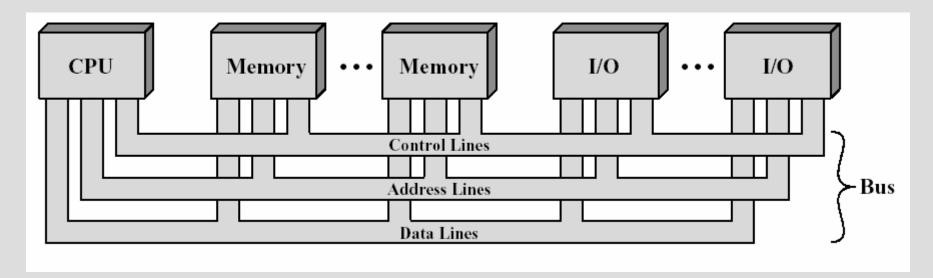

Estrutura de um Computador

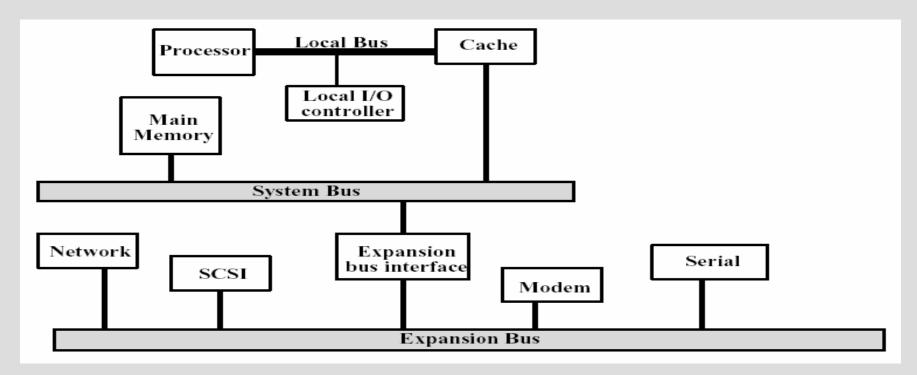
Tratando-se o computador de uma máquina complexa a sua estrutura pode ser apreciada a diferentes níveis de detalhe, duma forma hierárquica.



Estrutura de um Computador

Os diversos componentes do computador comunicam entre si usando um ou mais barramentos.

Os barramentos são constituídos por conjuntos de pistas que conduzem sinais eléctricos, correspondentes a alimentação e sinais lógicos. Estes últimos podem ser classificados em três grupos funcionais distintos:

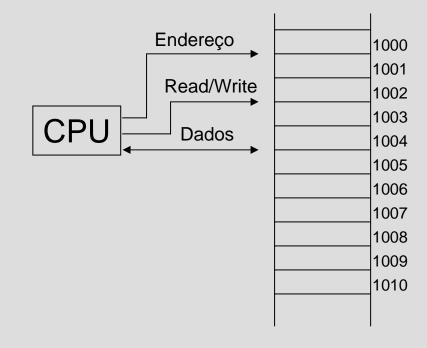


Hierarquia de Barramentos

Muitos dispositivos ligados ao mesmo barramento = perca de desempenho:

- 1. Barramento mais longo, logo maiores atrasos de propagação de sinal;
- 2. A contenção no barramento aumenta.

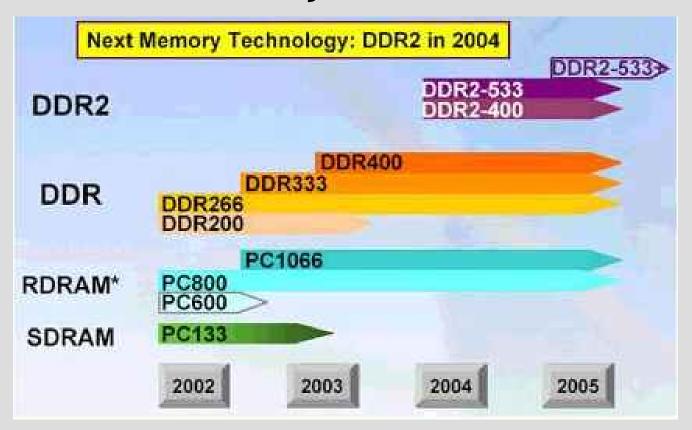
Solução: hierarquia de barramentos, com diferentes velocidades, e com capacidade para isolarem o tráfego entre si.


Memória

A memória está estruturada de forma hierárquica, desde as caches, passando pela memória central até aos discos, CDs, tapes, etc.

A memória central (RAM) contém dados e programas, sendo acedida pelo processador como se se tratasse de um vector unidimensional.

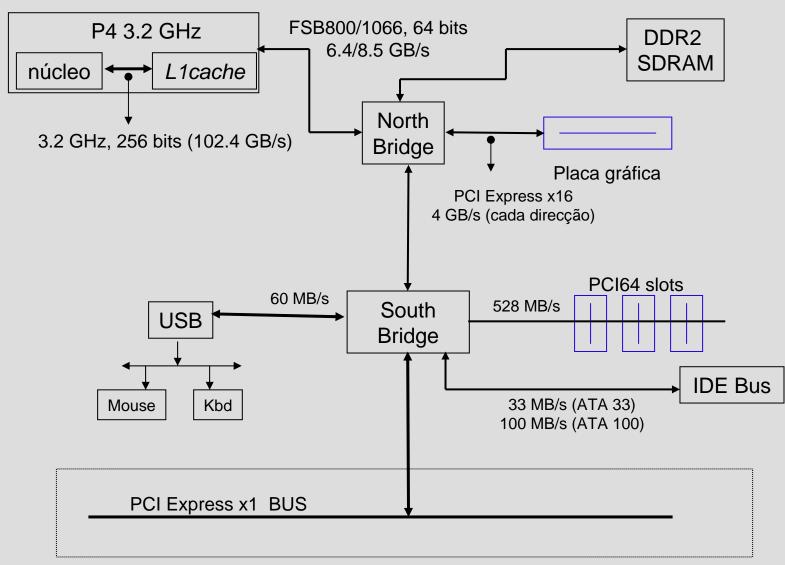
Escrita – CPU envia endereço da posição de memória a ser escrita e dados a escrever.


