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� Joint work with M. Backes, Dario Fiore and R. Reischuk
� Paper available on ePrint
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Concept
Three-party application scenario:

� Data Owner (wants privacy)
� Wishes to keep her data x secret.
� Must reveal partial information f (x) to a Service Provider.

� Service Provider (wants integrity modulo legitimacy)
� Does not trust Data Owner to correctly compute f (x).
� Will only provide service if convinced of f (x)’s correctness.

� Trusted Source (defines legitimacy)
� Authenticates x (could even be the source of x).
� Is trusted by Data Owner not to reveal x .
� Is trusted by Service Provider to vouch for the legitimacy of x .

Data owner should be able to create a proof s.t.
� Service Provider is convinced that f (x) was computed correctly,
� But it does not really learn anything about x ;
� Except that x was authenticated by the Trusted Source.
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Example #1: Health Risk Assessment

Just around the corner (c.f. Generali – Germany):
� Wearable biosensor collects your health information;
� If you give this information to your health insurance company;
� Then risk assessment could lower your premium.

Maps to three-party model:
� You are the Data Owner and want to keep your data private.
� Insurance company is the Service Provider.
� Biosensor can be Trusted Source if:

� Cryptographically authenticates measurements.
� Cannot be tampered with.

You compute premium yourself and provide proof that it was
computed on authenticated readings.
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Example #2: Smart Metering
Pupular example for privacy preserving data processing:

� Commodity provider installs trusted meter in your house;
� Trusted meter periodically collects readings, which you collect;
� Readings can reveal personal information; still . . .
� You need to convince provider that you are paying for your

consumption.
Maps to three-party model:

� You are the Data Owner and want to keep measurements private.
� Commodity provider is the Service Provider.
� (Smart) meter can be Trusted Source if:

� Cryptographically authenticates measurements.
� Cannot be tampered with.

You compute bill yourself and provide proof that it was computed
on authenticated measurements.
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Example #3: Financial audits
For the people with the money to pay for this technology:

� Your company/bank keeps extensive accounting records;
� O�cial bookkeeper checks these records and vouches for them;
� Accounting records are business-critical; still . . .
� Sometimes you need to be audited in your accounts.

Maps to three-party model:
� You are the Data Owner and want to keep accounting info private.
� Auditors (maybe the public in general), which need to be convinced

that your accounting is correct, are the Service Provider.
� O�cial bookkeeper is the natural Trusted Source:

� Already vouches for the data legally;
� Could cryptographically sign data.

Same as before, but a notion of public verifiability (one-to-many
authenticity) arises.

7/19



Related work / sources of inspiration (incomplete)
Privacy-preserving data processing:

[FKDL13] ZQL: A compiler for privacy-preserving data processing, Cédric Fournet,
Markulf Kohlweiss, George Danezis, and Zhengqin Luo. USENIX Security, 2013.
Privacy-preserving smart metering, Alfredo Rial and George Danezis, Privacy in the
Electronic Society, 2011.

Homomorphic authentication:
[CF13] Practical homomorphic MACs for arithmetic circuits, Dario Catalano and Dario
Fiore. EUROCRYPT 2013.
Homomorphic signatures for polynomial functions, Dan Boneh and David Mandell
Freeman. EUROCRYPT 2011.

(Nearly-)practical general zk-SNARK protocols:
[BCGTV13] SNARKs for C: Verifying Program Executions Succinctly and in Zero
Knowledge, Eli Ben-Sasson and Alessandro Chiesa and Daniel Genkin and Eran Tromer,
Madars Virza, CRYPTO 2013
[BCTV14] Succinct Non-Interactive Zero Knowledge for a von Neumann Architecture Eli
Ben-Sasson and Alessandro Chiesa and Eran Tromer, Madars Virza USENIX Security 2014
[GGPR13] Quadratic span programs and succinct NIZKs without PCPs Rosario Gennaro,
Craig Gentry, Bryan Parno, Mariana Raykova EUROCRYPT 2013
[PGHR13] Pinocchio: Nearly Practical Verifiable Computation Bryan Parno, Craig Gentry,
Jon Howell, Mariana Raykova IEEE S&P 2013
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What was lacking

