
Chapter 9

Measuring Program Execution Time

One common question people ask is “How fast does Program run on Machine ?” Such a question might

be raised by a programmer trying to optimize program performance, or by a customer trying to decide which

machine to buy. In our earlier discussion of performance optimization (Chapter 5), we assumed this question

could be answered with perfect accuracy. We were trying to establish the cycles per element (CPE) measure

for programs down to two decimal places. This requires an accuracy of 0.1% for a procedure having a CPE

of 10. In this chapter, we address this problem and discover that it is surprisingly complex.

You might expect that making near-perfect timing measurements on a computer system would be straight-

forward. After all, for a particular combination of program and data, the machine will execute a fixed

sequence of instructions. Instruction execution is controlled by a processor clock that is regulated by a

precision oscillator. There are many factors, however, that can vary from one execution of a program to an-

other. Computers do not simply execute one program at a time. They continually switch from one process to

another, executing some code on behalf of one process before moving on to the next. The exact scheduling

of processor resources for one program depends on such factors as the number of users sharing the system,

the network traffic, and the timing of disk operations. The access patterns to the caches depend not just on

the references made by the program we are trying to measure, but on those of other processes executing

concurrently. Finally, the branch prediction logic tries to guess whether branches will be taken or not based

on past history. This history can vary from one execution of a program to another.

In this chapter, we describe two basic mechanisms computers use to record the passage of time—one based

on a low frequency timer that periodically interrupts the processor and one based on a counter that is in-

cremented every clock cycle. Application programmers can gain access to the first timing mechanism by

calling library functions. Cycle timers can be accessed by library functions on some systems, but they

require writing assembly code on others. We have deferred the discussion of program timing until now,

because it requires understanding aspects of both the CPU hardware and the way the operating system

manages process execution.

Using the two timing mechanisms, we investigate methods to get reliable measurements of program perfor-

mance. We will see that timing variations due to context switching tend to be very large and hence must be

eliminated. Variations caused by other factors such as cache and branch prediction are generally managed

by evaluating program operation under carefully controlled conditions. Generally, we can get accurate mea-

surements for durations that are either very short (less than around 10 millisecond) or very long (greater than
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Figure 9.1: Time Scale of Computer System Events. The processor hardware works at a microscopic a

time scale in which events having durations on the order of a few nanoseconds (ns). The OS must deal on a

macroscopic time scale with events having durations on the order of a few milliseconds (ms).

around 1 second), even on heavily loaded machines. Times between around 10 milliseconds and 1 second

require special care to measure accurately.

Much of the understanding of performance measurement is part of the folklore of computer systems. Dif-

ferent groups and individuals have developed their own techniques for measuring program performance, but

there is no widely available body of literature on the subject. Companies and research groups concerned

with getting highly accurate performance measurements often set up specially configured machines that

minimize any sources of timing irregularity, such as by limiting access and by disabling many OS and net-

working services. We want methods that application programmers can use on ordinary machines, but there

are no widely available tools for this. Instead, we will develop our own.

In this presentation we work through the issues systematically. We describe the design and evaluation of a

number of experiments that helped us arrive at methods to achieve accurate measurements on a small set

of systems. It is unusual to find a detailed experimental study in a book at this level. Generally, people

expect the final answers, not a description of how those answers were determined. In this case, however,

we cannot provide definitive answers on how to measure program execution time for an arbitrary program

on an arbitrary system. There are too many variations of timing mechanisms, operating system behaviors,

and runtime environment to have one single, simple solution. Instead, we anticipate that you will need to

run your own experiments and develop your own performance measurement code. We hope that our case

study will help you in this task. We summarize our findings in the form of a protocol that can guide your

experiments.

9.1 The Flow of Time on a Computer System

Computers operate on two fundamentally different time scales. At a microscopic level, they execute instruc-

tions at a rate of one or more per clock cycle, where each clock cycle requires only around one nanosecond

(abbreviated “ns”), or seconds. On a macroscopic scale, the processor must respond to external events
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that occur on time scales measured in milliseconds (abbreviated “ms”), or seconds. For example,

during video playback, the graphics display for most computers must be refreshed every 33 ms. A world-

record typist can only type keystrokes at a rate of around one every 50 milliseconds. Disks typically require

around 10 ms to initiate a disk transfer. The processor continually switches between these many tasks on a

macroscopic time scale, devoting around 5 to 20 milliseconds to each task at a time. At this rate, the user

perceives the tasks as being performed simultaneously, since a human cannot discern time durations shorter

than around 100 ms. Within that time the processor can execute millions of instructions.

Figure 9.1 plots the durations of different event types on a logarithmic scale, with microscopic events having

durations measured in nanoseconds and macroscopic events having durations measured in milliseconds. The

macroscopic events are managed by OS routines that require around 5,000 to 200,000 clock cycles. These

time ranges are measured in microseconds (abbreviated s, where is the Greek letter “mu”). Although

that may sound like a lot of computation, it is so much faster than the macroscopic events being processed

that these routines place only a small load on the processor.

Practice Problem 9.1:

When a user is editing files with a real-time editor such as EMACS, every keystroke generates an interrupt

signal. The operating system must then schedule the editor process to take the appropriate action for this

keystroke. Suppose we had a system with a 1 GHz clock, and we had 100 users running EMACS typing

at a rate of 100 words per minute. Assume an average of 6 characters per word. Assume also that the

OS routine handling keystrokes requires, on average, 100,000 clock cycles per keystroke. What fraction

of the processor load is consumed by all of the keystroke processing?

Note that this is a very pessimistic analysis of the load induced by keyboard usage. It’s hard to imagine

a real-life scenario with so many users typing this fast.

9.1.1 Process Scheduling and Timer Interrupts

External events such as keystrokes, disk operations, and network activity generate interrupt signals that make

the operating system scheduler take over and possibly switch to a different process. Even in the absence of

such events, we want the processor to switch from one process to another so that it will appear to the users

as if the processor is executing many programs simultaneously. For this reason, computers have an external

timer that periodically generates an interrupt signal to the processor. The spacing between these interrupt

signals is called the interval time. When a timer interrupt occurs, the operating system scheduler can choose

to either resume the currently executing process or to switch to a different process. This interval must be set

short enough to ensure that the processor will switch between tasks often enough to provide the illusion of

performing many tasks simultaneously. On the other hand, switching from one process to another requires

thousands of clock cycles to save the state of the current process and to set up the state for the next, and

hence setting the interval too short would cause poor performance. Typical timer intervals range between 1

and 10 milliseconds, depending on the processor and how it is configured.

Figure 9.2(a) illustrates the system’s perspective of a hypothetical 150 ms of operation on a system with a

10 ms timer interval. During this period there are two active processes: A and B. The processor alternately

executes part of process A, then part of B, and so on. As it executes these processes, it operates either in

user mode, executing the instructions of the application program; or in kernel mode, performing operating

system functions on behalf of the program, such as, handling page faults, input, or output. Recall that kernel
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Figure 9.2: System’s vs. Applications View of Time. The system switches from process to process, oper-

ating in either user or kernel mode. The application only gets useful computation done when its process is

executing in user mode.

operation is considered part of each regular process rather than a separate process. The operating system

scheduler is invoked every time there is an external event or a timer interrupt. The occurrences of timer

interrupts are indicated by the tick marks in the figure. This means that there is actually some amount of

kernel activity at every tick mark, but for simplicity we do not show it in the figure.

