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Abstract
Power-efficient design requires reducing power dissipation in
all parts of the design and during all stages of the design
process subject to constraints on the system performance and
quality of service (QoS). Power-aware high-level language
compilers, dynamic power management policies, memory
management schemes, bus encoding techniques, and hardware
design tools are needed to meet these often-conflicting design
requirements. This paper reviews techniques and tools for
power-efficient embedded system design, considering the
hardware platform, the application software, and the system
software. Design examples from an Intel StrongARM based
system are provided to illustrate the concepts and the
techniques. This paper is not intended as a comprehensive
review, rather as a starting point for understanding power-
aware design methodologies and techniques targeted toward
embedded systems.

1 Introduction
A system consists of a set of components that provide a useful
behavior or service. System design is the process of
implementing the desired behavior or service while optimizing
some objectives and satisfying some constraints. For example,
a high-end desktop computer system is optimized for maximum
clock rate while meeting a price target. On the other hand, a
battery-operated portable electronic system for information
processing and wireless communication may be optimized for
minimum power dissipation subject to a required performance.

There exists a dichotomy in the design of modern electronic
systems: the simultaneous need to be low power and high
performance. This arises largely from their use in battery-
operated portable (wearable) platforms. Accordingly, the goal
of low-power design for battery-powered electronics is to
extend the battery service life while meeting performance
requirements. In fixed, power-rich platforms, the packaging
and reliability costs associated with high power and high
performance systems also force designers to look for ways to
reduce power consumption. Thus, reducing power dissipation is
a design goal even for non-portable devices since excessive
power dissipation results in increased packaging and cooling
costs as well as potential reliability problems. However, the
focus of this survey paper is on portable electronic systems.

A typical embedded system consists of a base hardware
platform, which executes system and application software and
is connected to a number of peripheral devices. The hardware
platform refers to the computational units, the communication

channels, and the memory units. Examples of peripheral
devices include displays, wireless local area network,
keyboard, and camcorder. Power efficiency is obtained by
reducing power dissipation in all parts of the design. Reducing
the power consumption of all of the constituents of the base
hardware can minimize its power dissipation. The peripheral
devices tend to consume a significant fraction of the total
power budget. Although power-efficient design of peripherals
is beyond the scope of this paper, we will describe techniques
to reduce the data rate and switching activity on the
communication links between the hardware platform and these
peripherals as well as review dynamic power management
policies that aim at turning off the peripherals during their idle
periods. Choices for the software implementation (i.e.
operating system kernel, application-level code) affect the
power efficiency of the base hardware and peripheral devices.
For example, the power dissipation overhead of the operating
system calls, the power-efficiency of the compiled code, and
the memory access patterns play important roles in determining
the overall power dissipation of the embedded system.

A key part of embedded system synthesis is hardware-software
co-design. Hardware-software co-design is the process of
concurrently defining the hardware and software portions of an
embedded system while considering dependencies between the
two. Designers rely on their experience with past systems
when estimating the resource requirements of a new system.
Since ad-hoc design exploration is time-consuming, an
engineer typically selects a conservative architecture after little
experimentation, resulting in an unnecessarily expensive
system. Most research in the area of hardware-software co-
design has focused on easing the process of design exploration.
Automating this process falls within the realm of co-synthesis.
Finding optimal hardware-software architecture entails
selection of processors, integrated circuits, memories, and
communication links such that the cost of the architecture is at
a minimum and all real-time and peak power consumption
constraints are met. Average and peak power consumptions of
the architecture have an impact on the battery life, packaging
costs and reliability. Thus, it is important to consider power
consumption during hardware-software co-synthesis.
Considering these problems early in the design cycle usually
reduces their required overhead.

The paper is organized as follows. In Section 2 we provide a
review of the power reduction techniques for embedded
systems. Section 2 contains the description of the target
embedded system and a number of examples of power-saving
techniques. We conclude the paper in Section 4.
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2 Literature Review

2.1 Power-aware software compilation

Power analysis techniques have been proposed for embedded
software based on instruction-level characterization [1] and
simulation of the underlying hardware [2]. Techniques to
improve the efficiency of software power analysis through
statistical profiling have been proposed in [3]. The SOC design
paradigm has fueled research in co-estimation of hardware and
software power consumption [4]-[7]. Optimizations of
embedded software power consumption through compiler
optimizations [8], source-level transformations [9], and
memory management schemes [10] [11] have been reported.

