DESENVOLVIMENTO DE SISTEMAS EMBEBIDOS

(MESTRADO EM INFORMÁTICA)

- SESSÃO 2: Projecto e Modelos de Processo -

JOÃO MIGUEL FERNANDES Email: miguel@di.uminho.pt URL: http://www.di.uminho.pt/~miguel

UNIVERSIDADE DO MINHO ESCOLA DE ENGENHARIA

2000/01

Sumário

- 1. Enquadramento
- 2. Projecto
- 3. Abordagem Sistémica
- 4. Engenharia de Sistemas
- 5. Modelos de Processo

© 2001 UM/EE/DIJMI

2

1. Enquadramento (2/5)

- Objectivos deste módulo
 - Definir projecto no âmbito do desenvolvimento de sistemas.
 - Apresentar a engenharia de sistemas, em que a qualidade do produto e do processo são factores cruciais.
 - Introduzir os modelos de processo mais comuns e indicar as suas características.
- Audiência alvo

2001 UM/EE/DI/JMI

 licenciados (com ou sem formação na área das TSI) com responsabilidades e experiência comprovada (desejável!) na análise, concepção e implementação de sistemas baseados em software.

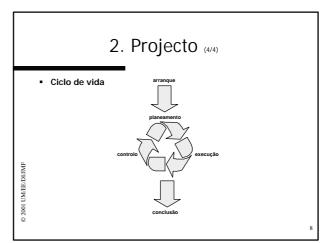
3

1. Enquadramento (3/5)

- Bibliografia recomendada
 - Stevens R., Brook P., Jackson K., Arnold S. (1998). "Systems Engineering: Coping with Complexity". Prentice-Hall. ISBN 0-13-095085-8.
 - Thomé B., Arnold S. (1993). "Systems Engineering: Principles of Computer-based Systems Engineering". John Wiley & Sons. ISBN 0-471-93552-2.
 - Oskarsson Ö., Glass R. (1996). "An ISO 9000 Approach to Building Quality Software". Prentice-Hall. 0-13-228925-3.
 - Boehm B.W. (1988). "A Spiral Model of Software Development and Enhancement". IEEE Computer, 21(5):61-72.

4

2. Projecto (1/4)


- Definicão de projecto
 - Conjunto de acções discretas e temporárias (actividades) desenvolvidas de acordo com determinados objectivos únicos, para os quais adquirem, geralmente, grande importância os factores tempo, custo, desempenho e qualidade.
 - Tal como qualquer das actividades que o constituem, também o projecto é desenvolvido por pessoas, de acordo com determinado planeamento, executado em conformidade com um dado programa e controlado segundo determinados critérios, procurando desenvolver-se dentro das restrições a que se encontra sujeito.

© 2001 UM/EE/DIJMF

2. Projecto (2/4)

- Diferenças entre projecto e actividades
 - Ao contrário das actividades, cada projecto tem a particularidade de "produzir" bens ou serviços que têm características únicas e que os distinguem de produtos ou serviços homólogos.
 - Todo o projecto é desenvolvido, apenas, entre um determinado instante inicial e final que, uma vez atingido, o conclui definitivamente, o que não é obrigatório ocorrer para as actividades.
 - Os meios organizacionais e/ou estruturais, criados durante a evolução do projecto, normalmente desaparecem ou são modificados, após a conclusão do mesmo, ou ainda durante a sua evolução.

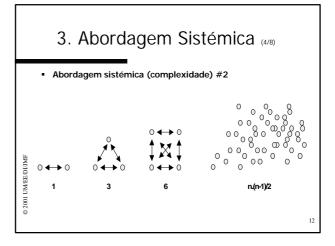
3. Abordagem Sistémica (1/8)

- Visão sistémica de engenharia
 - A noção de sistema é normalmente utilizada referente a um bem ou serviço como produto resultante da execução de um projecto (product level).
 - Para além desta noção, a actividade de engenharia necessita de lidar com uma outra noção de sistema; a que considera o próprio processo de engenharia como um sistema (process leue).
 - A engenharia não está somente preocupada com os produtos que resultam das suas actividades, mas também com o próprio processo de engenharia.
 - Os sistemas de certificação de qualidade (ISO 9001 e CMM) vêm mostrar a preocupação que se sente na área do software para garantir bons produtos, feitos com método.