Prior solutions lacked at least one of the following desirable features:
� Suitable for the 3-party model (i.e., allow proofs on secret

authenticated data)
� General (i.e., not tied to a specific computation and apply to arbitrary

computations)
� Scalable (i.e., degrades graciously for computations of increasing

complexity and growing number of inputs)

Our goal is to achieve all three.
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(Slightly more) Formal Model
Actors:

� A prover P (the data owner)
proves computations C(D) on data D
to third parties V (the verifiers).

� The data D is generated and
authenticated by trusted source S.

Security:
� Integrity æ V should be convinced

about the correctness of C(D).
� Privacy æ V should not learn any

information about D beyond what is
trivially revealed by C(D).

Practicality:
� Data independence æ source knows

not what will be computed
� Prover scalability æ should not cost

much more than computing C(D)

� Verifier scalability æ should cost much
less than computing C(D)

Prover
obtain witness w such that 
C(x,w)=0 with x =(x1,...,xn )
and compute π = Prove(C,x,w,σ )

Source
measure data {xk }k

and sign it
σk = Auth(sk,Lk,xk)

{(xk, σk )}k π

Verifier
verify proof π
using L=(L1,...,Ln )
Ver(vk,L,π)

1 Introduction

With the emergence of modern IT services, a growing number of applications relies on privacy-
sensitive personal data for various purposes such as billing, legal compliance, etc. For instance, in
the emerging area of wearable computing, smart devices collect measurable human conditions, and
aggregation of such measures can then be given to doctors or health insurances for various compli-
ance checks. Likewise, in the area of smart metering, energy companies rely on energy consumption
measurements in order to compute the user bills. Or, consider the workflow of general business-
to-business applications where a company receives authenticated data and computes aggregations
which can be verified and embedded into larger protocols. The results of such computations should
later reliably be used by several, mutually untrusted parties.

While these scenarios introduce new and exciting services, they also raise challenges related to
the handling of sensitive data and the correctness of its processing. If services are often interested in
accessing only the aggregations of private or business-sensitive data (not the data itself, e.g., rather
the compliance of medical conditions over a relatively long period, or the bill from the month’s
consumptions is relevant), one may think to shift the performance of this aggregation to users (or
companies) so that the individual privacy-sensitive data (or sensitive business plans) do not get
exposed. However, since users and companies may be selfish, how to be sure that the transmitted
aggregations are correct? Moreover, what is the guarantee that the service learns nothing beyond
the desired aggregation?

The simultaneous achievement of integrity of computations and privacy of sensitive data has
been the goal of several works, especially in the context of zero-knowledge proofs [?]. In this work,
we consider important additional properties for a variety of scenarios (partially sketched above),
and we refine zero-knowledge proofs to fit this setting.

More precisely, we consider the problem in which a trustworthy data source S continuously
provides authenticated data D to some (unreliable) party P. P stores D, and at certain points in
time, it is requested to prove certain statements R(D) about (a portion of) D to third parties V,
which we call the verifiers. We stress that the data D and its size shall not be fixed in advance.
Analogously, the data source shall be independent of P, in particular the source might not know in
advance which statements will be proven about D (e.g., the billing function may change over time).
Since the two parties P and V may not trust each other, we are interested in two main security
properties: (1) integrity, in the sense that V should be convinced about the validity of R(D) and
in particular about the fact that this statement holds for data D that has been generated by the
trusted source S; and (2) privacy, in the sense that V should neither learn nor should it need to
store any information about D beyond what is trivially revealed by R(D). Furthermore, we aim to
achieve the following additional properties: (3) e�ciency, meaning that V’s verification cost should
be much less than the cost of computing the proven statement R(D); (4) unbounded data, in the
sense that the size of the data provided by the source S should not be fixed in advance; (5) data-
independence, in the sense that the data source should be able to provide D to P without knowing
in advance what statements will be proven about D.