Prior work on power-aware compilation techniques is limited.
In [12], the authors studied the switching activity on address,
instruction and data buses and estimated the power
consumption of a microprocessor. They proposed a technique
called “Cold Scheduling.” In [13], the authors proposed an
instruction-level power model and a number of simple compiler
techniques (such as operand swapping) for reducing power
consumption. The techniques were applied to a Fujitsu DSP.

2.2 Dynamic power management

Dynamic power management – which refers to selective shut-
off or slow-down of system components that are idle or
underutilized – has proven to be a particularly effective
technique for reducing power dissipation in such systems.
Incorporating a dynamic power management scheme in the
design of an already-complex system is a difficult process that
may require many design iterations and careful debugging and
validation. The goal of a dynamic power management policy is
to reduce the power consumption of an electronic system by
putting system components into different states, each
representing a certain performance and power consumption
level. The policy determines the type and timing of these
transitions based on the system history, workload, and
performance constraints.

The activity of many components in a computing system is
event-driven. An intuitive way of reducing the average power
dissipated by the whole system consists of shutting down the
resources during their periods of inactivity. In other words, one
can adopt a system-level power management policy that
dictates how and when the various components should be shut
down. A simple and widely used technique is the "time-out"
policy, which turns on the component when it is to be used and
turns off the component when it has not been used for some
pre-specified length of time. The effectiveness of the "time-
out" policy largely depends on the time-out settings, as well as
the access pattern characteristics of the component. Srivastava
et al. [14] proposed a predictive power management strategy,
which uses a regression equation based on the previous “On”
and “Off” times of the component to estimate the next “turn-
on” time. In [15], Hwang and Wu introduced a more complex
predictive shutdown strategy that yields better performance.
These heuristic power management policies have major
limitations. For example, they cannot handle components with
more than two power modes; nor can they handle complex
system behaviors; and they cannot guarantee optimality.

Choosing a policy that minimizes power dissipation under a
performance constraint (or maximizes performance under a
power constraint) is a new kind of constrained optimization
problem that is highly relevant to low-power electronic

systems. This problem is often referred to as the policy
optimization (PO) problem. In [16], Benini et al. proposed a
stochastic model for a rigorous mathematical formulation of the
problem and presented a procedure for its exact solution. The
solution is computed in polynomial time by solving a linear
optimization problem. Their approach is based on a stochastic
model of power-managed devices and workloads and leverages
stochastic optimization techniques based on the theory of
discrete-time Markov decision processes. The system model
consists of four components: a power manager (PM), a service
provider (SP), a service requestor (SR), and a service request
queue (SQ) (cf. Figure 1). The objective function is the
expected performance (which is related to the expected waiting
time and the number of jobs in the queue) and the constraint is
the expected power consumption (which is related to the power
cost of staying in some server state and the energy consumption
for the transfer from one server state to the next). Non-
stationary user request rates can be treated using an adaptive
policy interpolation presented in [17]. A limitation of both of
these policies is that decision-making is done periodically, even
when the system is idle, thus wasting power.

Figure 1 A model of a power-managed system.

In [18] [19], the authors model the power-managed system
using a continuous-time Markov decision process. In this
approach, the PM issues commands asynchronously upon event
occurrences instead of at fixed time intervals. System
transitions are assumed to follow exponential distribution, even
though in some practical cases, the transition times may be
non-exponential. This assumption can be relaxed by using a
stage method [20], which approximates the general
distributions using the series or parallel combinations of
exponential stages. The authors of [21] [22] extend the
modeling technique using the semi-Markov decision process
and the time-indexed semi-Markov decision process. Both
techniques are in a continuous-time domain. The work in [23]
uses a modeling technique based on generalized stochastic
Petri nets (GSPN) for large system with complex behaviors.

2.3 Low power bus encoding

The major building blocks of a computer system include the
processor, the memory chips, and the communication channels
dedicated to providing the means for data transfer between the
processor and the memory. These channels tend to support
heavy traffic and often constitute the performance bottleneck in
many systems. At the same time, the energy dissipation per
memory bus access is quite high, which in turn limits the power
efficiency of the overall system.