9

© 2001 UM/EE/DI/JMF

3. Abordagem Sistémica (2/8)

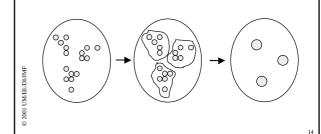

- Definição de engenharia
 - Aplicação de uma abordagem sistemática, disciplinada e quantificável na análise, concepção e implementação de estruturas, máquinas, produtos, sistemas ou processos, recorrendo a conhecimentos, princípios, técnicas e métodos decorrentes dos avanços empírico-científicos, num contexto ético-deontológico de satisfação estrita das necessidades do desenvolvimento sócio-humano.
- A abordagem sistémica, levando ao limite a aplicabilidade da noção de sistema (concebendo tudo como um sistema), é a grande "bandeira" da engenharia moderna, uma vez que impõe uma nova forma de controlar o cumprimento de um determinado modelo de processo na execução das diversas actividades que lhe estão circunscritas.

10

3. Abordagem Sistémica (3/8)

- Abordagem sistémica (complexidade) #1
 - A complexidade de um sistema depende não só do número das suas partes, mas sobretudo da forma como elas interagem entre si.
 - Esta constatação sugere que o engenheiro controle declaradamente a sua dimensão e heterogeneidade, uma vez que, assim, está a contribuir para que o sistema seja tratado efectivamente como um todo multi-facetado, permitindo uma expressão natural às suas propriedades emergentes.

11



3. Abordagem Sistémica (5/8)

- Abordagem sistémica (abstracção) #1
 - A consciencialização do nível de abstracção em que o projecto se está a desenvolver é crucial para controlar a complexidade.
 - Para controlar eficazmente a complexidade inerente ao projecto de sistemas complexos é importante decidir qual o nível de abstracção mais adequado em cada momento.
 - Como regra, deve recorrer-se aos níveis de abstracção mais elevados possível, para que, ao esconder pormenores, se compreenda melhor o sistema como um todo.

3. Abordagem Sistémica (6/8)

Abordagem sistémica (abstracção) #2

13

3. Abordagem Sistémica (7/8)

- Abordagem sistémica (reducionismo vs. holismo)
 - No âmbito dos dois pontos anteriores, devem ser sempre pesadas as vantagens e as desvantagens aquando da escolha de uma das duas visões ortogonais possíveis:
 - reducionista, quando, para controlar a complexidade, se decompõe o sistema em partes menores, de forma a concentrar o esforço de projecto em múltiplos (sub-)sistemas, mas mais simples (esta visão não deve esquecer que ao desagregar podem "perder-se" as propriedades emergentes);
 - holística, quando, para evitar tratar pormenores que dispersam a atenção sobre as propriedades emergentes, se considera o sistema como um todo (esta visão deve conjugar-se com a redefinição das fronteiras do sistema que, na prática, contribuem para a relativização da dualidade sistema/sub-sistema).

15

3. Abordagem Sistémica (8/8)

- Abordagem sistémica (flexibilidade)
 - Deve existir flexibilidade na forma de encontrar o modelo do processo a adoptar, considerando-se várias alternativas de projecto e tendo em conta os diversos cenários de actuação (de normalidade e de contingencionalidade).
 - Esta flexibilização deve resultar, nomeadamente, da aplicação dos princípios da realimentação e iteração ao próprio modelo do processo de projecto de sistemas.
 - Na avaliação das diversas alternativas devem utilizar-se modelos de redes de influência, em vez de simples cadeias lineares de acção/reacção.

1.

4. Engenharia de Sistemas (1/4)

- Abordagem sistémica
 - Influenciou a postura metodológica da própria engenharia como um todo.
 - Fundamentou o aparecimento de uma nova disciplina (eventualmente, já uma nova especialidade de engenharia) designada de engenharia de sistemas.
 - O conceito de engenharia de sistemas ainda não está perfeitamente uniformizado, existindo várias interpretações distintas para o termo "engenharia de sistemas".

© 2001 UM/EE/DIJMF

4. Engenharia de Sistemas (2/4)

Interpretação #1

Engenharia dos Sistemas

- Neste caso, entende-se a engenharia de sistemas como a engenharia dos sistemas cujas partes envolvem mais do que uma tecnologia (tecnologia do software, do hardware, da mecânica, etc.)
- Segundo esta interpretação, qualquer engenharia de sistemas não homogéneos pode ser vista como uma engenharia de sistemas
- Esta definição de engenharia de sistemas é dirigida para o product level

18

4. Engenharia de Sistemas (3/4)

Interpretação #2

Abordagem Sistémica à Engenharia

- Neste caso, entende-se a engenharia de sistemas como a abordagem sistémica à engenharia, independentemente da tecnologia dos seus produtos.
- Assim, qualquer engenharia pode ser vista como uma engenharia de sistemas, desde que siga os princípios da abordagem sistémica.
- Esta definição de engenharia de sistemas é dirigida para o process level.

