock routines (OpenMP API) include a f1ush

Shared Memory

processor

RZ: Dieter an Mey Scalable Shared Memory Programming with OpenMP Folie 9

OpenMP in a Nutshell RWNTH
Parallel Region with a Single Simple Loop

» calculate Pi by numerical integration

1
4
double f (doubl)| H=f de
) (I+x7)

return (double)4.0 / ((double)l.0 + (x*x));:

void computePi () {
double h = (double)l1l.0 / (double)n;

double sum = 0, x;
#pragma omp parallel for schedule(static) \
private (x) shared(h,n) reduction (+:sum)

for (int 1 = 1; 1 <= n; 1i++) {
X = h * ((double)i - (double)0.5);
sum += f (x);

}

myPi = h * sum;

RZ: Dieter an Mey Scalable Shared Memory Programming with OpenMP Folie 10

Overview

» OpenMP in a Nutshell

» Scalable OpenMP Programming
» Hybrid Parallelization

» New Features in OpenMP 3.0/ 3.1
» Towards OpenMP 4.0

» Summary

RZ: Dieter an Mey Scalable Shared Memory Programming with OpenMP Folie 11

Increasing Scalability

Extend Parallel Region, Avoid Barriers

'Somp paralle

1l private(n,m,1,i,j,k,1lijk)

don =1,7
dom= 1,7
!$omp do <{@=m partitioning the long loop
do 1 = LSS (itsub),LEE (itsub)
i = IG(1)
J = JG(1)
k = KG(1)
1ijk = L2IJK (1)
RHS(1,m) = RHS(l1,m)- &
FJAC (1ijk,1m00,m,n) *DQCO (i-1, 3, k,n,NB) *FM0O0 (1) - &
FJAC(1ijk,1p00,m,n)*DQCO(i+1,3,k,n,NB) *FP0O0 (1) - &
FJAC (1ijk,10m0,m,n) *DQCO (i, 3-1,k,n,NB) *FOMO (1) - &
FJAC(1ijk,10p0,m,n)*DQCO(i,J+1,k,n,NB)*FOPO (1) - &
FJAC (1ijk,100m,m,n) *DQCO (i, 3, k-1,n,NB) *FOOM (1) - &
FJAC (1ijk,100p,m,n) *DQCO (i, 3, k+1,n,NB) *FO0P (1)
end do .
'Somp do nowait <@ no barrier, zero overhead
enzniodo Check for correctness !

lomp end parallel

(Intel Inspector, aka Thread Checker)

D. an Mey, S. Schmidt: From a Vector Computer to an SMP-Cluster -
Hybrid Parallelization of the CFD Code PANTA, EWOMP 2000, Edinburgh

RZ: Dieter an Mey Scalable Shared Memory Programming with OpenMP Folie 12

Increasing Scalability RWTHAACHEN
Orphaning: 1 PR includes 69 Parallel Loops UNIVERSITY

» Simulation of the heat flow in a rocket combustion chamber
» Finite Element Method

» OpenMP Parallelization
» 30000 lines of Fortran

» 200 OpenMP directives, 69 parallel loops,

» 1 main parallel region

» ~40x Speed-up on 68 UltraSPARC lli
processors (Sun Fire 15K)

» OpenMP 3.1 Glossary: orphaned construct

» A construct that gives rise to a region whose binding thread set is the current team, but
that is not nested within another construct giving rise to the binding region.

D. an Mey, T. Haarmann: Pushing Loop-Level Parallelization to the Limit , EWOMP 2002, Rome

RZ: Dieter an Mey Scalable Shared Memory Programming with OpenMP Folie 13

Increasing Scalability RWTHAACHEN
Load Imbalances, Nested Parallelism UNIVERSITY

» Analysis of complex and accurate B‘,
fluid dynamics simulations =R\

0,0750,
Ia.osas

*
Y o
’ G0

» Extraction of Critical Points for Virtual Reality
(Location with velocity = 0)

» 25-100% efficiency with 128 threads on
72 UltraSPARC |V dual core processors P~
(Sun Fire E25K) depending on data set

iy,

// Loop over time levels

fpragma omp parallel for num threads (nTimeThreads) schedule (dynamic, 1)
for (curT=1l; curT<=maxT; ++curT) {

