HASLab

HIGH-ASSURANCE

‘x‘
SOFTWARE LABORATORY

(AD)SNARK: Improving its Scalability for Larger

Secure Applications

Manuel Barbosa
High Assurance Software Laboratory
INESC TEC and Minho University

Portugal

CPD-MEI, December 2014

Universidade do Minho

21. November 2014, 07:19 Neues Krankenversicherungsmodell

Generali erfindet den elektronischen
Patienten

Wer Sport treibt,
profitiert. Generali-
Kunden miissen ihre
Daten dazu aber per
App an den Versicherer
Ubermitteln. (Foto: AFP)

1 Als erster grofler Versicherer in Europa setzt die Generali-Gruppe kiinftig
auf die elektronische Kontrolle von Fitness, Erndhrung und Lebensstil.

1 Kunden werden Gutscheine und Rabatte bei Prdmien gew#hrt, wenn sie
gesund leben. Dazu tibermitteln sie der Generali {iber eine App regelméfiig
Daten zum Lebensstil.

1 Das Kalkiil dabei: Wer gesund lebt, kostet den Krankenversicherern weniger
Geld. Im Gegenzug erhalten willige Verbraucher Vergilinstigungen.

1 Aus Datenschutzgriinden ist das neue Modell problematisch.

November 21, 2014, 07:19 New health insurance model

Generali invents the electronic patient

Generali customers
need but to transmit
their data via app to the
insurer. (Photo: AFP)

1 As the first major insurer in Europe, the Generali Group has opted for the
electronic control of fitness, nutrition and lifestyle.

1 Customers are coupons and discounts on premiums paid when they live
healthy. For this purpose, they shall provide the Generali a regular app data
lifestyle.

1 The calculus here: Who live healthy, costing the health insurers less money.
In turn, consumers willing to receive benefits.

1 For privacy reasons, the new model is problematic.

Main Reference

To play sport, benefited.

) ADSNARK: Nearly Practical and Privacy-Preserving Proofs on

Authenticated Data

) Joint work with M. Backes, Dario Fiore and R. Reischuk

) Paper available on ePrint

3/19

Concept
Three-party application scenario:

) Data Owner (wants privacy)

) Wishes to keep her data x secret.
) Must reveal partial information f(x) to a Service Provider.

) Service Provider (wants integrity modulo legitimacy)

) Does not trust Data Owner to correctly compute f(x).
) Will only provide service if convinced of f(x)’s correctness.

) Trusted Source (defines legitimacy)

) Authenticates x (could even be the source of x).
) Is trusted by Data Owner not to reveal x.
) Is trusted by Service Provider to vouch for the legitimacy of x.

Data owner should be able to create a proof s.t.
) Service Provider is convinced that f(x) was computed correctly,
) But it does not really learn anything about x;

) Except that x was authenticated by the Trusted Source.

@
4/19 .i. HASLab

Example #1: Health Risk Assessment

Just around the corner (c.f. Generali — Germany):
) Wearable biosensor collects your health information;
) If you give this information to your health insurance company;
) Then risk assessment could lower your premium.
Maps to three-party model:
) You are the Data Owner and want to keep your data private.

) Insurance company is the Service Provider.
) Biosensor can be Trusted Source if:

) Cryptographically authenticates measurements.
) Cannot be tampered with.

You compute premium yourself and provide proof that it was
computed on authenticated readings.

5/19 @)@ HAsLab

Example #2: Smart Metering

Pupular example for privacy preserving data processing:
) Commodity provider installs trusted meter in your house;
) Trusted meter periodically collects readings, which you collect;
) Readings can reveal personal information; still ...

) You need to convince provider that you are paying for your
consumption.

Maps to three-party model:
) You are the Data Owner and want to keep measurements private.

) Commodity provider is the Service Provider.
) (Smart) meter can be Trusted Source if:

) Cryptographically authenticates measurements.
) Cannot be tampered with.

You compute bill yourself and provide proof that it was computed
on authenticated measurements.

