
MIEI - AA/CPD

Lab 3 - TFLOP Performance

Advanced Architectures

University of Minho

The Lab 3 focus on the development of efficient code for the Intel Xeon Phi computing
unit by covering the programming principles that have a relevant impact on performance, such
as vectorisation, parallelisation, and scalability. Use a cluster node with an Intel Xeon Phi
(by specifying the keyword phi in job submission), use only 4 CPU cores and do not submit
interactive jobs (e.g., qsub -lnodes=1:ppn=4:phi,walltime=...).

This lab tutorial includes one homework assignment (HW 3.1) and three exercises to be
solved during the lab class (Lab 3.x).

The goal of improving the performance of scientific applications is often to process more
data per unit of time rather than to process a given data set faster (see Gustafson’s Law). One
example is the analysis of molecule docking, where faster applications are capable to process
more time steps in a simulation. The first two exercises feature an algorithm whose workload
increases with the number of threads. Therefore, a throughput metric, such as GFLOP/sec, is
best suited for this problem instead of considering the execution time.

To load the compiler in the environment use the one of the following commands:

Intel Compiler: module load intel/2013.1.117.

GNU Compiler (for several system libraries): module load gnu/4.7.2.

If there is an error regarding the lack of a license, run the following command:

cp /opt/intel/licenses/l 6LPZ4DMP.lic /home/YOUR USER/intel/licenses/

3.1 The Xeon Phi Native Mode

Goals: to develop skills in the design of parallel and vectorisable code for the Xeon Phi.

Consider the code provided in the attached file, with the SAXPY algorithm.

HW 3.1 Run the provided code on a 4-core Xeon CPU device. Measure and record the best
execution time.

The code is highly vectorisable but the Makefile explicitly excludes this compiler option.
Remove this restriction, run the code again (use the same measurement methodology) and
comment on the impact that the vectorisation has on the performance of this device. How
faster did you expect the code would be run and how fast it was? Can you explain this result?

André Pereira & Alberto Proença November 2015



MIEI - AA/CPD

Complement the provided code adding an outer loop that iterates through a preset number
of threads and parallelise it using OpenMP. Note that the iteration of the inner loops must
be replicated through all threads, so make sure that the iteration counters of those loops are
private. Also, each thread will only process a subset of the array, which will require a stride
with a step equal to the LOOP COUNT, to be coded inside the first loop.

Lab 3.1 Open two sessions on the compute node (not the frontend this time): use one to
compile the code and copy the binary and libraries to the device (see the Makefile), and use
the other to access the device, using ssh user@mic0.

Run the extended code in native mode with 2 threads on the same Xeon Phi device core.
Note that you need to force a compact thread affinity, otherwise a 2-thread version will run in
2 separate cores (by default).

Compare the performance in GFLOP/sec between the multicore Xeon and the Xeon Phi
versions. Test the Xeon Phi code with 1, 2 and 4 threads/core, with both compact and scatter
thread affinity. Justify the obtained results.

OMP NUM THREADS: environment variable to set the number of threads.

KMP AFFINITY: environment variable to set the thread affinity.

3.2 Offloading to the Xeon Phi

Goals: to develop skills in offloading parallel code to the Xeon Phi.

Lab 3.2 Consider the code from the previous exercise and the suggestions given during the
class. Adapt the SAXPY code to be offloaded to the Xeon Phi.

Note that now the binary must not be copied to the device, as the offloading is similar to the
GPU. Run the code from the host and ensure that the Xeon Phi libraries location is properly
configured, since they will be accessed from the device runtime system.

export MIC LD LIBRARY PATH=/opt/intel/composer xe 2013.1.117/compiler/lib/mic/

Measure the performance with 1, 2 and 4 threads/core, and compare the results with the
values from the previous exercise.

3.3 Matrix Multiplication on the Xeon Phi

Goals: to comprehend the concepts of the Lab 3.1 and Lab 3.2 by implementing an efficient
matrix multiplication code for the Xeon Phi.

Lab 3.3 Adapt the parallel matrix multiplication code from Lab 1 to run in both native and
offload modes of the Xeon Phi and set the matrix size to 4096 ∗ 4096. Measure and compare
the performance for the following 3 cases: using all cores in the multicore Xeon node 641
(e.g., qsub -lnodes=1:ppn=32:r641,walltime=..., since these devices support 2-way SMT)
and 4 threads/core on the Xeon Phi (why 4?) for both native and offload modes (e.g., qsub
-lnodes=1:ppn=1:phi:r662,walltime=...).

André Pereira & Alberto Proença November 2015


