Finite volume method for tsunami simulation

Mathematics Center, School of Sciences, Minho University - Portugal

Stéphane Clain

This research was financed by FEDER Funds through Programa Operacional Factores de Competitividade,COMPETE and by Portuguese Funds through FCT, Fundacçaão para a Ciência e a Tecnologia, within the Project PEst-C/MAT/UI0013/2011 and the project PTDC/MAT/121185/2010.

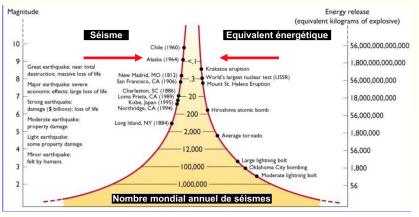
Collaboration with the IPMA

DI, 2015 November

The different tsunamis

Isunami :Japanese ; from *tsu*, a harbour + *nami*, a wave
 It is a large sea wave caused

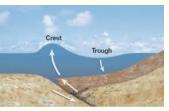
by an

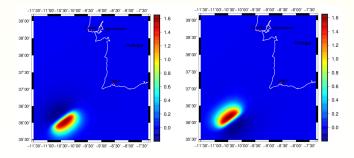

- earthquake (Lisbon 1755)
- landslide (Madeira 1930)
- volcano (Krakatoa in Indonesia 1883)
- other disturbance under the ocean

Deadly phenomenon: Japan (2011) 22.000 dead persons, Indonesia (2004), 230.000 dead persons

Numerical simulations

Prediction and scenario analysis to design infrastructures and save life. Determine the safe zones in coastal regions.

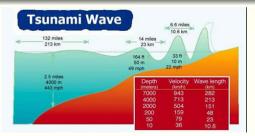

イロト イポト イヨト イヨト


э

- Hiroshima: 18 kilotons Indonesia 2004: 26 megatons
- Japan 2011: 45 megatons Chile 1960: 160 megatons

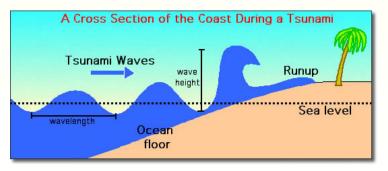
The generation

- Reverse faults: two plates collide and one plate is lifted over the other plate
- on one side: a column of water is lifted (crest)
- on the other side: a column of water grows hollow (trough)

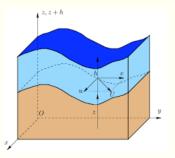


The Shoaling Process

• Velocity $c = \sqrt{gh}$


 high velocity, small height, long length in deep ocean

• low velocity, large height, small length in shallow water



<ロ> (日) (日) (日) (日) (日)

æ

- $\bullet~h$ water height
- b bathymetry
- $\eta = b + h$ free surface
- U = (u, v) horizontal velocities

A ■

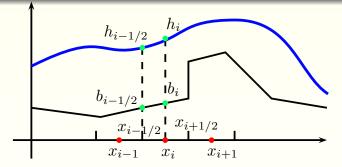
reduced model

Integration over a water column and neglecting the vertical velocity, the Navier-Stokes system provides the shallow water equations

$$\begin{aligned} \partial_t h + \partial_x (hu) + \partial_y (hv) &= 0, \\ \partial_t (hu) + \partial_x (hu^2 + gh^2/2) + \partial_y (huv) &= -gh\partial_x b - k\frac{h|U|u}{h^{\eta}}, \\ \partial_t (hv) + \partial_x (hvu) + \partial_y (hv^2 + gh^2/2) + &= -gh\partial_y b - k\frac{h|U|v}{h^{\eta}}. \end{aligned}$$

イロン イボン イヨン イヨン 三日

- $hu,\,hv$ mass flow, $|U|=\sqrt{u^2+v^2}$ velocity norm
- $gh^2/2$ hydrostatic pressure
- $gh\partial_x b$, $gh\partial_y b$ gravity force
- $k \frac{h|U|u}{h^{\eta}}$, $k \frac{h|U|v}{h^{\eta}}$ friction force (Manning law).


• Finite difference: used in the 70's until now due to its simplicity. A lot of drawbacks, not mass conservative, wrong shock propagation, high viscosity for stabilization, second-order with non-physical oscillations

• Finite element: used in the 90's. not mass conservative per cell, viscosity for stabilisation, complex finite element basis (hyperbolic problem)

• Finite volume: mass preservation, second-order easy to achieved, correct shock propagation, no oscillations. Very good for the S-W system,

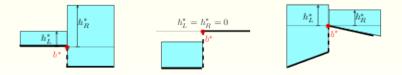
→ 프 → < 프 →</p>

1D discretization

cells $c_i = [x_{i-1/2}, x_{i+1/2}]$ with centroid x_i and interface $x_{i+1/2}$ h_i^n , u_i^n , η_i^n , b_i approximations on cell c_i at time t^n $W_i^n = (h_i^n, h_i^n u_i^n)$ conservative variables vector