@
6/19 .i. HASLab

Example #3: Financial audits
For the people with the money to pay for this technology:
) Your company/bank keeps extensive accounting records;
) Official bookkeeper checks these records and vouches for them;
) Accounting records are business-critical; still . ..
) Sometimes you need to be audited in your accounts.
Maps to three-party model:
) You are the Data Owner and want to keep accounting info private.

) Auditors (maybe the public in general), which need to be convinced
that your accounting is correct, are the Service Provider.

) Official bookkeeper is the natural Trusted Source:

) Already vouches for the data legally;
) Could cryptographically sign data.

Same as before, but a notion of public verifiability (one-to-many
authenticity) arises.

@
7/19 .i. HASLab

Related work / sources of inspiration (incomplete)

Privacy-preserving data processing:

[FKDL13] ZQL: A compiler for privacy-preserving data processing, Cédric Fournet,
Markulf Kohlweiss, George Danezis, and Zhengqgin Luo. USENIX Security, 2013.

Privacy-preserving smart metering, Alfredo Rial and George Danezis, Privacy in the
Electronic Society, 2011.

Homomorphic authentication:

[CF13] Practical homomorphic MACs for arithmetic circuits, Dario Catalano and Dario
Fiore. EUROCRYPT 2013.

Homomorphic signatures for polynomial functions, Dan Boneh and David Mandell
Freeman. EUROCRYPT 2011.

(Nearly-)practical general zk-SNARK protocols:

8/19

[BCGTV13] SNARKS for C: Verifying Program Executions Succinctly and in Zero
Knowledge, Eli Ben-Sasson and Alessandro Chiesa and Daniel Genkin and Eran Tromer,
Madars Virza, CRYPTO 2013

[BCTV14] Succinct Non-Interactive Zero Knowledge for a von Neumann Architecture Eli
Ben-Sasson and Alessandro Chiesa and Eran Tromer, Madars Virza USENIX Security 2014

[GGPR13] Quadratic span programs and succinct NIZKs without PCPs Rosario Gennaro,
Craig Gentry, Bryan Parno, Mariana Raykova EUROCRYPT 2013

[PGHR13] Pinocchio: Nearly Practical Verifiable Computation Bryan Parno, Craig Gentry,
Jon Howell, Mariana Raykova IEEE S&P 2013
@
.i. HASLab

What was lacking

Prior solutions lacked at least one of the following desirable features:

) Suitable for the 3-party model (i.e., allow proofs on secret

authenticated data)

) General (i.e., not tied to a specific computation and apply to arbitrary

computations)

) Scalable (i.e., degrades graciously for computations of increasing

9/19

complexity and growing number of inputs)

Our goal is to achieve all three.

(Slightly more) Formal Model

Actors:

) A prover P (the data owner)
proves computations C(D) on data D
to third parties V (the verifiers).

) The data D is generated and
authenticated by trusted source S.

Security:

) Integrity — V should be convinced
about the correctness of C(D).

) Privacy — V should not learn any
information about D beyond what is
trivially revealed by C(D).

Practicality:

) Data independence — source knows
not what will be computed

) Prover scalability — should not cost
much more than computing C(D)

) Verifier scalability — should cost much
less than computing C(D)

13/19

zk-ADSNARK

Prover P
obtain witness w such that
C(7, w)=0 with #'=(,...,3,)

and compute © = Prove(C,,w, o)

H%mﬁ%/ﬂ \\Q
s

Verifier V

Aoenud

Source

i) oR=F
measure data {z;}, = verify Broof T o g
and sign it f:; using L:(Elﬁ”‘!]—"n) C(;I: =
0, = Auth(sk,L;, z;) Ver(vk,L,n) < &
Remark:
The link between authenticator and verifier is
established via (public) labels a la homomorphic
signatures and MACs.
Each piece of data is authenticated wrt to a unique
label, whose semantics is application specific.
@
@)@ HasLab

Stands for zero-knowledge Succinct Non-interactive ARguments of Knowledge on

Authenticated Data:

) Prove computations on secret authenticated data (or mix with public data).

) Zero knowledge — nothing extra about secret data (and witness) is revealed.