When the scheduler switches from process A to process B, it must enter kernel mode to save the state of

process A (still considered part of process A) and to restore the state of process B (considered part of process

B). Thus, there is kernel activity during each transition from one process to another. At other times, kernel

activity can occur without switching processes, such as when a page fault can be satisfied by using a page

that is already in memory.

9.1.2 Time from an Application Program’s Perspective

From the perspective of an application program, the flow of time can be viewed as alternating between

periods when the program is active (executing its instructions), and inactive (waiting to be scheduled by the

operating system). It only performs useful computation when its process is operating in user mode. Figure

9.2(b) illustrates how program A would view the flow of time. It is active during the light-colored regions,

when process A is executing in user mode; otherwise it is inactive.

As a way to quantify the alternations between active and inactive time periods, we wrote a program that

continuously monitors itself and determines when there have been long periods of inactivity. It then gener-

ates a trace showing the alternations between periods of activity and inactivity. Details of this program are

described later in the chapter. An example of such a trace is shown in Figure 9.3, generated while running

on a Linux machine with a clock rate of around 550 MHz. Each period is labeled as either active (“A”) or

inactive “I”). The periods are numbered 0 to 9 for identification. For each period, the start time (relative

to the beginning of the trace) and the duration are indicated. Times are expressed in both clock cycles and

milliseconds. This trace shows a total of 20 time periods (10 active and 10 inactive) having a total duration

of 66.9 ms. In this example, the periods of inactivity are fairly short, with the longest being 0.50 ms. Most

of these periods of inactivity were caused by timer interrupts. The process was active for around 95.1% of

the total time monitored. Figure 9.4 shows a graphical rendition of the trace shown in Figure 9.3. Observe

the regular spacing of the boundaries between the activity periods indicated by the gray triangles. These
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A0 Time 0 (0.00 ms), Duration 3726508 (6.776448 ms)

I0 Time 3726508 (6.78 ms), Duration 275025 (0.500118 ms)

A1 Time 4001533 (7.28 ms), Duration 0 (0.000000 ms)

I1 Time 4001533 (7.28 ms), Duration 7598 (0.013817 ms)

A2 Time 4009131 (7.29 ms), Duration 5189247 (9.436358 ms)

I2 Time 9198378 (16.73 ms), Duration 251609 (0.457537 ms)

A3 Time 9449987 (17.18 ms), Duration 2250102 (4.091686 ms)

I3 Time 11700089 (21.28 ms), Duration 14116 (0.025669 ms)

A4 Time 11714205 (21.30 ms), Duration 2955974 (5.375275 ms)

I4 Time 14670179 (26.68 ms), Duration 248500 (0.451883 ms)

A5 Time 14918679 (27.13 ms), Duration 5223342 (9.498358 ms)

I5 Time 20142021 (36.63 ms), Duration 247113 (0.449361 ms)

A6 Time 20389134 (37.08 ms), Duration 5224777 (9.500967 ms)

I6 Time 25613911 (46.58 ms), Duration 254340 (0.462503 ms)

A7 Time 25868251 (47.04 ms), Duration 3678102 (6.688425 ms)

I7 Time 29546353 (53.73 ms), Duration 8139 (0.014800 ms)

A8 Time 29554492 (53.74 ms), Duration 1531187 (2.784379 ms)

I8 Time 31085679 (56.53 ms), Duration 248360 (0.451629 ms)

A9 Time 31334039 (56.98 ms), Duration 5223581 (9.498792 ms)

I9 Time 36557620 (66.48 ms), Duration 247395 (0.449874 ms)

Figure 9.3: Example Trace Showing Activity Periods. From the perspective of an application program,

processor operation alternates between periods when the program is actively executing (italicized) and when

it is inactive. This trace shows a log of these periods for a program over a total duration of 66.9 ms. The

program was active for 95.1% of this time.
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Figure 9.4: Graphical Representation of Trace in Figure 9.3. Timer interrupts are indicated with gray

triangles.
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A48 Time 191514104 (349.40 ms), Duration 5224961 (9.532449 ms)

I48 Time 196739065 (358.93 ms), Duration 247557 (0.451644 ms)

A49 Time 196986622 (359.38 ms), Duration 858571 (1.566382 ms)

I49 Time 197845193 (360.95 ms), Duration 8297 (0.015137 ms)

A50 Time 197853490 (360.97 ms), Duration 4357437 (7.949733 ms)

I50 Time 202210927 (368.91 ms), Duration 5718758 (10.433335 ms)

A51 Time 207929685 (379.35 ms), Duration 2047118 (3.734774 ms)

I51 Time 209976803 (383.08 ms), Duration 7153 (0.013050 ms)

A52 Time 209983956 (383.10 ms), Duration 3170650 (5.784552 ms)

I52 Time 213154606 (388.88 ms), Duration 5726129 (10.446783 ms)

A53 Time 218880735 (399.33 ms), Duration 5217543 (9.518916 ms)

I53 Time 224098278 (408.85 ms), Duration 5718135 (10.432199 ms)

A54 Time 229816413 (419.28 ms), Duration 2359281 (4.304286 ms)

I54 Time 232175694 (423.58 ms), Duration 7096 (0.012946 ms)

A55 Time 232182790 (423.60 ms), Duration 2859227 (5.216390 ms)

I55 Time 235042017 (428.81 ms), Duration 5718793 (10.433399 ms)

Figure 9.5: Example Trace Showing Activity Periods on Loaded Machine. When other active processes

are present, the tracing process is inactive for longer periods of time. This trace shows a log of these periods

for a program over a total duration of 89.8 ms. The process was active for 53.0% of this time.

boundaries are caused by timer interrupts.

Figure 9.5 shows a portion of a trace when there is one other active process sharing the processor. The

graphical rendition of this trace is shown in Figure 9.6. Note that the time scales do not line up, since the

portion of the trace we show in Figure 9.5 started at 349.4 ms into the tracing process. In this example we

can see that while handling some of the timer interrupts, the OS also decides to switch context from one

process to another. As a result, each process is only active around 50% of the time.

Practice Problem 9.2:

This problem concerns the interpretation of the section of the trace shown in Figure 9.5.

A. At what times during this portion of the trace did timer interrupts occur? (Some of these time

points can be extracted directly from the trace, while others must be estimated by interpolation.)

B. Which of these occurred while the tracing process was active, and which while it was inactive?

C. Why are the longest periods of inactivity longer than the longest periods of activity?

D. Based on the pattern of active and inactive periods shown in this trace, what percent of the time

would you expect the tracing process to be inactive when averaged over a longer time scale?

9.2 Measuring Time by Interval Counting

The operating system also uses the timer to record the cumulative time used by each process. This infor-

mation provides a somewhat imprecise measure of program execution time. Figure 9.7 provides a graphic

illustration of how this accounting works for the example of system operation shown in Figure 9.2. In this

discussion, we refer to the period during which just one process executes as a time segment.
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Figure 9.6: Graphical Representation of Activity Periods for Trace in Figure 9.5. Timer interrupts are

indicated by gray triangles
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Figure 9.7: Process Timing by Interval Counting. With a timer interval of 10 ms, every 10 ms segment

is assigned to a process as part of either its user (u) or system (s) time. This accounting provides only an

approximate measure of program execution time.
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9.2.1 Operation

The operating system maintains counts of the amount of user time and the amount of system time used by

each process. When a timer interrupt occurs, the operating system determines which process was active

and increments one of the counts for that process by the timer interval. It increments the system time if the

system was executing in kernel mode, and the user time otherwise. The example shown in Figure 9.7(a)

indicates this accounting for the two processes. The tick marks indicate the occurrences of timer interrupts.