1.1 Our Contribution

Our contribution is twofold. First, we fully formalize a model for the above problem by defining
a new cryptographic primitive that we call Succinct Non-Interactive Arguments on Authenticated
Data (or AD�SNARG, for short). Roughly speaking, the notion of AD�SNARGs extends the one of
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Remark:
The link between authenticator and verifier is
established via (public) labels a la homomorphic
signatures and MACs.
Each piece of data is authenticated wrt to a unique
label, whose semantics is application specific.
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zk-ADSNARK

Stands for zero-knowledge Succinct Non-interactive ARguments of Knowledge on

Authenticated Data:
� Prove computations on secret authenticated data (or mix with public data).
� Zero knowledge æ nothing extra about secret data (and witness) is revealed.
� Succinct æ proof is short (constant size for given ⁄) and can be verified

e�ciently (linear time in the size of the data for given ⁄)
� Non-interactive æ proof can be unilaterally constructed and sent.
� Argument of knowledge on authenticated data æ successful verification on

a set of labels implicitly defines an authenticated statement, and implies the
extractability of a witness for it (aka adaptive soundness).
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zk-ADSNARK Syntax
� Global setup:

pp Ω Setup(1⁄)

� Generate authentication keys:
(sk, vk, pap) Ω AuthKG(pp)

� Authenticate one piece of data:
‡ Ω Auth(sk, L, x)

� Check authenticity of one piece of data:
€/‹ Ω AuthVer(vk, ‡, L, x)

� Generate proving and verification keys
(EKC , VKC ) Ω Gen(pap, C)

� Generate proof
fi Ω Prove(EKC , x̨ , w̨ , ‡̨)

� Verify proof
€/‹ Ω Ver(vk, EKC , L̨, fi)
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Implementation

� Starting point: the libsnark zk-SNARK implementation.
https://github.com/scipr-lab/libsnark

� Proof goals are expressed as systems of quadratic equations
(constraint systems).

� Implemented simple translator from Pinocchio circuit format to
libsnark constraint systems.

� Used previously existing circuit construction framework targeting
Pinocchio to construct circuits for concrete applications.

� Extended libsnark with an implementation of our ADSNARK protocol.
� Additional components came from Supercop

(http://bench.cr.yp.to/supercop.html):
� Generic digital signature with extremely fast batch verification.
� PRF built out of optimised AES implementation.
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A concrete application
Typical smart metering scenario:

� Smart meter at your home produces a list of authenticated
measurements.

� Price is given by a cumulative cost function, defined by a set of
thresholds.

� For example:
� The policy [(0, 2), (3, 5), (7, 8)]
� Establishes four consumption intervals and their corresponding prices,

� [0, 3] æ 2,
� (3, 7] æ 5,
� (7, 8) æ 8.

� For consumption of 9, the price due is 3 ◊ 2 + 4 ◊ 5 + 2 ◊ 8 = 42.
� Our hand-crafted arithmetic circuit for this computation takes

36 ◊ #measurements ◊ #intervals + 1 multiplications.
(Roughly the same number of constraints and variables)
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Comparison for metering application
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Generation Time (seconds) Proving Time (seconds) Verification Time (seconds)
Days Mgates AD-PGHR ADSNARK AD-PGHR ADSNARK AD-PGHR ADSNARK SK ADSNARK PK

1 8 641 17.929 3.262 21.760 0.622 0.013 0.013 0.042
7 60 481 110.164 18.296 151.146 4.463 0.030 0.020 0.219

14 120 961 214.457 34.507 306.705 9.078 0.047 0.028 0.421
21 181 441 213.647 50.770 444.592 14.314 0.062 0.037 0.628
28 241 921 431.341 65.539 629.003 18.426 0.077 0.043 0.823

Proving Key Size (KBytes) Verification Key Size (KBytes) Proof size (Kbytes)
Days Mgates AD-PGHR ADSNARK AD-PGHR ADSNARK AD-PGHR ADSNARK SK ADSNARK PK