// Loop over Blocks

#pragma omp parallel for num threads (nBlockThreads) schedule (dynamic, 1)
for (curB=1l; curB<=maxB; ++curB) {

// Loop over Cells

#pragma omp parallel for num threads (nCellThreads) schedule (guided)
for (curC=1; curC<=maxC; ++curC) {

FindCriticalPoints (curT, curB, curC); // highly adaptive algorithm (bisectioning)
bl o} // huge load imbalances

A. Gerndt, S. Sarholz, et.al.: 3-D Critical Points Computed by Nested OpenMP, SC 2006, Tampa

RZ: Dieter an Mey Scalable Shared Memory Programming with OpenMP Folie 14

Non Uniform Memory Architectures (NUMA) RwEIII!I'IIoEAF?gIEIY\I

Sun Fire V40z
one of the early popular NUMA systems
with 4 dual core x86-64 processors

AMD Opteron 875, dual core, 2.2 GHz

Cache-coherent
HyperTransport
Connections

RZ: Dieter an Mey Scalable Shared Memory Programming with OpenMP Folie 15

Memory Allocation Policy

» If data is setup in serial region, but the computation in parallel regions,
the data to thread affinity may hurt performance very badly !

» Either take care of thread binding explicitly + first-touch parallel initialization

or apply random / round robin data placement

// allocation of arrays
double *a, *b, *c;

a, b, ¢ = (double*) malloc (N*sizeof (double));

// parallel initialization of data where used later on
pragma omp parallel for schedule (static)
for (1i=0;1i<N;i++) al[i]=.=0.0;

// calculation with optimal memory placement and identical schedule
#pragma omp parallel for schedule(static)

for (i=0;1<N;i++) a[i]l=b[i]+scalar*c[i];

RZ: Dieter an Mey Scalable Shared Memory Programming with OpenMP Folie 16

Sparse Matrix-Vector Multiplication on NUMA RWTH

1800.00 | —
) —=— SF 2900 (first touch) ;
4 x dualcore Opteron | — :
2.2 GHz, ccNUMA SF V40z (first touch) -
—=— SF 2900 (ignore localit ?
1200.00 (ig y) || |
(7)) —— i i g
8 1000.00 SF V40z (ignore locality) | | /¢)
[i
T 50000 (12xdua|core UltraSPARC 1.2 GHz, |
= | L flat memory
600.00 - ,/'
—— =]
400.00 -
19,6 Mio nonzeros
200.00 _ 233,334 matrix dimension
225 MB memory footprint
0.00
0 5 10 15 20 25
threads

C. Terboven, et.al.: Parallelization of the C++ Navier-Stokes Solver DROPS with OpenMP , ParCo 2005, Malaga

RZ: Dieter an Mey Scalable Shared Memory Programming with OpenMP Folie 17

Memory Bandwidth on a 4-way Nehalem RWTHAACHEN
EX System (Stream Triad) UNIVERSITY

M serial init ™ serial init + numactl --interleave M parallel init
70000

60000

50000

40000

30000

20000

Memory Bandwidth [MB/s]

10000

0_

1 2 4 8 16 32 48 64

Threads Here, each Nehalem EX processor has 8 cores and 16 threads
which adds up to 32 cores and 64 threads (Intel HyperThreading)

RZ: Dieter an Mey Scalable Shared Memory Programming with OpenMP Folie 18

Virtual Shared Memory Processing
on an Infiniband-Cluster with ScaleMP

» SHEMAT-Suite

» Geothermal Simulation of CO, Storage

» Simulating Groundwater flow, heat transfer and
transport of reactive solutes

» ~10x speed-up with 2nd level of OpenMP

100 o 3
90 e ScaleMP-N’ bound :onhing (m) N Easting (m)
80 (1x8) I
~+ ScaleMP-N, bound B @ .
70 (4x2)
60 - ScaleMP-N, bound
o (8x1)
'g S0 & ScaleMP, bound
3 40 (1x8)
& “¥-ScaleMP, bound
30 (4x2)
20 <-scaleMP, bound E.ON Energy Research Center
8x1 .
10 13_t2°|geD|'[l)a|{pert°W” Cluster (8x1) Inst. of Appl. Geophysics and
Wi -
0 Geothermal Energy,
ser1 2 3 45 6 7 8 9 1011 12 13 14 15 16 . .
Number of Nodes RWTH Aachen University