Low power bus codes can be classified as algebraic,
permutation, and probabilistic. Algebraic codes refer to those
codes that are produced by encoders that take two or more
operands (e.g. the current source word, the previous source
word, the previous code word, etc.) to produce the current code
word using arithmetic or bit-level logic operations.
Permutation codes refer to a permutation of a set of source
words. Probabilistic codes are generated by encoders that
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examine the probability distribution of source words or pairs of
source words, and use this distribution to assign codes to the
source words (Level Signaling) or pairs of source words
(Transition Signaling). In all cases, the objective is to minimize
the number of transitions for transmitting the source words.

Many bus-encoding schemes have been proposed. The
encoding function can be optimized for specific access patterns
such as sequential access (Gray [24][25], T0 [26], Pyramid
[27]) or random data (Bus Invert [28]), for special data types
such as floating point numbers in DSP applications [29]. The
encoding may be fully customized to the target data (Working
Zone [30], Beach [31]). The encoding function can be fixed
(Gray, Pyramid), synthesized (Working Zone, Beach), or non-
deterministic (Bus Invert, Transition Signaling or both [32]).
The encoded bits may be redundant (Bus Invert, T0, Limited-
weight code [33]) or irredundant (Gray, Pyramid). The key idea
behind all of these techniques is to reduce the Hamming
distance between consecutive address and data transfers.

2.4 Dynamic voltage scaling

Dynamic voltage scaling (DVS) [34]-[36] refers to runtime
change in the supply voltage levels supplied to various
components in a system so as to reduce the overall system
power dissipation while maintaining a total computation time
and/or throughput requirement. This problem can be
formulated as a variable (or multiple) voltage scheduling
problem and solved using mathematical (or dynamic)
programming. This formulation, however, does not capture the
adaptive online characteristic of the DVS problem. Figure 2
shows an example DVS architecture.

Figure 2 A dynamic voltage-scaling example.

Since static voltage scaling cannot deal with variable workload
situations in real-time systems, one must be able to change the
supply voltages dynamically for different workloads.
Meanwhile, one must carefully design the clock generation
circuitry because clock rate must decrease (or increase) with
the decrease (or increase) of the supply voltage to make sure
that the circuit can work properly.

2.5 Low power system synthesis

Researchers initially focused their interest on hardware-
software co-synthesis of one-CPU-one-ASIC architectures,
where attempts were made to move operations from hardware
to software or vice versa to minimize cost and meet deadlines.
Some of these techniques have been extended to handle
multiple processing elements and communication links. A
constructive co-synthesis system, called COSYN, was
presented in [37], which tackles the power consumption
problem. For task graphs from the literature for which mixed
integer linear programming-based optimal results are known,
COSYN also obtains the same optimal results in many orders
of magnitude smaller CPU time. This work has been extended
to hierarchical task graphs and hierarchical embedded system
architectures in a co-synthesis system called COHRA [38].

Much of the recent work that targets low power has been at the
register-transfer level (RTL). In the first of such work [39]
[40], parallelism is proposed to enable voltage reduction, and a
variety of circuit transformations are used to reduce circuit
power. In [41], circuit metrics based on switching activity are
used to perform power optimizations in a class of digital filters.
A multiple clocking scheme for RTL designs is presented in
[42], where idle areas of the circuit are shut off to save power.
A controller re-specification technique is provided in [43] to
reduce switching activity in the data path.

Optimizing for power in memory-intensive applications has
also been recognized as an important issue and data-dominated
applications have been targeted in [44] [45]. Most of the other
high-level synthesis techniques for low power also target data-
dominated circuits and include scheduling and binding methods
[46]-[51]. The only other work for reducing power in CFI
applications is given in [52], where a profile-driven high-level
synthesis technique for low power is presented. This method,
however, is limited to simple conditional constructs and cannot
handle multiple nested loops and branches. A method called
common-case computation (CCC) was recently introduced in
[53], which works at either the behavior or register-transfer
level. It identifies commonly occurring sub-behaviors in a
behavioral description of an ASIC. It separately synthesizes
these sub-behaviors and puts the original circuit to sleep when
it detects these sub-behaviors during normal operation.

