Lattice-based

cryptography:

Enumeration of vectors for SVP

Artur Mariano
Institute for Scientific Computing
TU Darmstadt
artur.mariano@sc.tu-darmstadt.de

Agenda

- Lattices
- Lattice-based cryptography (LBC)
- Problems in LBC
- Enumeration algorithms
- The project

Notation

- Vectors are always in bold face and never capitalized
- Might appear in italic due to the MPP equation feature
- Matrices are always in bold face and capitalized
- Might appear in italic due to the MPP equation feature
- Lattices are represented by \wedge and bases by \dot{B}
- ||v\| represents the Euclidean norm of a vector \mathbf{v}
- Distance spanned from the origin to the point given by \mathbf{v}

SCIENTIFIC

Lattices

－A lattice Λ is generated by a basis \dot{B}
－Set of linearly independent vectors；
－Lattice points are linear combinations of vectors in B́ with integer coefficients：

$$
\wedge=\mathbf{B} Z=\sum_{i=0}^{n} \boldsymbol{z}_{i} \boldsymbol{b}_{i}, z_{i} \in \mathbb{Z}
$$

where \mathbf{B} is the matrix with column vectors
（matrices $\mathrm{k} * 1) \boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{n}$ ，for a basis with
n vectors．

Lattices

TECHNISCHE
UNIVERSITȦT
DARMSTADT

- Let us assume a Basis B́ with 2 vectors drawn in the picture on the right side

Lattices

TECHNISCHE
UNIVERSITÄT
DARMSTADT
－Let us assume a Basis B́ with 2 vectors drawn in the picture on the right side
－The same lattice has generally more than one possible basis！

Lattices

- Let us assume a Basis B́ with 2 vectors drawn in the picture on the right side
- The same lattice has generally more than one possible basis!
- Solve problems in reduced (shorted and orthogonal) bases is simpler

Lattices

- Let us assume a Basis B́ with 2 vectors drawn in the picture on the right side
- The same lattice has generally more than one possible basis!
- Solve problems in reduced (shorted and orthogonal) bases is simpler
- Solvers of several problems call basis reduction algorithms before executing

Lattice-based cryptography

TECHNISCHE

- Current cryptographic schemes (e.g. RSA) become vulnerable in the presence of quantum computers
- This poses real risk, as you might guess!
- Lattices benefit from unique, interesting properties for cryptography
- The most proeminent type of quantum-resistant cryptography
- Chances are that this will be the standard type of cryptosystems!
- NP-Hard problems, that are used as the underlying mathematical problems
- The average-case of lattice problems is still hard to solve
- Enables the use of fully homomorphic encryption, the holy grail of crypto

SCIENTIFIC COMPபTING

Lattices in LBC

- Lattices in \mathbb{R}^{n} whose basis B́ has n elements are called full-rank lattices
- The most common type in LBC;
- It is also common to work with integer lattices in LBC
- Whose problems are proved to be as hard as in floating-point lattices
- Easier to work computationally

Problems in LBC

- Lattice-based cryptosystems become vulnerable only if specific lattice problems are solved in a timely manner
- One of which is to find the shortest non-zero vector(s) in a given lattice, referred to as the Shortest Vector Problem (SVP)
- The SVP is known to be NP-hard in random reductions
- No polinomial time algorithms are expected to be found
- The shortest vector problem is, in lattice based cryptography, the most relevant problem:

$$
\text { find }\|\mathbf{s}\|<\|\mathbf{p}\|, \forall \mathbf{p} \in \Lambda, \mathbf{s} \in \Lambda
$$

SCIENTIFIC COMPபTING

Problems in LBC

- It might be enough to solve an approximation of SVP (aSVP) if lattice based cryptosystems are to be broken
- SVP are still of vital importance since they are used in aSVP solvers, as a way of improving the final solution
- There are virtually no aSVP solvers, lattice-reduction algorithms are used instead when solving the aSVP
- and these use SVP solvers as part of their logic!