) Succinct — proof is short (constant size for given A) and can be verified
efficiently (linear time in the size of the data for given \)

) Non-interactive — proof can be unilaterally constructed and sent.

) Argument of knowledge on authenticated data — successful verification on
a set of labels implicitly defines an authenticated statement, and implies the
extractability of a witness for it (aka adaptive soundness).

14/19

zk-ADSNARK Syntax

) Global setup:

pp < Setup(1?)
) Generate authentication keys:

(sk, vk, pap) < AuthKG(pp)
) Authenticate one piece of data:

o < Auth(sk, L, x)
) Check authenticity of one piece of data:

T/L < AuthVer(vk, o, L, x)
) Generate proving and verification keys

(EK¢, VK¢) < Gen(pap, C)

) Generate proof

—

7 < Prove(EK¢, X, w, &)
) Verify proof

—

T/1 < Ver(vk,EK¢, L,)

15/19 @)@ HasLab

Implementation

) Starting point: the libsnark zk-SNARK implementation.
https://github.com/scipr-lab/libsnark

) Proof goals are expressed as systems of quadratic equations
(constraint systems).

) Implemented simple translator from Pinocchio circuit format to
libsnark constraint systems.

) Used previously existing circuit construction framework targeting
Pinocchio to construct circuits for concrete applications.
) Extended libsnark with an implementation of our ADSNARK protocol.

) Additional components came from Supercop
(http://bench.cr.yp.to/supercop.html):

) Generic digital signature with extremely fast batch verification.
) PRF built out of optimised AES implementation.

W’f
16/19 @) ® HAsLab

A concrete application

Typical smart metering scenario:

) Smart meter at your home produces a list of authenticated
measurements.

) Price is given by a cumulative cost function, defined by a set of
thresholds.
) For example:

) The policy [(0,2),(3,5),(7,8)]
) Establishes four consumption intervals and their corresponding prices,

)y [0,3] — 2,
) (3,7] =5,
) (7,00) — 8.
) For consumption of 9, the price due is 3 x 2+ 4 x5+ 2 x 8 = 42.
) Our hand-crafted arithmetic circuit for this computation takes
36 X #measurements x #intervals + 1 multiplications.
(Roughly the same number of constraints and variables)

J
17/19 Qi @ HAsLab

Comparison for metering application

Generate Prove Verify

E’” A0 POHR g v AD-PGHR é * AD-PGHR
E . F I ADSNARK g:w - ' ADSNARK E”" I ADSNARK SK
= " ¥ ADSNARK PK
o L - | . I o L L L -— - o | I
! Numb;r of days (48 m“easuvemems zpjer day) ’ Numbe: of days (48 r:easurements:er day) ! Numher7af days (24 :easuremems“per day) “
Generation Time (seconds) Proving Time (seconds) Verification Time (seconds)
Days Mgates | AD-PGHR | ADSNARK | AD-PGHR ADSNARK | AD-PGHR | ADSNARK SK | ADSNARK PK
1 8641 17.929 3.262 21.760 0.622 0.013 0.013 0.042
7 60481 110.164 18.296 151.146 4.463 0.030 0.020 0.219
14 120961 214.457 34.507 306.705 9.078 0.047 0.028 0.421
21 181441 213.647 50.770 444.592 14314 0.062 0.037 0.628
28 | 241921 431.341 65.539 629.003 18.426 0.077 0.043 0.823
Proving Key Size (KBytes) | Verification Key Size (KBytes) Proof size (Kbytes)
Days Mgates | AD-PGHR | ADSNARK | AD-PGHR ADSNARK | AD-PGHR | ADSNARK SK | ADSNARK PK
1 8641 17463 2500 1.9 1.9 0.3 0.4 6.4
7 60481 124274 17 641 109 109 0.3 0.4 42.4
14 120961 248 547 35282 21.3 21.4 0.3 0.4 84.4
21 181441 364661 52923 31.8 31.8 0.3 0.4 126.4
28 | 241921 497094 70563 422 423 0.3 0.4 168.4

18/19 @) ® HAsLab