Each is labeled by the count that gets incremented: either Au or As for process A’s user or system time,

or Bu or Bs for process B’s user or system time. Each tick mark is labeled according to the activity to its

immediate left. The final accounting shows that process A used a total of 150 milliseconds: 110 of user time

and 40 of system time. It shows that B used a total of 100 milliseconds: 70 of user time and 30 of system

time.

9.2.2 Reading the Process Timers

When executing a command from the Unix shell, the user can prefix the command with the word “time” to
measure the execution time of the command. This command uses the values computed using the accounting
scheme described above. For example, to time the execution time of program prog with command line
arguments -n 17, the user can simply type the command:

unix> time prog -n 17

After the program has executed, the shell will print a line summarizing the run time statistics, for example,

2.230u 0.260s 0:06.52 38.1% 0+0k 0+0io 80pf+0w

The first three numbers shown in this line are times. The first two show the seconds of user and system

time. Observe how both of these show a 0 in the third decimal place. With a timer interval of 10 ms,

all timings are multiples of hundredths of seconds. The third number is the total elapsed time, given in

minutes and seconds. Observe that the system and user time sum to 2.49 seconds, less than half of the

elapsed time of 6.52 seconds, indicating that the processor was executing other processes at the same time.

The percentage indicates what fraction the combined user and system times were of the elapsed time, e.g.,

. The remaining statistics summarize the paging and I/O behavior.

Programmers can also read the process timers by calling the library function times, declared as follows:

#include <sys/times.h>

struct tms

clock t tms utime; /* user time */

clock t tms stime; /* system time */

clock t tms cutime; /* user time of reaped children */

clock t tms cstime; /* system time of reaped children */

;

clock t times(struct tms *buf);

Returns: number of clock ticks elapsed since system started
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These time measurements are expressed in terms of a unit called clock ticks. The defined constant CLK TCK

specifies the number of clock ticks per second. The data type clock t is typically defined to be a long

integer. The fields indicating child times give the accumulated times used by children that have terminated

and have been reaped. Thus, times cannot be used to monitor the time used by any ongoing children. As a

return value, times returns the total number of clock ticks that have elapsed since the system was started.

We can therefore compute the total time (in clock ticks) between two different points in a program execution

by making two calls to times and computing the difference of the return values.

The ANSI C standard also defines a function clock that measures the total time used by the current process:

#include <time.h>

clock t clock(void);

Returns: total time used by process

Although the return value is declared to be the same type clock t used with the times function, the

two functions do not, in general, express time in the same units. To scale the time reported by clock to

seconds, it should be divided by the defined constant CLOCKS PER SEC. This value need not be the same

as the constant CLK TCK.

9.2.3 Accuracy of Process Timers

As the example illustrated in Figure 9.7 shows, this timing mechanism is only approximate. Figure 9.7(b)

shows the actual times used by the two processes. Process A executed for a total of 153.3 ms, with 120.0 in

user mode and 33.3 in kernel mode. Process B executed for a total of 96.7 ms, with 73.3 in user mode and

23.3 in kernel mode. The interval accounting scheme makes no attempt to resolve time more finely than the

timer interval.

Practice Problem 9.3:

What would the operating system report as the user and system times for the execution sequence illus-

trated below. Assume a 10 ms timer interval.

� ��� �

Practice Problem 9.4:

On a system with a timer interval of 10 ms, some segment of process A is recorded as requiring 70 ms,

combining both system and user time. What are the minimum and maximum actual times used by this

segment?

Practice Problem 9.5:

What would the counters record as the system and user times for the trace shown in Figure 9.3? How

does this compare to the actual time during which the process was active?
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Figure 9.8: Experimental Results forMeasuring Interval CountingAccuracy. The error is unacceptably

high when measuring activities less than around 100 ms (10 timer intervals). Beyond this, the error rate is

generally less than 10% regardless of whether running on lightly loaded (Load 1) or heavily loaded (Load

11) machine.

For programs that run long enough, (at least several seconds), the inaccuracies in this scheme tend to com-

pensate for each other. The execution times of some segments are underestimated while those of others are

overestimated. Averaged over a number of segments, the expected error approaches zero. From a theoretical

perspective, however, there is no guaranteed bound on how far these measurements vary from the true run

times.

To test the accuracy of this timing method, we ran a series of experiments that compared the time

measured by the operating system for a sample computation versus our estimate of what the time would

be if the system resources were dedicated solely to performing this computation. In general, will differ

from for several reasons:

1. The inherent inaccuracies of the interval counting scheme can cause to be either less or greater

than .

2. The kernel activity caused by the timer interrupt consumes 4 to 5% of the total CPU cycles, but these

cycles are not accounted for properly. As can be seen in the trace illustrated in Figure 9.4, this activity

finishes before the next timer interrupt and hence does not get counted explicitly. Instead, it simply
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reduces the number of cycles available for the process executing during the next time interval. This

will tend to increase relative to .

3. When the processor switches from one task to another, the cache tends to perform poorly for a tran-

sient period until the instructions and data for the new task get loaded into the cache. Thus the

processor does not run as efficiently when switching between our program and other activities as it

would if it executed our program continuously. This factor will tend to increase relative to .

We discuss how we can determine the value of for our sample computation later in this chapter.

Figure 9.8 shows the results of this experiment running under two different loading conditions. The graphs

show our measurements of the error rate, defined as the value of as a function of . This

error measure is negative when underestimates and is positive when overestimates . The two

series show measurements taken under two different loading conditions. The series labeled “Load 1” shows

the case where the process performing the sample computation is the only active process. The series labeled

“Load 11” shows the case where 10 other processes are also attempting the same computation. The latter

represents a very heavy load condition; the system is noticeably slow responding to keystrokes and other

service requests. Observe the wide range of error values shown on this graph. In general, only measurements

that are within 10% of the true value are acceptable, and hence we want only errors ranging from around

to .

Below around 100 ms (10 timer intervals), the measurements are not at all accurate due to the coarse-

ness of the timing method. Interval counting is only useful for measuring relatively long computations—

100,000,000 clock cycles or more. Beyond this, we see that the error generally ranges between and ,

that is, up to 10% error. There is no noticeable difference between the two different loading conditions.

Notice also that the errors have a positive bias; the average error for all measurements with ms is

1.04, due to the fact that the timer interrupts are consuming around 4% of the CPU time.

These experiments show that the process timers are useful only for getting approximate values of program

performance. They are too coarse-grained to use for any measurement having duration of less than 100 ms.

On this machine they have a systematic bias, overestimating computation times by an average of around

4%. The main virtue of this timing mechanism is that its accuracy does not depend strongly on the system

load.

9.3 Cycle Counters

To provide greater precision for timing measurements, many processors also contain a timer that operates at

the clock cycle level. This timer is a special register that gets incremented every single clock cycle. Special

machine instructions can be used to read the value of the counter. Not all processors have such counters,

and those that do vary in the implementation details. As a result, there is no uniform, platform-independent

interface by which programmers can make use of these counters. On the other hand, with just a small

amount of assembly code, it is generally easy to create a program interface for any specific machine.
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9.3.1 IA32 Cycle Counters

All of the timings we have reported so far were measured using the IA32 cycle counter. With the IA32

architecture, cycle counters were introduced in conjunction with the “P6” microarchitecture (the PentiumPro

and its successors). The cycle counter is a 64-bit, unsigned number. For a processor operating with a 1 GHz

clock, this counter will wrap around from to only once every seconds, or every 570

years. On the other hand, if we consider only the low order 32 bits of this counter as an unsigned integer, this

value will wrap around every 4.3 seconds. One can therefore understand why the IA32 designers decided to

implement a 64-bit counter.