RZ: Dieter an Mey Scalable Shared Memory Programming with OpenMP Folie 19

Overview

» OpenMP in a Nutshell

» Scalable OpenMP Programming
» Hybrid Parallelization

» New Features in OpenMP 3.0/ 3.1
» Towards OpenMP 4.0

» Summary

RZ: Dieter an Mey Scalable Shared Memory Programming with OpenMP Folie 20

Adding OpenMP to MPI may be beneficial RWTH

2.560s PPN = processes per node
> XNS (M Behr’ CATS’ RWTH) TPP = threads per process / 1EEE/4TPP
: : « 1.280s / =-2 PPN
» Simulation of Hydro-Dynamic / 5 PPN /2 TPP
. i -
forces of the Ohio Dam 640s s,
» OpenMP Parallelization: 3205
» 9 parallel regions 160 s
» Human effort: ~ 6 weeks 805 T Harpertown Cluster = /
» Best MPI performance: s0s - With IB-DDR —
1 2 4 16 / 64 128 Nodes
» 48 nodes, one MPI process per node Best effort
» Best Hybrid performance: MPI only

» 32 nodes, one MPI process per node, 4 threads per process

» 1,5x improvement to MPl-only

RZ: Dieter an Mey Scalable Shared Memory Programming with OpenMP Folie 21

Adding OpenMP to MPI may be beneficial RWTH

» XNS (M. Behr, CATS, RWTH) PPN = processes per node | _, gy, rpp;
? ’ 1280 TPP = threads per process I
» Simulation of Hydro-Dynamic \ PPN2 TPP2
o0 PPN2TPP4
forces of the Ohio Dam O\ \ PPNE TP
. . 320 . PPNSTPPL
» OpenMP Parallelization:
160 N
» 9 parallel regions \ N
80 e R X
» Human effort: ~ 6 weeks \\‘ :
» Best absolute MPI performance: * NS— :7‘
Nehalem EP Cluster \

» 48 nodes, 1 MPI process per node ° withIB-QDR ; & s 1\ 3 a5 o
35,9 sec

Nodes
» Best absolute Hybrid performance:

» 16 nodes, one MPI process per socket, 4 threads per process
33,7 sec

RZ: Dieter an Mey Scalable Shared Memory Programming with OpenMP Folie 22

Overview

» OpenMP in a Nutshell

» Scalable OpenMP Programming
» Hybrid Parallelization

» New Features in OpenMP 3.0/ 3.1
» Towards OpenMP 4.0

» Summary

RZ: Dieter an Mey Scalable Shared Memory Programming with OpenMP Folie 23

New in OpenMP 3.0 RWNTH
Tasks

» Tasks allow to parallelize irregular problems, e.g.
» unbounded loops
» recursive algorithms
» Producer / Consumer patterns
» and more ...

» Task: A unit of work which can be executed later
» Can also be executed immediately

» Tasks are composed of
» Code to execute
» Data environment
» Internal control variables (ICV)

RZ: Dieter an Mey Scalable Shared Memory Programming with OpenMP Folie 24

New in OpenMP 3.0 RWNTH
Tasking Example

» Parallelization of an unbounded while loop

» All loop iterations are independent from each other!
» Number of iterations unknown up front

» would have been unconvenient beforehand (inspector/executor method)
typedef list<double> dList; dList myList;
#pragma omp parallel
{

#pragma omp single
{
dList::iterator it = myList.begin();
while (it !'= myList.end())
{
#pragma omp task firstprivate(it)
{ *it = processListItem(*it); 1}
it++;
}
} // end single
} // end parallel region

RZ: Dieter an Mey Scalable Shared Memory Programming with OpenMP Folie 25

New in OpenMP 3.0 RWTHAACHEN
Improved Support for Nested Parallelism UNIVERSITY

» New runtime functions:
int omp get level ()
// Which current nested level?

int omp get active level()
/ /How many nested active parallel regions (>1 thread)?

int omp get ancestor thread num(int level)
// thread-id of ancestor thread at a given level?

int omp get team size(int level)
// Size of ancestor‘s team at a given level?

