	Improving the performance of the Surface Evolver	

Improving the performance of liquid surfaces modelling in multicore devices

José Ricardo Ribeiro

Supervised by Alberto Proença and José Luís Alves

University of Minho

Master Degree in Computing Engineering

15th December 2015

University of Minho

José Ricardo Ribeiro

	Improving the performance of the Surface Evolver	

Overview I

1 Introduction

- 2 The Surface Evolver
- 3 Improving the performance of the Surface Evolver
- 4 Conclusions and Future Work

Introduction		Improving the performance of the Surface Evolver	
000			
Modelling of liquid	surfaces		
Introducti	ion		

- The modelling of liquid surfaces is a process used in simulations and optimization procedures
- Case Study: Brazing components of the Bottom Terminated Component (BTC) type on Printed Circuit Boards (PCB)
 - These BTC components and the respective PCBs go through successive thermal cycles
- The Surface Evolver (SE) is a Computer-Aided Engineering tool to model liquid surfaces
- This work is included in the Bosch HMIExcel Project (2013-2015) as part of the case study 3 of the research line 12

ヨトイヨト

Introduction	Improving the performance of the Surface Evolver	
000		
Finite Element Method		

Finite Element Method

- The Finite Element Method (FEM) is a numerical method used to model a problem involving continuous surfaces
- FEM analyses the discrete parts of a surface

3 N A 3 N

ъ

University of Minho

Figure : Spacial discretization of a domain by finite elements

 Each discrete element - the finite element - and the mathematical descriptions of its behaviour contributes to the analysis of the global problem.

Introduction	Improving the performance of the Surface Evolver	
000		
Motivation & Goals		

Motivation & Goals

- To study the modelling of liquid surfaces with the SE software
- To design and implement a more efficient data structure to deal with vectorization, parallel computing and memory locality
- To improve the sequential version of the SE software
- To implement an efficient parallel version of the application for shared memory environments
- To study how these improvements can be used for a future heterogeneous implementation.

프 🖌 🔺 프 🛌

University of Minho

José Ricardo Ribeiro

The Surface Evolver	Improving the performance of the Surface Evolver	

The Surface Evolver

- The Surface Evolver (SE) developed by Ken Brakke at the University of Susquehanna (USA)
- SE is an interactive program to study liquid surfaces, shaped by surface tension and other energies, and subject to various constraints
 - First, the discretization process, when the user writes a model that involves a continuous surface through the analysis of discrete parts of that surface
 - After the model and attributes are defined, then the surface can be evolved
 - Following the iterative process, it outputs the attributes of the evolved surface

3 K 4 3 K 4

	The Surface Evolver ●000000	Improving the performance of the Surface Evolver	
Case Studies			

Smaller case study

- Initially represented by 10K elements and a memory usage of 1654KB
- Evolves to a surface with 15K elements and a memory usage of 2366KB
- The iterative process is composed by 80 main iterations with computing operations and mesh refinements throughout the iterations.

Figure : Initial surface

Figure : Final surface

University of Minho

Figure : Smaller case surface evolving at the initial and final state

	The Surface Evolver	Improving the performance of the Surface Evolver	
	000000		
Case Studies			

Larger case study

- Initially represented by 500K elements and a memory usage of 314MB
- Evolves to a surface with 1M elements and a memory usage of 978MB
- The iterative process is also composed by 80 main iterations with more intensive computing operations and a more refined mesh throughout the iterations.

Figure : Initial surface

Figure : Final surface

University of Minho

Figure : Larger case surface evolving at the initial and final state

José Ricardo Ribeiro

	The Surface Evolver	Improving the performance of the Surface Evolver	
	000000		
Identifying the heavier fur	nctions		

Call graph analysis

Figure : Call graph identifying the heavier functions

・ロト ・四ト ・ヨト ・ヨトー

University of Minho

9/25

José Ricardo Ribeiro

	The Surface Evolver	Improving the performance of the Surface Evolver	
	000000		
Identifying the heav	ior functions		

Identifying the heavier functions

Function	Smaller case	Larger case
recalc	33%	62%
calc_energy	24%	60%
vertex average	14%	7%
calc_force	7%	1%
get_facet_verts, get_facet_body	14%	30%

Table : Comparing the impact of the heavier functions in the $\mathit{smaller}$ and larger case studies

	The Surface Evolver	Improving the performance of the Surface Evolver	
	0000000		
Current implements	tion analysis		

Current parallel implementation analysis

Named quantities

Named quantities are the systematic scheme of calculating global quantities such as area, volume, and surface integrals.

SE parallel implementation

Low-level parallelism implementations using POSIX threads.