3 The Target Embedded System

3.1 Platform Description

Because of its high performance, aggressive power efficiency,
and low cost, many designers use the StrongARM® embedded
microprocessors, e.g., the SA-110, the first product in the
StrongARM family, which features a highly integrated single-
chip design [54]. The latest StrongARM microprocessor from
Intel®, the SA-1110, is a device optimized for meeting portable
and embedded application requirements [55]. The SA-1110
incorporates a 32-bit StrongARM core (SA-10) capable of
running at up to 206 MHz and delivering up to 235 Dhrystone
2.1 MIPS. The 206 MHz SA-1110 core runs at a supply voltage
level of 1.75 V and consumes < 400 mW in the Normal mode,
< 100 mW in the Idle mode, and < 50 uA in the Sleep mode.
The SA-1110 has split instruction and data caches, memory-
management unit (MMU), and read/write buffers. It is the focus
of this effort to explore these features in addition to the low
voltage feature of SA-1110. The SA-1110 contains the CPU
core, memory controller, LCD controller and other peripheral
controllers. On the processor, the memory only functions as
cache. One or more Dynamic RAM chips are externally
connected to function as the processor’s main memory.

Our target embedded system is similar to the Intel StrongARM
SA-1110 evaluation board (Assabet) plus the companion SA-
1111 board (Neponset). The peripherals include an active LCD,
a wireless LAN, a keyboard, a mouse, external FLASH
memory, a camcorder, and a GPS set.

3.2 Power Saving Techniques

Exemple 1:

Consider a scenario where the application software for the
system has already been developed. In this case the option of
rewriting the application software to improve its power
efficiency may not exist. However, a power-aware high-level
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language compiler can significantly reduce power dissipation
of the application software running on the target system.

Traditional cache organization is vertical in the sense that the
“Inclusion Property” is preserved, i.e., L1 is included in L2, L2
is included in memory, and so on. StrongARM processors
feature a horizontal data cache organization. The MainCache
and MiniCache of StrongARM are exclusive – any cacheable
data goes into either the MainCache or the MiniCache, but not
both. The compiler can thus use the MiniCache as a temporary
storage without polluting the regular access patterns occurring
in the MainCache as shown in the matrix multiplication in
Example 1. Obviously, this results in performance
improvement and power savings.

/* Matrix Multiplication. *
* Cache size: MainDcache=64;
* MiniDcache=16;ReadBuffer=4;
*/
int a[8][8]; /* Main Dcache */
int b[8]; /* Mini Dcache */
int c[8]; /* Mini Dcache */
int ready; /* ReadBuffer */
while (! ready) ;
ready = 0;
for (i=0; i<8; i++) {
for (j=0; j<8; j++) {
c[i] = a[i][j] * b[j]; }}

ready = 1;
Example 2:

Instruction rescheduling is a common compiler technique for
improving the code performance. Without affecting the
correctness, reordering instructions can eliminate pipeline stalls
caused by load delay, branch delay, delay slot, etc. This
technique is also very effective for saving power (cf. Figure 3).
The idea is to reorder instructions so as to minimize the
Hamming distance of consecutive instructions while preserving
functional correctness and performance.

Figure 3 Effect of instruction scheduling.

Example 3:

We present a simple example to illustrate the basic idea behind
dynamic power management and the resulting trade-off space.
Consider an I/O device (service provider) that is controlled by
the operating system-directed power management software and
that can be put into one of two modes: “On” and “Off.” The
device consumes 10 Watts of power when it is in the “On” state
and 0 Watt when it is “Off.” It takes 2 seconds and 40 Joules of
energy to turn this device from “Off” to “ON” whereas it takes
1 second and 10 Joules of energy to turn it from “On” to “Off.”
The service request pattern in a time period of 25 seconds is
shown in Figure 4(a).

Without a power management policy, this device is always
“ON” as depicted in Figure 4(b). The shaded areas in the figure
identify the time periods when the device is processing the
requests. Under a “greedy power management policy”, the OS
turns on the device whenever there is a service request for it

and turns off the device whenever it has nothing to do. The
working pattern of the device under this policy is shown in
Figure 4(c). If, however, the average delay for processing a
request can be increased, then the power management policy
shown in Figure 4(d) will result in minimum power dissipation
(total energy in 25 seconds) for the device under the specified
delay constraint. The comparison between the three policies in
terms of total energy consumption and average delay is
presented in

Table 1.

This simple example illustrates the fact that there is a
fundamental trade-off between power dissipation and latency
per request (while maintaining the same throughput) and that a
“good” power management policy is one that can exploit this
trade-off dynamically.

Figure 4 A PM problem with solutions.

Table 1 Results of different PM policies.