» New environment variables (plus corresponding runtime functions)
» OMP_MAX_NESTED LEVEL # maximum number of active parallel regions

» OMP_THREAD_LIMIT # maximum total number of OpenMP threads

RZ: Dieter an Mey Scalable Shared Memory Programming with OpenMP Folie 26

News in OpenMP 3.0 RWTHAACHEN
Miscellaneous UNIVERSITY

p Static schedule

fpragma omp for schedule(static) nowait
for(i = 1; 1 < N; i++) ali] = .. Allowed in OpenMP 3.0 if and only if:
tpragma omp for schedule(static) - Number of iterations is the same
for (1 = 1; 1 < N; i++)c[i] = ! - Chunksize is the same (or not specified)
» Loop collapsing
#pragma omp for collapse (2)€-
for(i = 1; 1 < N; i++)
for(j = 1; j < M; J++)

Iteration space from i-loop and j-loop is
collapsed into a single one, if loops are
perfectly nested and form a rectangular
iteration space.

foo(i, J)7

» New variable types allowed in for-Worksharing

fpragma omp for

for (unsigned int 1 = 0; 1 < N; i++) foo(i);
<

Legal in OpenMP 3.0:

vector v; vector: :iterator(it; - Usigned integer types

fpragma omp for - Pointer types

for (lt = V.begin () ; it < wv. end() H it++) - Random access iterators (C_|_.|_)
foo(it);

RZ: Dieter an Mey Scalable Shared Memory Programming with OpenMP Folie 27

New in OpenMP 3.1 (1/2) RWTH

» Many small corrections and clarifications throughout the whole spec
» A tiny step towards improved NUMA support:

P export OMP PROC BIND=true
please, don‘t move OpenMP threads between processes
P export OMP_ NUM THREADS=4,3,2

control thread number for nested parallelism up front
» Refinements to the OpenMP Tasking Model:

» The taskyield directive denotes a user-defined task scheduling point at

which the current task may be suspended (and resumed later).

» The mergeable clause indicates that the task may have the same data region

as the generating task region.

» The £inal clause denotes all descendent tasks to be executed sequentially in

the same region (immediate execution).

RZ: Dieter an Mey Scalable Shared Memory Programming with OpenMP Folie 28

New in OpenMP 3.1 (2/2) RWTH

» More miscellaneous extensions:
» The atomic construct now accepts the clauses read, write, update and

capture to ensure atomicity of the corresponding operations.

» The firstprivate clause accepts const-qualified types in C/C++ and

intent (in) declared types in Fortran.

» For C/C++ the reduction clause now also accepts min and max reductions
for built-in datatypes, still excluding aggregate types, pointer types, and

reference types.

» The new omp in final () API routine allows to determine whether the calling

task is final.

RZ: Dieter an Mey Scalable Shared Memory Programming with OpenMP Folie 29

Overview

» OpenMP in a Nutshell

» Scalable OpenMP Programming
» Hybrid Parallelization

» New Features in OpenMP 3.0/ 3.1
» Towards OpenMP 4.0

» Summary

RZ: Dieter an Mey Scalable Shared Memory Programming with OpenMP Folie 30

Towards OpenMP 4.0 RWNTHAACHEN
Overall Goals UNIVERSITY

» Error Model
» Interoperability and Composability
» NUMA Support (“Affinity*)

» Accelerators

» Tasking Extensions

RZ: Dieter an Mey Scalable Shared Memory Programming with OpenMP Folie 31

Towards OpenMP 4.0 RWNTH
OpenMP Error Model

» C, C++ and Fortran suggest different approaches:
Error Codes, Error Variables, Call Backs, Exceptions, ...

» First step: Being able to react to an error.