4. Engenharia de Sistemas (4/4)

Interpretação #3

Aplicação da Abordagem Sistémica à Engenharia dos Sistemas

- De facto, a engenharia de sistemas, entendida como a eventual nova especialidade de engenharia a existir como tal, deve ser vista como a conjugação das duas interpretações ortogonais anteriores, ou seja, a engenharia de sistemas consiste na aplicação da abordagem sistémica à engenharia dos sistemas.
- O seu domínio de actuação é a engenharia de soluções para problemas de sistemas, independentemente da tecnologia utilizada, para realizar as funções e propriedades desejáveis para os sistemas em projecto.

20

5. Modelos de Processo (1/19)

- Metodologias de desenvolvimento #1
 - Qualquer processo de desenvolvimento consiste em três tipos de actividades:
 - a identificação das necessidades;
 - a concepção da solução;
 - a implementação do sistema final.
 - Estas actividades são executadas ao longo do tempo, dando lugar umas às outras, mas com potenciais sobreposições e retrocessos.
 - De qualquer das formas, a divisão nestes três tipos de tarefas ajuda o projectista a separar os diferentes aspectos do desenvolvimento do sistema e proporciona a base para uma metodologia de desenvolvimento sistemática.

21

5. Modelos de Processo (2/19)

- Metodologias de desenvolvimento #2
 - A definição das fronteiras entre as várias fases costuma ser realizada através da indicação de quais os "documentos" que devem ser gerados.
 - Estes "documentos" são avaliados segundo critérios prédefinidos e a aceitação dos "documentos" permite a transição do processo para uma nova fase.
 - Cada fase envolve uma lista de tarefas a executar, uma lista de "documentos" a ser produzida e a definição de critérios para a avaliação e aceitação desses "documentos".

.

5. Modelos de Processo (3/19) • Ciclo de vida do sistema #1 Análise Concepção Implementação

Análise Concepção Implementação

Estudos de Viabilidade

Teste

Manutenção

projecto
ciclo de vida

5. Modelos de Processo (4/19)

- Ciclo de vida do sistema #2
 - Refere-se ao período de tempo durante o qual a sua existência tem significado, desde o surgimento da ideia inicial para a sua realização até à sua retirada de utilização.
 - Inicia-se com a fase dos estudos de viabilidade, seguem-se as fases de desenvolvimento do sistema e finalmente a sua utilização.
 - A fase de teste sobrepõe-se temporalmente com as fases de desenvolvimento, uma vez que tem como objectivos analisar os "documentos" gerados ao longo do desenvolvimento e, eventualmente, validar a transição entre fases.

5. Modelos de Processo (5/19)

- Ciclo de vida do sistema #3
 - A fase de manutenção tem como objectivos corrigir os defeitos que, em funcionamento, surjam no sistema e que não tenham sido detectados durante o teste, assim como realizar as adaptações necessárias para resolver as eventuais alterações de requisitos, como resposta ao real funcionamento observado.
 - O projecto do sistema compreende a realização dos estudos de viabilidade e o desenvolvimento do sistema, se dos estudos de viabilidade resultar a conclusão de que o sistema deve efectivamente ser desenvolvido.
 - Os estudos de viabilidade podem incluir factores económicos, tecnológicos e mesmo comerciais.

25

5. Modelos de Processo (6/19)

- Ciclo de vida do sistema #4
 - o desenvolvimento do sistema refere-se, então, às três fases de projecto responsáveis pela construção do sistema:
 - análise em que se especifica a funcionalidade do sistema e o desempenho desejado, bem como todas as decisões que podem restringir a liberdade de concepção e implementação
 - concepção em que se define a estrutura interna do sistema e se afecta a cada módulo do sistema a funcionalidade a executar, de forma a cumprir as especificações fornecidas pela fase de análise.
 - implementação em que se realiza o sistema segundo as directivas e decisões de concepção fornecidas pela fase anterior.