The IA32 counter is accessed with the rdtsc (for “read time stamp counter”) instruction. This instruction

takes no arguments. It sets register %edx to the high-order 32 bits of the counter and register %eax to the

low-order 32 bits. To provide a C program interface, we would like to encapsulate this instruction within a

procedure:

void access counter(unsigned *hi, unsigned *lo);

This procedure should set location hi to the high-order 32 bits of the counter and lo to the low-order 32

bits. Implementing access counter is a simple exercise in using the embedded assembly feature of

GCC, as described in Section 3.15. The code is shown in Figure 9.9.

Based on this routine, we can now implement a pair of functions that can be used to measure the total

number of cycles that elapse between any two time points:

#include "clock.h"

void start counter();

double get counter();

Returns: number of cycles since last call to start counter

We return the time as a double to avoid the possible overflow problems of using just a 32-bit integer.

The code for these two routines is also shown in Figure 9.9. It builds on our understanding of unsigned

arithmetic to perform the double-precision subtraction and to convert the result to a double.

9.4 Measuring Program Execution Time with Cycle Counters

Cycle counters provide a very precise tool for measuring the time that elapses between two different points in

the execution of a program. Typically, however, we are interested in measuring the time required to execute

some particular piece of code. Our cycle counter routines compute the total number of cycles between a

call to start counter and a call to get counter. They do not keep track of which process uses those

cycles or whether the processor is operating in kernel or user mode. We must be careful when using such a

measuring device to determine execution time. We investigate some of these difficulties and how they can

be overcome.

As an example of code that uses the cycle counter, the routine in Figure 9.10 provides a way to determine

the clock rate of a processor. Testing this function on several systems with parameter sleeptime equal
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code/perf/clock.c

1 /* Initialize the cycle counter */

2 static unsigned cyc_hi = 0;

3 static unsigned cyc_lo = 0;

4

5

6 /* Set *hi and *lo to the high and low order bits of the cycle counter.

7 Implementation requires assembly code to use the rdtsc instruction. */

8 void access_counter(unsigned *hi, unsigned *lo)

9 {

10 asm("rdtsc; movl %%edx,%0; movl %%eax,%1" /* Read cycle counter */

11 : "=r" (*hi), "=r" (*lo) /* and move results to */

12 : /* No input */ /* the two outputs */

13 : "%edx", "%eax");

14 }

15

16 /* Record the current value of the cycle counter. */

17 void start_counter()

18 {

19 access_counter(&cyc_hi, &cyc_lo);

20 }

21

22 /* Return the number of cycles since the last call to start_counter. */

23 double get_counter()

24 {

25 unsigned ncyc_hi, ncyc_lo;

26 unsigned hi, lo, borrow;

27 double result;

28

29 /* Get cycle counter */

30 access_counter(&ncyc_hi, &ncyc_lo);

31

32 /* Do double precision subtraction */

33 lo = ncyc_lo - cyc_lo;

34 borrow = lo > ncyc_lo;

35 hi = ncyc_hi - cyc_hi - borrow;

36 result = (double) hi * (1 << 30) * 4 + lo;

37 if (result < 0) {

38 fprintf(stderr, "Error: counter returns neg value: %.0f\n", result);

39 }

40 return result;

41 }

code/perf/clock.c

Figure 9.9: Code Implementing Program Interface to IA32 Cycle Counter Assembly code is required

to make use of the counter reading instruction.
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code/perf/clock.c

1 /* Estimate the clock rate by measuring the cycles that elapse */

2 /* while sleeping for sleeptime seconds */

3 double mhz(int verbose, int sleeptime)

4 {

5 double rate;

6

7 start_counter();

8 sleep(sleeptime);

9 rate = get_counter() / (1e6*sleeptime);

10 if (verbose)

11 printf("Processor clock rate ˜= %.1f MHz\n", rate);

12 return rate;

13 }

code/perf/clock.c

Figure 9.10: mhz: Determines the clock rate of a processor.

to 1 shows that it reports a clock rate within 1.0% of the rated performance for the processor. This example

clearly shows that our routines measure elapsed time rather than the time used by a particular process.

When our program calls sleep, the operating system will not resume the process until the sleep time of

one second has expired. The cycles that elapse during that time are spent executing other processes.

9.4.1 The Effects of Context Switching

A naive way to measuring the run time of some procedure P is to simply use the cycle counter to time one

execution of P, as in the following code:

1 double time_P()

2 {

3 start_counter();

4 P();

5 return get_counter();

6 }

This could easily yield misleading results if some other process also executes between the two calls to the

counter routines. This is especially a problem if either the machine is heavily loaded, or if the run time

for P is especially long. This phenomenon is illustrated in Figure 9.11. This figure shows the result of

repeatedly measuring a program that computes the sum of an array of 131,072 integers. The times have

been converted into milliseconds. Note that the run times are all over 36 ms, greater than the timer interval.

Two trials were run, each measuring 18 executions of the exact same procedure. The series labeled “Load

1” indicates the run times on a lightly loaded machine, where this is the only process actively running. All

of the measurements are within 3.4% of the minimum run time. The series labeled “Load 4” indicates the

run times when three other processes making heavy use of the CPU and memory system are also running.
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Figure 9.11: Measurements of Long Duration Procedure under Different Loading Conditions On a

lightly loaded system, the results are consistent across samples, but on a heavily loaded system, many of the

measurements overestimate the true execution time.

The first seven of these samples have times within 2% of the fastest Load 1 sample, but others range as

much as 4.3 times greater.

As this example illustrates, context switching causes extreme variations in execution time. If a process is

swapped out for an entire time interval it will fall behind by millions of instructions. Clearly, any scheme

we devise to measure program execution times must avoid such large errors.

9.4.2 Caching and Other Effects

The effects of caching and branch prediction create smaller timing variations than does context switching.

As an example, Figure 9.12 shows a series of measurements similar to those in Figure 9.11, except that

the array is 4 times smaller, yielding execution times of around 8 ms. These execution times are shorter

than the timer interval and therefore the executions are less likely to be affected by context switching. We

see significant variations among the measurements—the slowest is 1.1 times slower the fastest, but none of

these variations are as extreme as would be caused by context switching.

The variations shown in Figure 9.12 are due mainly to cache effects. The time to execute a block of code

can depend greatly on whether or not the data and the instructions used by this code are present in the data

and instruction caches at the beginning of execution.

As an example, we wrote two identical procedures, procA and procB, that are given a pointer of type

double * and set the eight consecutive elements starting at this pointer to 0.0. We measured the number

of clock cycles for various calls to these procedures with three different pointers: b1, b2, and b3. The call

sequence and the resulting measurements are shown in Figure 9.13. The timings vary by almost a factor of

4, even though the calls perform identical computations. There were no conditional branches in this code,

and hence we conclude that the variations must be due to cache effects.
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Figure 9.12: Measurements of Short Duration Procedure under Different Loading Conditions The

variations are not as extreme as they were in Figure 9.11, but they are still unacceptably large.

