predicate register to each
following instruction,

Instruction 1.
Instruction Zi/accordi ng to its path.

1. The branch hastwo
possible outcomes.

3. All instructi orA

4. All instructions

along this path point Instruction 3 along this path point
to predicate register (branch) to predicate register
P1. P2.

¥

* - 5. CPU begins executing *
Instruction 4 instructions from both paths. |!nstruction 7

(P1) (P2)
6. CPU can execute /

instructions from different
pathsin parallel because = [Instruction 8
(P1)

they have no mutual
Instruction 6 Instruction 9
(PD) (P2)

dependencies.
The compiler might rearrange instructions in this order, pairing
instructions 4 and 7, 5 and 8, and 6 and 9 for parallel execution.

Instruction 5

7. When CPU knows the
compare outcome, it discards
results from invalid path.

Instruction 1}Instruction 2|l nstruction 3

Instruction 4}Instruction 7|l nstruction 5

Instruction 8}l nstruction 6§ nstruction 9

(a) Predication

2. The compiler assignsa 1. The compiler scans the

source code and sees an
upcoming load (instruction
8). It removes the load,
inserts a speculative load
here and a speculative
check immediately before
the operation that will use
the data (instruction 9).

I nstruction 1.
I nstruction 2.

Speculative
L oad

Instruction 3
(branch)

2. At run time, this
instruction loads the data
from memory beforeitis
needed. If the load would
trigger an exception, the
CPU postpones reporting
the exception.

5. In effect, I1A-64
has hoisted the load 1
abovethebranch. !

v

Instruction 4
(P1)

3. The compiler
replaced this load with
the speculative load
above, so instruction 8
does not actually
appear in the program.

Instruction 5
(P1)

Instruction 6
(P1)

checksthe validity of
the data. If it isOK,
the CPU does not
report an exception.

4. Thisinstruction —y

v

Instruction 7
(P2)

Instruction 8
(load data)

Speculative
check (P2)

Instruction 9
(P2)

(b) Speculative loading

Figure 13.20 |A-64 Predication and Speculative L oading