Science on LBC

TECHNISCHE
UNIVERSITÄT
DARMSTADT
－Relatively recent，yet radiply growing field
－Large number of groups working on LBC－＞a lot of papers published
－Led to the creation of challenges to announce what can be broken

HALL OF FAME

Position	Dimension	Euclidean Norm	Seed	Contestant	Solution	Algorithm	Subm． Date	Approx． Factor
1	138	3077	0	Kenji KASHIWABARA and Tadanori TERUYA	vec	Other	$\begin{gathered} 2014- \\ 12-7 \end{gathered}$	1.03516
2	134	2976	0	Kenji KASHIWABARA and Tadanori TERUYA	vec	Other	$\begin{aligned} & 2014- \\ & 07-13 \end{aligned}$	1.01695
3	132	3012	0	Kenji Kashiwabara and Masaharu Fukase	vec	Other	$\begin{aligned} & 2014- \\ & 04-24 \end{aligned}$	1.03787
4	130	2883	0	Yoshinori Aono and Phong Nguyen	vec．	ENUM，BKZ	$\begin{gathered} 2014- \\ 10-9 \end{gathered}$	0.99871

Enumeration techniques for the SVP*

- Exaustive search algorithms with exponential time complexity but polynomial space complexity
- Enumeration of all possible vectors within a ball around the origin
- Depth search in a tree with the resultant vectors
- Extreme prunning techniques make of these algorithms the faster in practice
- Highly parallel
- Implemented in CPU-chips, GPUs and FPGAs with quasi linear speedups
- No implementations for heterogenous sys., no vectorized code, etc...

Enumeration

$i=1 ;$
$C=\left\|b_{1}\right\|^{2}$;
while true do
computeSqrDist();
if $s_{\text {qrDist }}<C$ then
if $i>1$ then moveDown();
else
updateC(); updateBestVector();
end
else
if $i=n$ then
return bestVector;
else
moveUp();
end
end

Enumeration: what is it all about?

TECHNISCHE

- Let us focus on the algorithm rather than on the math
- The search is mapped onto a (virtual) search tree
- The algorithm goes up and down on the tree, acording to some criteria
- The levels of the tree represent parts of the final vector
- Leaves are complete vectors, but the enumeration might abort at some early point on the branch and move onwards (to another branch or sibling)
- Unbalanced tree: on CPUs, the problem is easy to solve as long as the enumeration tree is correctly balanced among the running threads
- Problem was solved, with moderate success; we refer to [DS10]

SCIENTIFIC
CロMPபTING

Enumeration: GPUs and HetPlats

- If CPU code scales at a moderate rate, GPUs might be suited!
- Trick is to choose operators that can be applied to many (active) nodes
- Hint: a data driven approach might be useful;
- Examples from domains with graphs (attend Cristiano's talk today!)
- And if both work, why not to think about heterogeneous CPU+GPU platforms?
- Frameworks available (e.g. StarPU), although hand tuned code is desired; performance does matter in crypto!

SCIENTIFIC

The project

- Enumeration with pruning is the most efficient technique to solve the SVP
- Suboptimal solutions have been proposed to balance the tree
- Very few details were given on the implementation
- No heterogenous, high performance versions are known
- (1) Implement a parallel version of the algorithm for shared-memory CPUs
- (2) Port that implementation to GPUs
- (3) Implementation of a CPU+GPU version of the code (hand-tuned)

SCIENTIFIC
COMPபTING

Working and living in Darmstadt

- Library for High Performance lattice algorithms
- Lattice Unified Set of Algorithms (LUSA)
- Carry out thesis works in Darmstadt
- Fábio Correia

Questions

Ask everything you want, even if it looks random!

References

TECHNISCHE

- Images based on the presentations of Panagiotis Voulgaris and Fábio Correia
- http://cseweb.ucsd.edu/~pvoulgar/files/
- [M11] Milde B. et al., "A Parallel Implementation of GaussSieve for the Shortest Vector Problem in Lattices", Lecture Notes in Computer Science Volume 6873, 2011, pp 452-458; [A02] Agrell, E.; Eriksson, T.; Vardy, A.; Zeger, K., "Closest point search in lattices," Information Theory, IEEE Transactions on , vol.48, no.8, pp.2201,2214, Aug 2002
- [M10] Micciancio, Daniele and Voulgaris, Panagiotis, "A Deterministic Single Exponential Time Algorithm for Most Lattice Problems Based on Voronoi Cell Computations", Proceedings of the 42Nd ACM Symposium on Theory of Computing, 2010