1 8 641 17 463 2 500 1.9 1.9 0.3 0.4 6.4
7 60 481 124 274 17 641 10.9 10.9 0.3 0.4 42.4

14 120 961 248 547 35 282 21.3 21.4 0.3 0.4 84.4
21 181 441 364 661 52 923 31.8 31.8 0.3 0.4 126.4
28 241 921 497 094 70 563 42.2 42.3 0.3 0.4 168.4

Figure 7. Experimental results showing generation, proving, and verification times for the smart metering application, with the number of measurements
varying from 1 day to 28 days (with 48 measurements per day). For AD-PGHR, the number of multiplication gates is #Mgates + 1000 � #days � 48. For
ADSNARK in the public verification variant, the proof size is equal that of the SNARK proof plus the size of the authentication data (128 bytes per input).

this may not be very important for smart-metering, it shows,
once more, that the public verification time scales very well.

VI. FURTHER RELATED WORK

As we mentioned earlier, our work extends the notion of
succinct non-interactive arguments of knowledge (SNARKs)
[Mic94, BCCT12], which in turn build on (succinct) in-
teractive proofs [GMR89] and interactive arguments [Kil92,
Kil95]. In particular, we focus on the so-called preprocessing
model where the verifier is required to run an expensive
but re-usable key generation phase. In this preprocessing
model, several works [Gro10, Lip12, GGPR13, BCI+13]
proposed efficient realizations of SNARKs, and more recent
works [PGHR13, BSCG+13, BSCTV14] have shown effi-
cient, highly-optimized, implementations that support general-
purpose computations. These schemes can also support zero-
knowledge proofs. It is worth mentioning that all known
SNARKs are either in the random oracle model or rely on non-
standard non-falsifiable assumptions [Nao03]. Assumptions
from this class have been shown [GW11a] likely to be inherent
for SNARKs for NP .

The notion of SNARKs is also related to verifiable com-
putation [GGP10], in which a (computationally weak) client
delegates the computation of a function to a powerful server
and wants to verify the result efficiently. As noted in previous
work, by using SNARKs for NP , it is possible to construct a
verifiable computation scheme, and several works [GGPR13,
PGHR13, BSCG+13] indeed follow this approach. However,
alternative approaches to realizing verifiable computation have
been proposed, notably based on fully homomorphic encryp-
tion [GGP10, CKV10, AIK10] or attribute-based encryption
[PRV12].

Another line of work which is closely related to ours is
the one on homomorphic authentication (comprising both ho-
momorphic/malleable signatures [JMSW02, BF11, ABC+12,
CKLM14] and MACs [GW13, CF13, BFR13]). The main idea
of homomorphic authenticators is that, given a set of messages
(�1, . . . , �n) authenticated using a secret key sk, anyone can
evaluate a program P on such authenticated messages in a
way that the result � � P ({�i}) is again authenticated with
respect to the same key sk (or some public key vk in the case
of signatures). Some works in this area [ABC+12, CKLM14]
considered various privacy notions (called context-hiding)
to model that signatures on the outputs of a computation
should not reveal information about the inputs. In this sense,
AD-SNARKs are closely related to the notion of multi-input
malleable signatures [CKLM14]. However, to the best of our
knowledge, none of these schemes achieves practical efficiency
for arbitrary computations.

The recent work Z� [FL14] aimed to combine the best of
different zero-knowledge proof systems by doing an efficiency
cost analysis to use the best one for every application. In
particular, Z� relies on both ZQL and Pinocchio [PGHR13].
However, when using Pinocchio with authenticated data, Z�
does not provide any guarantee on the integrity of this data,
i.e., on the validity of the corresponding signatures.

VII. MORE APPLICATIONS

In this section we describe three more applications that fit
our three-party model.

Pay-as-you-drive Insurance. Similarly to the smart-
metering scenario, a trusted black-box installed in the client’s
car collects information on the driving habits; the driver

18/19