Leitura – CPU envia endereço da posição de memória a ser lida e recebe dados.

Memória – Estado da Arte

Label	Name	Clock	Bus	Bandwidth
PC100	SDR SDRAM	100 MHz	64 bit	0,8 GB/s
PC1600	DDR200	100 MHz	64 bit	1,6 GB/s
PC2-1600	DDR2-200	100 MHz	2*64 bit	3,2 GB/s
PC3200	DDR400	200 MHz	64 bit	3,2 GB/s
PC2-3200	DDR2-400	200 MHz	2*64 bit	6,4 GB/s
PC6400	DDR800	400 MHz	64 bit	6,4 GB/s
PC2-6400	DDR2-800	400 MHz	2*64 bit	12,8 GB/s
PC2-8520	DDR2-1066	533 MHz	2*64 bit	17,1 GB/s

Memória – Evolução nos últimos anos

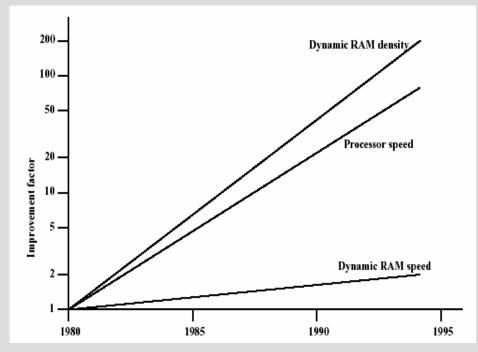


Roteiro apresentado pela Intel (Tom's Hardware Guide, Maio 2003)

Processadores

Nome	Core	Clock	FSB	HT	L1	L2	L3
Pentium 4 HT	1	3.2, 3.4,3.6, 3.8 GHz	800/1066 MHz	S	16K	Up to 1M	Up to 2M
Core 2 Extreme	2	2,93 GHz	1066 MHz		2 x 16K	Up to 4 MB	

Estrutura de um PC actual



Balanceamento dos componentes

O desempenho da máquina depende do facto de conseguir fornecer dados e instruções aos vários componentes com a mesma frequência com que estes os conseguem processar.

A ligação CPU-memória é a mais crítica, pois se a memória falhar a fornecer dados e instruções à velocidade exigida pelo CPU, este entra em wait state

Problema: o desempenho dos CPUs tem aumentado muito rapidamente, relativamente aos tempos de acesso à DRAM.

Balanceamento CPU-memória

Imagine um CPU com uma frequência de 2 GHz, a executar uma instrução por ciclo e com 50% das instruções a exigirem dados da memória. Suponha que tanto as instruções como os dados ocupam 4 bytes cada e que o CPU não tem *cache*.

- 1. Qual a frequência de acesso à memória?
- 2.O barramento visto anteriormente suporta esta frequência?

O processador executa 2*109 instr/s

Cada instrução são 4 bytes logo, só para código, são 8 GB/s Metade das instruções acedem a dados em memória = 10⁹ acessos/s Cada acesso são 4 bytes = 4 GB/s.

No total são 12 GB/s. O barramento anterior suporta 6.4/8.5 GB/s.

NOTA: esta configuração é fictícia; os processadores dispõem de cache para diminuir os acessos à memória central.

Balanceamento dos componentes

- 1. Qual a largura de banda (MB/s) necessária para apresentar um vídeo no monitor, se cada imagem tiver uma resolução de 1024*768 pontos, cada ponto for especificado por 32 bits e forem apresentadas 30 frames por segundo?
- 2. O computador apresentado no acetato 7 é capaz de apresentar este vídeo, se ele estiver armazenado em memória?
- 3. E se o vídeo estiver armazenado num disco IDE ATA33?

Cada imagem tem 1024*768 = 786 432 pixels

Cada pixel são 4 bytes logo 786 432 * 4 = 3 145 738 B/frame Com 30 frames/s temos 3 145 738 * 30 = 90 MB/s

Se o vídeo estiver em memória pode ser apresentado, pois o PCI Express 16x suporta 4 GB/s.

Se o vídeo estiver num disco IDE ATA33 não pode ser apresentado pois este barramento tem uma largura de banda de 33 MB/s.

Balanceamento de componentes

- Qual a especificação do barramento PCI (33MHz/32bits, 33MHz/64bits, 66MHz/64 bits) necessária para tirar partido de uma placa de rede de alta velocidade Myrinet, que encaixa neste barramento e transmite dados a 2.0 Gb/s?
- 2. E se o barramento estiver partilhado por outros dispositivos que consumam em média 100 MB/s?

2.0 Gb/s = 2048 Mb/s = 256 MB/s

PCI (33MHz, 32 bits) = 33 * 4 = 133 MB/s

PCI (33MHz, 64 bits) = 33 * 8 = 266 MB/s

PCI (66MHz, 64 bits) = 66 * 8 = 528 MB/s

Se o barramento estiver dedicado para a placa de rede a configuração 33MHz/64bits é suficiente. Com o barramento partilhado o PCI deve ser 66MHz/64 bits

Sumário

Tema	Hennessy [COD]	Bryant [CS:APP]	Stalling [COA]
Estrutura de um computador			Sec. 1.2
Hierarquia de barramentos			Sec 3.4
Balanceamento dos componentes			Sec 2.2