» Current plan: Introduction of a directive to end the execution
of OpenMP constructs and definition of Cancellation points

» #pragma omp done [scope]
» To end the current Parallel Region
» To end the current Worksharing construct
» To end the current Task

» Pre-defined as well as user-defined Cancellation points at which the
execution is guaranteed to end

RZ: Dieter an Mey Scalable Shared Memory Programming with OpenMP Folie 32

Towards OpenMP 4.0 RWNTH
NUMA Support

ssue / Ticket Bample __________________|version_

Controlling the Number of
Threads on Multiple ... Levels

Controlling Thread Binding export OMP_PROC_BIND=TRUE 3.1

Restricting the Processor Set for
Program Execution

export OMP_NUM_THREADS=4,3,2 3.1

setenv OMP_PROCSET 0,2,4,6, 8,10, 12,14 4.x

Controlling the Placement of export OMP_AFFINITY=scatter,,compact
Threads within the Processor Set !Somp parallel affinity(scatter)

Controlling the Initial Placement
of Shared Data

Adapting the Placement of
Shared Data at Runtime

export OMP_MEMORY_PLACEMENT=spread 4.x

ISomp migrate[(variable list)] strategy(..) 4.x?

Distance Matrix ? 4.x7?

RZ: Dieter an Mey Scalable Shared Memory Programming with OpenMP Folie 33

Towards OpenMP 4.0
Accelerators

» Accelerator Subcommittee led by James Beyer (Cray) is very active.

» Extensions to the Execution and Memory Model

» Accelerator Tasks can be created to execute an Accelerator Region

» Data can reside on the Host, the Accelerator Device, or both.

Directives control data transfer

Details are left to the runtime

» Accelerator Execution Region

» Marks the code to be executed on an accelerator

» Accelerator Data Region

» define the data scope to be reused across multiple accelerator regions

RZ: Dieter an Mey Scalable Shared Memory Programming with OpenMP Folie 34

Towards OpenMP 4.0 RWNTH
Tasking Extensions

» Feedback from the user community:

» Tasks need Reductions

» Tasks need Dependencies

» There is currently no way to identify tasks (and it is not intended to
create one), but we need a facility to denote tasks belonging
together

» Current approach: Taskgroup
» Defined as a structured block, an OpenMP Region

» Reductions may be performed inside a Taskgroup

» Current approach regarding dependencies: Expression via
addresses, thus Array Shaping Expressions are necessary.

RZ: Dieter an Mey Scalable Shared Memory Programming with OpenMP Folie 35

Overview

» OpenMP in a Nutshell

» Scalable OpenMP Programming
» Hybrid Parallelization

» New Features in OpenMP 3.0/ 3.1
» Towards OpenMP 4.0

» Summary

RZ: Dieter an Mey Scalable Shared Memory Programming with OpenMP Folie 36

Summary RWTH

» OpenMP scales
» within the node (there is a lot of resource sharing, though)
» if you do it right (extend parallel regions, try to avoid barriers ...)
» Consider data-thread-affinity on NUMA, use OS tools for control
» Beware of data races — there are verification tools (like Intel Inspector)

» OpenMP may even scale across nodes (ScaleMP)

» OpenMP works well together with MPI

» Frequent sweet spot: one MPI process per socket, one thread per core

» Again: Consider data-thread-affinity on NUMA
(Depends on MPI implementation and resource management system)

» OpenMP progresses slowly

» OpenMP is closely tight to into the base languages which makes it tough
» Stay tuned for OpenMP on accelerators

RZ: Dieter an Mey Scalable Shared Memory Programming with OpenMP Folie 37

PPCES, March 21-25, 2010, Aachen RWTH

» Monday, March 21, afternoon www.rz.rwth-aachen.de/ppces

Announcement of the upcoming RWTH Compute Cluster

with renowned Speakers from Bull, Intel, GRS, and Oracle

» Tuesday, March 22 — Thursday, March 24,
Tutorials in Serial, OpenMP and MPI Programming

» Friday, March 25
GPGPU Programming with Michael Wolfe (PGl)

PP
Cle|S

RZ: Dieter an Mey Scalable Shared Memory Programming with OpenMP Folie 38