University of Minho

José Ricardo Ribeiro

Figure : Main data structure scheme of SE, where the web and the different types of elements and boundaries/constraints are implemented as **linked lists**

イロト イポト イヨト イヨト

ъ

	The Surface Evolver	Improving the performance of the Surface Evolver	
	000000		
Data Structures and	d Locality		

Linked lists

- Linked lists can be resized dynamically
- Some issues may decrease the efficiency, both in sequential and parallel computing:
 - Out-of-order execution
 - Hardware prefetching
 - Locality of reference
 - SIMD
 - Heterogeneous environments

▶ < ⊒ ▶ ... University of Minho

3

		Improving the performance of the Surface Evolver	
		••••••••	
An alternative data struct	ure		

An alternative data structure

Goals of the alternative SE data structure aiming performance:

- Contiguous memory allocation
- Support for Vectorization
- Reduce Complexity
- Support Parallelism
- Avoid False Sharing

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ ≧ ∽ Q (~ 14/25)

An alternative data structure			Improving the performance of the Surface Evolver	
	An alternative data struct	ure		

An alternative data structure

This new data structure adds these new maintenance operations:

- *init*: initializes a new structure (allocates space for an initial number of elements)
- reset (s): the structure s is reset: (releases the used space and initializes a new structure)
- set (key, value): adds or updates an element value, accessible through a key, which in this case is always the id of the element.
- unset (key): removes an element by its key (its id in SE).

Figure : Main flow of the calc_energy function with computations over all the elements of a specific type

イロト イロト イヨト イヨト

æ

University of Minho

Improving the performance of liquid surfaces modelling in multicore devices

José Ricardo Ribeiro

	Improving the performance of the Surface Evolver	
	00000000	
Experimental setup		

Experimental setup

- Testbed: one computer node in a Cluster:
 - Dual 8-core Intel Xeon CPU E5-2650 v2 @ 2.60GHz (with 2-way SMT)

문에 세종에 다

3

University of Minho

- Cache per-core:
 - 32KB+32KB L1
 - 256KB L2
- Cache per-device:
 - 20MB L3
- Main Memory: 64GB
- Measurement methodology: K-Best approach, where:
 - A minimum of 6 runs and a maximum of 9 runs
 - K = 3
 - Tolerance = 5%

José Ricardo Ribeiro

		Improving the performance of the Surface Evolver	
l memory imp	lementation		

Scalability Test - Speedups

in the For All Facets computation without Named Quantities (larger case study)

Shared

æ

Introduction 000		Improving the performance of the Surface Evolver ○○○○○●○○○○	
Shared memory implemer	tation		

Comparing the calc_energy computations

Comparing the Surface Evolver execution times

Total execution times of the original and OpenMP implementations (larger case study)

Total execution times of the original and OpenMP implementations (larger case study)

Scalability Test - Speedups

without Named Quantities

Scalability Test - Efficiency

without Named Quantities

- ∢ ⊒ →

æ

University of Minho

(日)

	Improving the performance of the Surface Evolver	
	000000000	
Scheduling		

Scheduling techniques in OpenMP

Total execution times of the total energy computation with different schedulers (larger case study)

イロト イロト イヨト イヨト

æ

University of Minho

José Ricardo Ribeiro

	Improving the performance of the Surface Evolver	
Vectorization		

Vectorization improvement

in the total energy computation with OpenMP (larger case study)

- ∢ ⊒ →

æ

University of Minho

José Ricardo Ribeiro

	Improving the performance of the Surface Evolver	
	000000000	
Software Prefetching		

Software Prefetching

Software prefetching and locality optimizations are techniques required for linked lists to overcome the performance gap between processor and memory:

- Benefits of explicit prefetching:
 - Irregular memory accesses
 - Cache locality hint
 - Hide latency
- Negative impacts of software prefetching:
 - Increased instruction count
 - Code structure change

- ∢ ⊒ →

José Ricardo Ribeiro

	Improving the performance of the Surface Evolver	
	000000000	
Software Prefetching		

Software prefetching technique

Total execution times of the total energy computation with software prefetching (larger case study)

イロト 不得下 不定下 不定下。

æ

University of Minho

OMP (Total) OMP (No Prefetch)

José Ricardo Ribeiro

	Improving the performance of the Surface Evolver	Conclusions and Future Work

Conclusions and Future Work

- The alternative data structure improved the SE performance
- More efficient SE parallel implementation
- Remove the critical region in the For all Edges computation
- Adapt the alternative data structure to all the functions of the software (including parser and GUI) and if not possible:
 - Improve software prefetching technique
- Explore heterogeneous environments to compute the energy and other quantities

	Improving the performance of the Surface Evolver	Conclusions and Future Work

Improving the performance of liquid surfaces modelling in multicore devices

José Ricardo Ribeiro

Supervised by Alberto Proença and José Luís Alves

University of Minho

Master Degree in Computing Engineering

15th December 2015

University of Minho

José Ricardo Ribeiro