Measurement Call Cycles

1 procA(b1) 399

2 procA(b2) 132

3 procA(b3) 134

4 procA(b1) 100

5 procB(b1) 317

6 procB(b2) 100

Figure 9.13: Measurement Sequence with Identical Procedures Operating on Identical Data Sets. The

variations in these measurements are due to different miss conditions in the instruction and data caches.
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Practice Problem 9.6:

Let be the number of cycles that would be required by a call to procA or procB if there were no

cache misses. For each computation, the cycles wasted due to cache misses can be apportioned between

the different items needing to be brought into the cache:

The instructions implementing the measurement code (e.g., start counter, get counter,

and so on). Let the number of cycles for this be .

The instructions implementing the procedure being measured (procA or procB). Let the number

of cycles for this be .

The data locations being updated (designated by b1, b2, or b3). Let the number of cycles for this

be .

Based on the measurements shown in Figure 9.13, give estimates of the values of , , , and .

Given the variations shown in these measurements, a natural question to ask is “Which one is right?” Un-

fortunately, the answer to this question is not simple. It depends on both the conditions under which our

code will actually be used as well as the conditions under which we can get reliable measurements. One

problem is that the measurements are not even consistent from one run to the next. The measurement table

shown in Figure 9.13 show the data for just one testing run. In repeated tests, we have seen Measurement

1 range from 317 and 606, and Measurement 5 range from 301 to 326. On the other hand, the other four

measurements only vary by at most a few cycles from one run to another.

Clearly Measurement 1 is an overestimate, because it includes the cost of loading the measurement code

and data structures into cache. Furthermore, it is the most subject to wide variations. Measurement 5

includes the cost of loading procB into the cache. This is also subject to significant variations. In most real

applications, the same code is executed repeatedly. As a result, the time to load the code into the instruction

cache will be relatively insignificant. Our example measurements are somewhat artificial in that the effects

of instruction cache misses were proportionally greater than what would occur in a real application.

To measure the time required by a procedure P where the effects of instruction cache misses are minimized

we can execute the following code:

1 double time_P_warm()

2 {

3 P(); /* Warm up the cache */

4 start_counter();

5 P();

6 return get_counter();

7 }

Executing P once before starting the measurement will have the effect of bringing the code used by P into

the instruction cache.

The code above also minimizes the effects of data cache misses, since the first execution of P will also

have the effect of bringing the data accessed by P into the data cache. For procedures procA or procB, a

measurement by time P warm would yield 100 cycles. This would be the right conditions to measure if

we expect our code to access the same data repeatedly. For some applications, however, we would be more
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likely to access new data with each execution. For example, a procedure that copies data from one region of

memory to another would most likely be called under conditions where neither block is cached. Procedure

time_P_warm would tend to underestimate the execution time for such a procedure. For procA or

procB, it would yield 100 rather than the 132 to 134 measured when the procedure is applied to uncached

data.

To force the timing code to measure the performance of a procedure where none of the data is initially

cached, we can flush the cache of any useful data before performing the actual measurement. The following

procedure does this for a system with caches of no more than 512KB:

code/perf/time p.c

1 /* Number of bytes in the largest cache to be cleared */

2 #define CBYTES (1<<19)

3 #define CINTS (CBYTES/sizeof(int))

4

5 /* A large array to bring into cache */

6 static int dummy[CINTS];

7 volatile int sink;

8

9 /* Evict the existing blocks from the data caches */

10 void clear_cache()

11 {

12 int i;

13 int sum = 0;

14

15 for (i = 0; i < CINTS; i++)

16 dummy[i] = 3;

17 for (i = 0; i < CINTS; i++)

18 sum += dummy[i];

19 sink = sum;

20 }

code/perf/time p.c

This procedure simply performs a computation over a very large array dummy, effectively evicting every-

thing else from the cache. The code has several peculiar features to avoid common pitfalls. It both stores

values into dummy and reads them back so that it will be cached regardless of the cache allocation pol-

icy. It performs a computation using array values and stores the result to a global integer (the declaration

volatile indicates that any update to this variable must be performed), so that a clever optimizing com-

piler will not optimize away this part of the code.

With this procedure, we can get a measurement of P under conditions where its instructions are cached but

its data is not by the following procedure:

1 double time_P_cold()

2 {

3 P(); /* Warm up data caches */

4 clear_cache(); /* Clear data caches */

5 start_counter();
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6 P();

7 return get_counter();

8 }

Of course, even this method has deficiencies. On amachine with a unified L2 cache, procedure clear cache

will cause all instructions from P to be evicted. Fortunately, the instructions in the L1 instruction cache will

remain. Procedure clear cache also evicts much of the runtime stack from the cache, leading to an

overestimate of the time required by P under more realistic conditions.

As this discussion shows, the effects of caching pose particular difficulties for performance measurement.

Programmers have little control over what instructions and data get loaded into the caches and what gets

evicted when new values must be loaded. At best, we can set up measurement conditions that somewhat

match the anticipated conditions of our application by some combination of cache flushing and loading.

As mentioned earlier, the branch prediction logic also influences program performance, since the time

penalty caused by branch instruction is much less when the branch direction and target are correctly pre-

dicted. This logic makes its predictions based on the past history of branch instructions that have been exe-

cuted. When the system switches from one process to another, it initially makes predictions about branches

in the new process based on those executed in the previous process. In practice, however, these effects cre-

ate only minor performance variations from one execution of a program to another. The predictions depend

most strongly on recent branches, and hence the influence by one process on another is very small.

9.4.3 The -Best Measurement Scheme

Although our measurements using cycle timers are vulnerable to errors due to context switching, cache

operation, and branch prediction, one important feature is that the errors will always cause overestimates of

the true execution time. Nothing done by the processor can artificially speed up a program. We can exploit

this property to get reliable measurements of execution times even when there are variances due to context

switching and other effects.

Suppose we repeatedly execute a procedure and measure the number of cycles using either time_P_warm

or time_P_cold. We record the (e.g., 3) fastest times. If we find these measurements agree within

some small tolerance (e.g., 0.1%), then it seems reasonable that the fastest of these represents the true

execution time of the procedure. As an example, suppose for the runs shown in Figure 9.11 we set the

tolerance to 1.0%. Then the fastest six measurements for Load 1 are within this tolerance, as are the fastest

three for Load 4. We would therefore conclude that the run times are 35.98 ms and 35.89 ms, respectively.

For the Load 4 case, we also see measurements clustered around 125.3 ms, and six around 155.8 ms, but we

can safely discard these as overestimates.

We call this approach to measurement the “ -Best Scheme.” It requires setting three parameters:

: The number of measurements we require to be within some close range of the fastest.

: How close the measurements must be. That is, if the measurements in ascending order are labeled

, then we require .

: The maximum number of measurements before we give up.
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Our implementation performs a series of trials, and maintains an array of the fastest times in sorted order.

With each new measurement, it checks whether it is faster than the current one in array position . If so,

it replaces array element and then performs a series of interchanges between adjacent array positions to

move this value to the appropriate position in the array. This process continues until either the error criterion

is satisfied, in which case we indicate that the measurements have “converged,” or we exceed the limit ,

in which case we indicate that the measurements failed to converge.

Experimental Evaluation

We conducted a series of experiments to test the accuracy of the -best measurement scheme. Some issues

we wished to determine were:

1. Does this scheme produce accurate measurements?

2. When and how quickly do the measurements converge?

3. Can the scheme determine the accuracy of its own measurements?

One challenge in designing such an experiment is to know the actual run times of the programs we are trying

to measure. Only then can we determine the accuracy of our measurements. We know that our cycle timer

gives accurate results as long as the computation we are measuring do not get interrupted. The likelihood of

an interrupt is small for computations that are much shorter than the timer interval and when running on a

lightly loaded machine. We exploit these properties to get reliable estimates of true run times.

