
Instruction 1

Instruction 1

(a) Predication (b) Speculative loading

Figure 13.20 IA-64 Predication and Speculative Loading

Instruction 2 Instruction 3

Instruction 4 Instruction 7 Instruction 5

Instruction 8 Instruction 6 Instruction 9

1. The branch has two
possible outcomes.

2. The compiler assigns a
predicate register to each
following instruction,
according to its path.

3. All instructions
along this path point
to predicate register
P1.

4. All instructions
along this path point
to predicate register
P2.

5. CPU begins executing
instructions from both paths.

6. CPU can execute
instructions from different
paths in parallel because
they have no mutual
dependencies.

7. When CPU knows the
compare outcome, it discards
results from invalid path.

The compiler might rearrange instructions in this order, pairing
instructions 4 and 7, 5 and 8, and 6 and 9 for parallel execution.

Instruction 2

Instruction 3
(branch)

Instruction 7
(P2)

Instruction 4
(P1)

Instruction 8
(P2)

Instruction 5
(P1)

Instruction 9
(P2)

Instruction 6
(P1)

Instruction 1
1. The compiler scans the
source code and sees an
upcoming load (instruction
8). It removes the load,
inserts a speculative load
here and a speculative
check immediately before
the operation that will use
the data (instruction 9).

2. At run time, this
instruction loads the data
from memory before it is
needed. If the load would
trigger an exception, the
CPU postpones reporting
the exception.

5. In effect, IA-64
has hoisted the load
above the branch.

3. The compiler
replaced this load with
the speculative load
above, so instruction 8
does not actually
appear in the program.

4. This instruction
checks the validity of
the data. If it is OK,
the CPU does not
report an exception.

Instruction 2

Instruction 3
(branch)

Speculative
Load

Instruction 7
(P2)

Instruction 4
(P1)

Speculative
check (P2)

Instruction 5
(P1)

Instruction 8
(load data)

Instruction 9
(P2)

Instruction 6
(P1)