Policy type Energy consumption
in 25 sec

Avg. Latency per
request

“Always on” 250 J 1 sec

“Reactive Greedy” 240 J 3 sec

“Power-aware” 140 J 2.5 sec

Example 4:

Dynamic RAM (DRAM) is usually laid out in a 2-dimensional
array. To identify a memory cell in the array, two addresses are
needed: row address and column address. The row address is
sent over the bus first and is latched in the DRAM decoder.
Subsequently, the column address is sent to complete the
address. We will refer to this kind of DRAM as Conventional
DRAM. As a result, the DRAM bus is almost always time-
multiplexed between the row and column addresses, and the
pin count needed for addresses can be reduced by a factor of

Sequential Schedule Gray Schedule

instruction Rt Rs1 Rs2 instruction Rt Rs1 Rs2

add r0, r1, r2 000 001 010 add r0, r6, r7 000 110 111

sub r3, r4, r5 011 100 101 sub r1, r2, r5 001 010 101

mul r6, r0, r3 110 000 011 mul r3, r0, r1 011 000 001

Bit Activity 4 3 5 Bit Activity 2 2 2

t

t

t

t

Request patterns

“Always on”

“Reactive greedy”

“Power-aware”

On

On

On

Off

Off

Off

1 3 5 7 9 11 13 15 17 19

(a)

(c)

(d)
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two. Because the switching activity on a DRAM bus is totally
different from that of a non-multiplexed bus, we need another
Gray-code-like encoding scheme to minimize the switching
activity for sequential memory access on a DRAM bus.

Table 2 Comparing bus encoding techniques.

Bin Gray BI T0
Conv.

DRAM
Page
Mode

Burst
Mode

Pyra-
mid

Burst
Pyra-
Mid

0000 0000
0000-

0
0000-

0
00
00

00
00

00
00

00
00

00
00

0001 0001
0001-

0
0000-

1
00
01 01

00
01

0010 0011
0010-

0
0000-

1
00
10 10

00
10

01
01

01
00

0011 0010
0011-

0
0000-

1
00
11 11

01
00

0100 0110
1011-

1
0000-

1
01
00

01
00

01
00

00
10

01
10

0101 0111
1010-

1
0000-

1
01
01 01

10
01

0110 0101
0110-

0
0000-

1
01
10 10

01
10

01
10

11
00

0111 0100
0111-

0
0000-

1
01
11 11

10
10

1000 1100
0111-

1
0000-

1
10
00

10
00

10
00

10
00

00
10

1001 1101
0110-

1
0000-

1
10
01 01

00
11

1010 1111
1010-

0
0000-

1
10
10 10

10
10

11
01

10
10

1011 1110
1011-

0
0000-

1
10
11 11

01
11

1100 1010
0011-

1
0000-

1
11
00

11
00

11
00

11
10

11
10

1101 1011
0010-

1
0000-

1
11
01 01

10
11

1110 1001
1110-

0
0000-

1
11
10 10

11
10

11
11

10
00

1111 1000
1111-

0
0000-

1
11
11 11

11
00

=20 =16 =28 =2 =32 =24 =16 =16 =12

Besides conventional DRAM, almost every modern DRAM
device also supports a Page mode. In the Page mode, after the
first data transaction, the row address is latched and several
different memory locations in the same row can be read/written
by sending only their column addresses. Hyper Page mode or
Extended Data Out (EDO) is the same as Page mode, except
that the Column Address Strobe (CAS) signal is overloaded
with both CAS and Data Out. Synchronous DRAM (SDRAM),
named so because it avoids the asynchronous handshaking used
in conventional and page mode DRAM, uses the system clock
to strobe data. No Data Out signal is needed. To boost the
throughput, in Burst mode, several bytes (2, 4, 8 or more) can
be read/written continuously without any handshaking signal.

Column 5 in Table 2 shows that the binary code results in a
high switching activity. Columns 6 and 7 of Table 2 provide
examples of accessing blocks of size two in page mode and
burst mode, respectively. Column 8 in Table 2 lists the Pyramid
code, which reduces up to 56% of the bit-level switching
activity for conventional DRAM.

4 Conclusion
This paper reviewed techniques and tools for power-efficient
embedded system design, considering the hardware platform,
the application software, and the system software. Design
examples from an Intel StrongARM based system were
provided to illustrate the concepts and the techniques.
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