As our object to measure, we used a procedure that repeatedly writes values to an array of 2,048 integers

and then reads them back, similar to the code for clear cache. By setting the number of repetitions ,

we could create computations requiring a range of times. We first determined the expected run time of this

procedure as a function of , denoted , by timing it for ranging from 1 to 10 (giving times ranging from

0.09 to 0.9 milliseconds), and performing a least squares fit to find a formula of the form . By

using small values of , performing 100 measurements for each value of , and running on a lightly loaded

system we were able to get a very accurate characterization of . Our least squares analysis indicated

that the formula (in units of clock cycles) fits this data with a maximum error less

than 0.04%. This gave us confidence in our ability to accurately predict the actual computation time for the

procedure as a function of .

We then measured performance using the -best scheme with parameters , , and .

We did this for a number of values of to get expected run times in a range from 0.27 to 50 milliseconds.

For each of the resulting measurements we computed the measurement error as

. Figure 9.14 shows an experimental validation of the -best scheme on an Intel

Pentium III running Linux. In this figure we show the measurement error as a function of ,

where we show in units of milliseconds. Note that we show on a logarithmic scale; each

horizontal line represents an order of magnitude difference in measurement error. In order to be accurate

within 1% we must have an error below . We do not attempt to show any errors smaller than (i.e.,

0.1%), since our testing setup does not provide high enough precision for this.

The three series indicate the errors under three different loading conditions. Observe that in all three cases

the measurements for run times shorter than around 7.5 ms were very accurate. Thus, our scheme can be
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Figure 9.14: Experimental Validation if -Best Measurement Scheme on Linux System We can con-

sistently obtain very accurate measurements (around 0.1% error) for execution times up to around 8 ms.

Beyond this, we encounter a systematic overestimate of around 4 to 6% on a lightly loaded machine and

very poor results on a heavily loaded machine.
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used to measure relatively short execution times even on a heavily loaded machine. Series “Load 1” indicates

the case where there is only one active process. For execution times above 10 ms, the measurements

consistently overestimate the computation times by around 4 to 6%. These overestimates are due to the

time spent handling timer interrupts. They are consistent with the trace shown in Figure 9.3, showing that

even on a lightly loaded machine, an application program can execute for only 95 to 96% of the time. Series

“Load 2” and “Load 11” show the performance when other processes are actively executing. In both cases,

the measurements become hopelessly inaccurate for execution times above around 7 ms. Note that an error

of 1.0 means that is twice , while an error of 10.0 means that is eleven times greater than .

Evidently, the operating system schedules each active process for one time interval. When processes are

active, each one only gets th of the processor time.

From these results, we conclude that the -best scheme provides accurate results only for very short com-

putations. It is not really good enough for measuring execution times longer than around 7 ms, especially in

the presence of other active processes.

Unfortunately, we found that our measurement program could not reliably determine whether or not it

had obtained an accurate measurement. Our measurement procedure computes a prediction of its error as

, where is the th smallest measurement. That is, it computes how well it achieves

our convergence criterion. We found these estimates to be wildly optimistic. Even for the Load 11 case,

where the measurements were off by a factor of 10, the program consistently estimated its error to be less

than .

Setting the value of

In our earlier experiments, we arbitrarily chose a value of 3 for the parameter , determining the number of

measurements we require to be within a small factor of the fastest in order to terminate. To more carefully

evaluate the effect of this factor, we performed a series of measurements using values of ranging from 1

to 5, as shown in Figure 9.15. We performed these measurements for execution times ranging up to 9 ms,

since this is the upper limit of times for which our scheme can get useful results.

When we have , the procedure returns after making a single measurement. This can yield highly

erratic results, especially when the machine is heavily loaded. If a timer interrupt happens to occur, the

result is extremely inaccurate. Even without such a catastrophic event, the measurements will be subject to

many sources of inaccuracy. Setting to 2 greatly improves the accuracy. For execution times less than

5 ms, we consistently get accuracy better than 0.1%. Setting even higher gives better results, both in

consistency and accuracy, up to a limit of around 8 ms. These experiments show that our initial guess of

is a reasonable choice.

Compensating for Timer Interrupt Handling

The timer interrupts occur in a predictable way and cause a large systematic error in our measurements for

execution times over around 7 ms. It would be good to remove this bias by subtracting from the measured

run time for a program an estimate of the time spent handling timer interrupts. This requires determining

two factors.
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Figure 9.15: Effectiveness of -best scheme for different values of . must be at least 2 to have

reasonable accuracy. Values greater than 2 help on heavily loaded systems as the program times approach

the timer interval.
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Figure 9.16: Measurements with Compensation for Timer Interrupt Overhead This approach greatly

improves the accuracy of longer duration measurements on a lightly loaded machine.

1. We must determine how much time is required to handle a single timer interrupt. To preserve the

property that we never underestimate the execution time of the procedure, we should determine the

minimum number of clock cycles required to service a timer interrupt. That way we will never

overcompensate.

2. We must determine how many timer interrupts occur during the period we are measuring.

Using a method similar to that used to generate the traces shown in Figures 9.3 and 9.5, we can detect

periods of inactivity and determine their duration. Some of these will be due to timer interrupts, and some

will be due to other system events. We can determine whether a timer interrupt has occurred by using the

times procedure, since the value it returns will be increase one tick each time a timer interrupt occurs.

We conducted such an evaluation for 100 periods of inactivity and found that the minimum timer interrupt

processing period required 251,466 cycles. To determine the number of timer interrupts that occur during

the program we are measuring, we simply call the times function twice—once before and once after the

program, and then compute their difference.

Figure 9.16 shows the results obtained by this revised measurement scheme. As the figure illustrates, we

can now get very accurate (within 1.0%) measurements on a lightly loaded machine, even for programs that

execute for multiple time intervals. By removing the systematic error of timer interrupts, we now have a

very reliable measurement scheme. On the other hand, we can see that this compensation does not help for

programs running on heavily loaded machines.
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Figure 9.17: Experimental Validation if -Best Measurement Scheme on IA32/Linux System with

Older Version of the Kernel. On this system we could get more accurate measurements even for programs

with longer execution times, especially on lightly loaded machine.

Evaluation on Other Machines

Since our scheme depends heavily on the scheduling policy of the operating system, we also ran experiments

on three other system configurations:

1. Intel Pentium III running older version (2.0.36 vs. 2.2.16) of the Linux kernel.

2. Intel Pentium II running Windows-NT. Although this system uses an IA32 processor, the operating

system is fundamentally different from Linux.

3. Compaq Alpha running Tru64 Unix. This uses a very different processor, but the operating system is

similar to Linux.

As Figure 9.17 indicates, the performance characteristics under an older version of Linux are very different.

On a lightly loaded machine, the measurements are within 0.2% accuracy for programs of almost arbitrary

duration. We found that the processor spends only around 3500 cycles processing a timer interrupt with this

version of Linux. Even on a heavily loaded machine, it will allow processes to run up to around 180 ms

at a time. This experiment shows that the internal details of the operating system can greatly affect system

performance and our ability to obtain accurate measurements.

