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The di↵erent tsunamis

+ Tsunami :Japanese ; from tsu, a harbour + nami, a wave
+ It is a large sea wave caused
by an

earthquake (Lisbon 1755)

landslide (Madeira 1930)

volcano (Krakatoa in
Indonesia 1883)

other disturbance under
the ocean

Deadly phenomenon: Japan (2011) 22.000 dead persons, Indonesia

(2004), 230.000 dead persons

Numerical simulations

Prediction and scenario analysis to design infrastructures and save
life. Determine the safe zones in coastal regions.
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Tsunami energy

• Hiroshima: 18 kilotons • Indonesia 2004: 26 megatons
• Japan 2011: 45 megatons • Chile 1960: 160 megatons
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The generation

• Reverse faults: two plates collide
and one plate is lifted over the other
plate
• on one side: a column of water is
lifted (crest)
• on the other side: a column of water
grows hollow (trough)
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The Shoaling Process

• Velocity c =

p
gh

• high velocity, small
height, long length in
deep ocean
• low velocity, large
height, small length in
shallow water
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The modelling

• h water height

• b bathymetry

• ⌘ = b+ h free surface

• U = (u, v) horizontal velocities

reduced model

Integration over a water column and neglecting the vertical
velocity, the Navier-Stokes system provides the shallow water
equations
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The shallow water system
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Numerical methods

• Finite di↵erence: used in the 70’s until now due to its simplicity.
A lot of drawbacks, not mass conservative, wrong shock
propagation, high viscosity for stabilization, second-order with
non-physical oscillations

• Finite element: used in the 90’s. not mass conservative per cell,
viscosity for stabilisation, complex finite element basis (hyperbolic
problem)

• Finite volume: mass preservation, second-order easy to achieved,
correct shock propagation, no oscillations. Very good for the S-W
system,
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1D discretization
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Finite volume scheme

generic scheme
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Hydrostatic reconstruction
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Fluxes
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Numerical simulations
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Monai

• Laboratory benchmark the extreme Monai run-up

• Consequence of the 1993 Okushiri tsunami
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Tagus

The 28 February 1969 event was a submarine earthquake Ms7.9

Records registered by the tide stations in five points
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Initialization Tagus

Two possible configurations (polarity) SW-NE fault vs NE-SW
fault simulation

Initial water height: -0.9 to +1.6 meters
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Propagation wave
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measured vs simulation

• Almost same travelling time

• Recover the low frequency (big structures > 10km)

• Lost high frequency (small structures < 1km)
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Conclusions

E�cient tools for prediction and scenario analysis

200 x200 m grid need 6 hours of computation

highly parallelizable algorithms with a lot of repetitive
calculations

need 10 x 10 m grids to catch human structures + beach

new numerical methods developed at UM
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