イロン イ部ン イヨン イヨン 三日

generic scheme


$$W_i^{n+1} = W_i^n - \frac{\Delta t}{\Delta x_i} \left[\mathcal{F}_{i+1/2}^n + \varepsilon_{i+1/2,L}^n - \mathcal{F}_{i-1/2}^n - \varepsilon_{i-1/2,R}^n \right] + \Delta t \mathcal{S}_i^n$$

- $\mathcal{F}_{i+1/2}^n$: conservative flux (pressure and convection)
- $\varepsilon_{i+1/2,L}^n$, $\varepsilon_{i+1/2,R}^n$: discontinuous bathymetry contributions

イロン イボン イヨン イヨン 三日

• \mathcal{S}_i^n : continuous bathymetry contributions

Hydrostatic reconstruction

Step 1:
$$b_{i+1/2}^n = \max(b_{i+1/2,L}^n, b_{i+1/2,R}^n)$$

Step 2: $h_{i+1/2,L}^{*,n} = \max(0, h_{i+1/2,L}^n - b_{i+1/2}^n + b_{i+1/2,L}^n)$
Step 3: $\eta_{i+1/2,L}^{*,n} = h_{i+1/2,L}^{*,n} + b_{i+1/2}^n$
Step 4: $u_{i+1/2,L}^{*,n} = u_{i+1/2,L}^n$, $u_{i+1/2,R}^{*,n} = u_{i+1/2,R}^n$

・ロン ・回 と ・ ヨン ・ ヨン

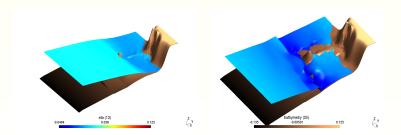
æ

Fluxes

$$\begin{split} \mathcal{F}_{i-1/2}^{n} &= \mathbb{F}(W_{i-1/2,L}^{*,n}, W_{i-1/2,R}^{*,n}) \text{ with } \\ \mathbb{F}((h,u), (h',u')) &= \frac{1}{2} \begin{pmatrix} hu \\ hu^{2} + \frac{gh^{2}}{2} \end{pmatrix} + \frac{1}{2} \begin{pmatrix} h'u' \\ h'u'^{2} + \frac{gh'^{2}}{2} \end{pmatrix} - \lambda \begin{pmatrix} h-h' \\ hu-h'u' \end{pmatrix} \end{split}$$

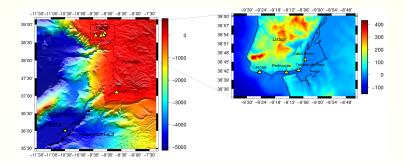
★ロト ★御 と ★注 と ★注 と 一注

$$\varepsilon_{i+1/2,L}^n = \frac{g}{2} \left[(h_{i+1/2,L}^{*,n})^2 - (h_{i+1/2,L}^n)^2 \right]$$


$$S_i^n = -g \frac{h_{i+1/2,L}^n + h_{i-1/2,R}^n}{2} \times \frac{b_{i+1/2,L}^n - b_{i-1/2,R}^n}{\Delta x_i}$$

Numerical simulations

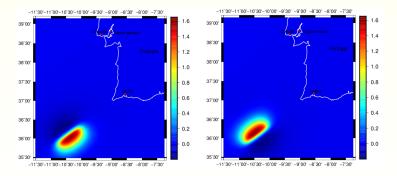
▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ


Monai

- Laboratory benchmark the extreme Monai run-up
- Consequence of the 1993 Okushiri tsunami

A ■

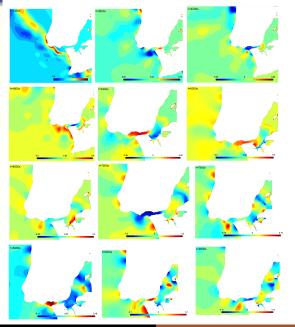
The 28 February 1969 event was a submarine earthquake Ms7.9



イロト イヨト イヨト イヨト

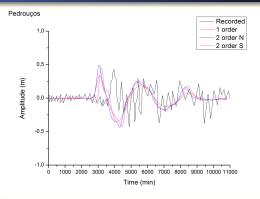
æ

Records registered by the tide stations in five points


Two possible configurations (polarity) SW-NE fault vs NE-SW fault simulation

< E.

Initial water height: -0.9 to +1.6 meters


Propagation wave

< 臣→

Э

measured vs simulation

- Almost same travelling time
- Recover the low frequency (big structures > 10km)
- Lost high frequency (small structures < 1km)

- Efficient tools for prediction and scenario analysis
- 200 x200 m grid need 6 hours of computation
- highly parallelizable algorithms with a lot of repetitive calculations
- need 10×10 m grids to catch human structures + beach
- new numerical methods developed at UM