Figure 9.18 shows the results on the Windows-NT system. Overall, the results are similar to those for

the older Linux system. For short computations, or on a lightly loaded machine, we could get accurate
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Figure 9.18: Experimental Validation of -Best Measurement Scheme on Windows-NT System. On a

lightly loaded system, we can consistently obtain accurate measurements (around 1.0% error). On a heavily

loaded system, the accuracy becomes very poor for measurements longer than around 48 ms.
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Figure 9.19: Experimental Validation if -Best Measurement Scheme on Compaq Alpha System. For

a lightly loaded system, we can consistently obtain accurate ( 1.0% error) measurements. For a heavily

loaded system, durations beyond around 10 ms cannot be measured accurately.

measurements. In this case, our accuracies were around 0.01 (i.e., 1.0%), rather than 0.001. Still, this is

good enough for most applications. In addition, our threshold between reliable and unreliable measurements

on a heavily loaded machine was around 48 ms. One interesting feature is that we were sometimes able

to get accurate measurements on a heavily loaded machine even for computations ranging up to 245 ms.

Evidently, the NT scheduler will sometimes allow processes to remain active for longer durations, but we

cannot rely on this property.

The Compaq Alpha results are shown in Figure 9.19. Again, we find that on a lightly loaded machine,

programs of almost arbitrary duration can be measured with an error of less than 1%. On a heavily loaded

machine, only programs with durations less than around 10 ms can be measured accurately.

Practice Problem 9.7:

Suppose we wish to measure a procedure that requires milliseconds. The machine is heavily loaded

and hence will not allow our measurement process to run more than 50 ms at a time.

A. Each trial involves measuring one execution of the procedure. What is the probability this trial will

be allowed to run to completion without being swapped out, assuming it starts at some arbitrary

point within the 50 ms time segment? Express your answer as a function of , considering all

possible values of .

B. What is the expected number of trials required so that three of them are reliable measurements of

the procedure, i.e., each runs within a single time segment? Express your answer as a function of

. What values do you predict for and ?
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Observations

These experiments demonstrate that the -best measurement scheme works fairly well on a variety of

machines. On lightly loaded processors, it consistently gets accurate results on most machines, even for

computations with long durations. Only the newer version of Linux incurs a sufficiently high timer interrupt

overhead to seriously affect the measurement accuracy. For this system, compensating for this overhead

greatly improves the measurement accuracy.

On heavily loaded machines, getting accurate measurements becomes difficult as execution times become

longer. Most systems have some maximum execution time beyond which the measurement accuracy be-

comes very poor. The exact value of this threshold is highly system dependent, but typically ranges between

10 and 200 milliseconds.

9.5 Time-of-Day Measurements

Our use of the IA32 cycle counter provides high-precision timing measurements, but it has the drawback

that it only works on IA32 systems. It would be good to have a more portable solution. We have seen that

the library functions times and clock are implemented using interval counters and hence are not very

accurate.

Another possibility is to use the library function gettimeofday. This function queries the system clock

to determine the current date and time.

#include "time.h"

struct timeval

long tv sec; /* Seconds */

long tv usec; /* Microseconds */

int gettimeofday(struct timeval *tv, NULL);

Returns: 0 for success, -1 for failure

The function writes the time into a structure passed by the caller that includes one field in units of seconds,

and another field in units of microseconds. The first field encodes the total number of seconds that have

elapsed since January 1, 1970. (This is the standard reference point for all Unix systems.) Note that

the second argument to gettimeofday should simply be NULL on Linux systems, since it refers to an

unimplemented feature for performing time zone correction.

Practice Problem 9.8:

On what date will the tv sec field written by gettimeofday become negative on a 32-bit machine?

As shown in Figure 9.20, we can can use gettimeofday to create a pair of timer functions start timer

and get timer that are similar to our cycle-timing functions, except that they measure time in seconds

rather than clock cycles.
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code/perf/tod.c

1 #include <sys/time.h>

2 #include <unistd.h>

3

4 static struct timeval tstart;

5

6 /* Record current time */

7 void start_timer()

8 {

9 gettimeofday(&tstart, NULL);

10 }

11

12 /* Get number of seconds since last call to start_timer */

13 double get_timer()

14 {

15 struct timeval tfinish;

16 long sec, usec;

17

18 gettimeofday(&tfinish, NULL);

19 sec = tfinish.tv_sec - tstart.tv_sec;

20 usec = tfinish.tv_usec - tstart.tv_usec;

21 return sec + 1e-6*usec;

22 }

code/perf/tod.c

Figure 9.20: Timing Procedures Using Unix Time of Day Clock. This code is very portable, but its

accuracy depends on how the clock is implemented.

System Resolution ( s) Latency ( s)

Pentium II, Windows-NT 10,000 5.4

Compaq Alpha 977 0.9

Pentium III Linux 1 0.9

Sun UltraSparc 2 1.1

Figure 9.21: Characteristics of gettimeofday Implementations. Some implementations use interval

counting, while others use cycle timers. This greatly affects the measurement precision.
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The utility of this timing mechanism depends on how gettimeofday is implemented, and this varies from

one system to another. Although the fact that the function generates a measurement in units of microseconds

looks very promising, it turns out that the measurements are not always that precise. Figure 9.21 shows the

result of testing the function on several different systems. We define the resolution of the function to be the

minimum time value the timer can resolve. We computed this by repeatedly calling gettimeofday until

the value written to the first argument changed. The resolution is then the number of microseconds by which

it changed. As indicated in the table, some implementations can actually resolve times at a microsecond

level, while others are much less precise. These variations occur, because some systems use cycle counters

to implement the function, while others use interval counting. In the former case, the resolution can be very

high—potentially higher than the 1 microsecond resolution provided by the data representation. In the latter

case, the resolution will be poor—no better than what is provided by functions times and clock.

Figure 9.21 also shows the latency required by a call to get timer on various systems. This property

indicates the minimum time required for a call to the function. We computed this by repeatedly calling the

function until one second had elapsed and dividing 1 by the number of calls. As can be seen, this function

requires around 1-microsecond on most systems, and several microseconds on others. By comparison, our

procedure get counter requires only around 0.2 microseconds per call. In general, system calls involve

more overhead than ordinary function calls. This latency also limits the precision of our measurements.

Even if the data structure allowed expressing time in units with higher resolution, it is unclear how much

more precisely we could measure time when each measurement incurs such a long delay.

Figure 9.22 shows the performance we get from an implementation of the -best measurement scheme

using gettimeofday rather than our own functions to access the cycle counter. We show the results

on two different machines to illustrate the effect of the time resolution on accuracy. The measurements

on a Windows-NT system show characteristics similar to those we found for Linux using times (Figure

9.8). Since gettimeofday is implemented using the process timers, the error can be negative or positive,

and it is especially erratic for short duration measurements. The accuracy improves for longer durations,

to the point where the error is less than 2.0% for durations greater than 200 ms. The measurements on

a Linux system give results similar to those seen when making direct use of cycle counters. This can be

seen by comparing the measurements to the Load 1 results in Figure 9.14 (without compensation) and in

Figure 9.16 (with compensation). Using compensation, we can achieve better than 0.04% accuracy, even

for measurements as long as 300 ms. Thus, gettimeofday performs just as well as directly accessing

the cycle counter on this machine.

9.6 Putting it Together: An Experimental Protocol

We can summarize our experimental findings in the form of a protocol to determine how to answer the

question “How fast does Program run on Machine ?”

If the anticipated run times of are long (e.g., greater than 1.0 second), then interval counting should

work well enough and be less sensitive to processor load.

If the anticipated run times of are in a range of around 0.01 to 1.0 seconds, then it is essential to

perform measurements on a lightly loaded system, and to use accurate, cycle-based timing. We should
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Figure 9.22: Experimental Validation if -Best Measurement Scheme Using gettimeofday Func-

tion. Linux implements this function using cycle counters and hence achieve the same accuracy as do our

own timing routines. Windows-NT implements this function using interval counting, and hence the accuracy

is low, especially for small duration measurements.
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perform tests of the gettimeofday library function to determine whether its implementation on

machine is cycle based or interval based.

– If the function is cycle based, then use it as the basis for the -best timing function.

– If the function is interval based, then we must find some method of using the machine’s cycle

counters. This may require assembly language coding.

If the anticipated run times of are less than around 0.01 second, then accurate measurements can be

performed even on a heavily loaded system, as long as it is uses cycle-based timing. We then proceed

in implementing a -best timing function using either gettimeofday or by direct access to the

machine’s cycle counter.

9.7 Looking into the Future

There are several features that are being incorporated into systems that will have significant impact on

performance measurements.

Process-specific cycle timing. It is relatively easy for the operating system to manage the cycle counter

so that it indicates the elapsed number of cycles for a specific process. All that is required is to store

the count as part of the process’ state. Then when the process is reactivated, the cycle counter is set

to the value it had when the process was last deactivated, effectively freezing the counter while the

process is inactive. Of course, the counter will still be affected by the overhead of kernel operation

and by cache effects, but at least the effects of other processes will not be as severe. Already some

systems support this feature. In terms of our protocol, this will allow us to use cycle-based timing

to get accurate measurements of durations greater than around 0.01 second, even on heavily loaded

systems.

Variable Rate Clocks. In an effort to reduce power consumption, future systems will vary the clock

rate, since power consumption is directly proportional to the clock rate. In that case, we will not

have a simple conversion between clock cycles and nanoseconds. It even becomes difficult to know

which unit should be used to express program performance. For a code optimizer, we gain more

insight by counting cycles, but for someone implementing an application with real-time performance

constraints, actual run times are more important.

9.8 Life in the Real World: An Implementation of the -Best Measurement

Scheme

We have created a library function fcyc that uses the -best scheme to measure the number of clock cycles

required by a function f.
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#include "clock.h"

#include "fcyc.h"

typedef void (*test funct)(int *);

double fcyc(test funct f, int *params);

Returns: number of cycles used by f running params

The parameter params is a pointer to an integer. In general, it can point to an array of integers that form

the parameters of the function being measured. For example, when measuring the lower-case conversion

functions lower1 and lower2, we pass as a parameter a pointer to a single int, which is the length of

the string to be converted. When generating the memory mountain (Chapter 6, we pass a pointer to an array

of size two containing the size and the stride.

There are a number of parameters that control the measurement, such as the values of , , and , and

whether or not to clear the cache before each measurement. These parameters can be set by functions that

are also in the library. See the file fcyc.h for details.

9.9 Summary

We have seen that computer systems have two fundamentally different methods of recording the passage of

time. Timer interrupts occur at a rate that seems very fast when viewed on a macroscopic scale but very

slow when viewed on a microscopic scale. By counting intervals, the system can get a very rough measure

of program execution time. This method is only useful for long-duration measurements. Cycle counters are

very fast, giving good measurements on a microscopic scale. For cycle counters that measure absolute time,

the effects of context switching can induce error ranging from small (on a lightly loaded system) to very

large (on a heavily loaded system). Thus, no scheme is ideal. It is important to understand the accuracy

achievable on a particular system.

Through this effort to devise an accurate timing scheme and to evaluate its performance on a number of

different systems, we have learned some important lessons:

Every system is different. Details about the hardware, operating system, and library function imple-

mentations can have a significant effect on what kinds of programs can be measured and with what

accuracy.

Experiments can be quite revealing. We gained a great deal of insight into the operating system

scheduler running simple experiments to generate activity traces. This led to the compensation scheme

that greatly improves accuracy on a lightly loaded Linux system. Given the variations from one system

to the next, and even from one release of the OS kernel to the next, it is important to be able to analyze

and understand the many aspects of a system that affect its performance.

Getting accurate timings on heavily loaded systems is especially difficult. Most systems researchers

do all of their measurements on dedicated benchmark systems. They often run the system with many

OS and networking features disabled to reduce sources of unpredictable activity. Unfortunately, or-

dinary programmers to not have this luxury. They must share the system with other users. Even on
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heavily loaded systems, our -best scheme is reasonably robust for measuring durations shorter than

the timer interval.

The experimental setup must control some sources of performance variations. Cache effects can

greatly affect the execution time for a program. The conventional technique is to make sure that the

cache is flushed of any useful data before the timing begins, or else that it is loaded with any data that

would typically be in the cache initially.

Through a series of experiments, we were able to design and validate the -best timing scheme, where

we make repeated measurements until the fastest are within some close range to each other. On some

systems, we can make measurements using the library functions for finding the time of day. On other

systems, we must access the cycle counters via assembly code.

Bibliographic Notes

There is surprisingly little literature on program timing. Stevens’ Unix programming book [77] documents

all of the different library functions for program timing. Wadleigh and Crawford’s book on software opti-

mization [81] describe code profiling and standard timing functions.

Homework Problems

Homework Problem 9.9 [Category 2]:

Determine the following based on the trace shown in Figure 9.3. Our program estimated the clock rate as

549.9 MHz. It then computed the millisecond timings in the trace by scaling the cycle counts. That is, for

a time expressed in cycles as , the program computed the millisecond timing as . Unfortunately,

the program’s method of estimating the clock rate is imperfect, and hence some of the millisecond timings

are slightly inaccurate.

A. The timer interval for this machine is 10 ms. Which of the time periods above were initiated by a

timer interrupt?

B. Based on this trace, what is the minimum number of clock cycles required by the operating system to

service a timer interrupt?

C. From the trace data, and assuming the timer interval is exactly 10.0 ms, what can you infer as the

value of the true clock rate?

Homework Problem 9.10 [Category 2]:

Write a program that uses library functions sleep and times to determine the approximate number of

clock ticks per second. Try compiling the program and running it on multiple systems. Try to find two

different systems that produce results that differ by at least a factor of two.
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Homework Problem 9.11 [Category 1]:

We can use the cycle counter to generate activity traces such as was shown in Figures 9.3 and 9.5. Use the

functions start counter and get counter to write a function:

#include "clock.h"

int inactiveduration(int thresh);

Returns: Number of inactive cycles

This function continually checks the cycle counter and detects when two successive readings differ by more

than thresh cycles, an indication that the process has been inactive. Return the duration (in clock cycles)

of that inactive period.

Homework Problem 9.12 [Category 1]:

Suppose we call function mhz (Figure 9.10) with parameter sleeptime equal to 2. The system has a

10 ms timer interval. Assume that sleep is implemented as follows. The processor maintains a counter

that is incremented by one every time a timer interrupt occurs. When the system executes sleep( ), the

system schedules the process to be restarted when the counter reaches , where is the current value

of the counter.

A. Let denote the time that our process is inactive due to the call to sleep. Ignoring the various

overheads of function calls, timer interrupts, etc., what range of values can have?

B. Suppose a call to mhz yields 1000.0. Again ignoring the various overheads, what is the possible range

of the true clock rate?