26

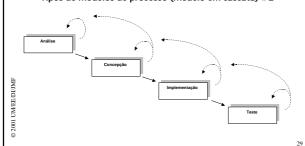
5. Modelos de Processo (7/19)

- Definição
 - O modelo do processo de desenvolvimento, também designado de fluxo do projecto, é um esquema que organiza e relaciona a forma como as várias fases devem ser prosseguidas ao longo do desenvolvimento do sistema.

© 2001 UM/EE/DI/JMF

27

© 2001 UM/EE/DIJME


5. Modelos de Processo (8/19)

- Tipos de modelos de processo (modelo em cascata) #1
 - O modelo em cascata organiza o processo de desenvolvimento como uma sequência linear de fases
 - Cada fase dá lugar à seguinte, após a verificação da conformidade dos resultados.
 - Caso haja necessidade, existe a possibilidade de cada fase dar lugar a uma fase anterior para proceder a correcções nas especificações a montante.
 - Este modelo mostra que o desenvolvimento de um sistema não é possível ser efectuado somente através de uma abordagem descendente (top-down).
 - No entanto, este modelo é, de alguma forma, limitado e só considera parcialmente a real natureza iterativa do processo de desemployimento.

28

5. Modelos de Processo (9/19)

Tipos de modelos de processo (modelo em cascata) #2

5. Modelos de Processo (10/19)

- Tipos de modelos de processo (modelo em V) #1
 - O modelo em V sugere claramente que a análise e a concepção devem seguir uma abordagem top-down, enquanto que a implementação e o teste devem seguir uma abordagem bottom-up (ascendente).
 - Os processos de top-down e de bottom-up são complementares, uma vez que, para avaliar a conformidade, existe sempre uma fase de teste, no processo de bottom-up, associada à especificação e à concepção, no processo de top-down.
 - Este modelo favorece a gestão do projecto, mas é dificilmente generalizável para todos os tipos de implementações.

5. Modelos de Processo (11/19) • Tipos de modelos de processo (modelo em V) #2 Vádação Teste de Integração Teste de Integração

5. Modelos de Processo (12/19)

- Tipos de modelos de processo (modelo em espiral) #1
 - o modelo em espiral organiza o desenvolvimento como um processo iterativo em que vários conjuntos de quatro fases se sucedem até se obter o sistema final.
 - as quatro fases típicas são:
 - planeamento (determinação dos objectivos, alternativas e restrições);
 - análise de risco (análise das alternativas e identificação e resolução dos riscos);
 - desenvolvimento (desenvolvimento do protótipo do nível seguinte);
 - avaliação (avaliação dos resultados da fase de desenvolvimento).

5. Modelos de Processo (13/19)

- Tipos de modelos de processo (modelo em espiral) #2
 - Este modelo permite que ao longo de cada iteração se obtenham versões do sistema cada vez mais completas, recorrendo à prototipagem para reduzir os riscos.
 - Este é um modelo que permite a abordagem do refinamento seguido pelo modelo em cascata, mas que incorpora um enquadramento iterativo que reflecte, de uma forma bastante realística, o processo de desenvolvimento.
 - No entanto, exige uma considerável experiência na análise de riscos, caso contrário a não detecção destes pode pôr em causa todo o processo de desenvolvimento.

33

Tipos de modelos de processo (modelo em espiral) #3 * Tipos de modelos de processo (modelo em espiral) #3 * Tipos de modelos de processo (modelo em espiral) #3 * Análise inicial dos requisitos inicials análise de risco baseada nos requisitos inicials análise de risco baseada nos resultados da avaliação planeamento baseado nos resultados da avaliação dos result

5. Modelos de Processo (15/19)

- Tipos de modelos de processo (modelo em espiral) #4
 - O modelo em espiral proporciona uma abordagem baseada na prototipagem do sistema, integrando a construção de especificações executáveis no processo de desenvolvimento do sistema.
 - O protótipo é avaliado segundo várias perspectivas para validar a especificação.
 - No entanto, é importante ter em conta que podem existir duas grandes diferenças entre o protótipo e o sistema final:
 - o protótipo pode não cumprir os requisitos de desempenho, podendo lidar somente com a funcionalidade do sistema;
 - o protótipo pode ser incompleto, podendo reflectir somente algumas facetas do sistema a desenvolver.

© 2001 UM/EE/DIJMF

5. Modelos de Processo (16/19)

- Tipos de modelos de processo (modelo em espiral) #5
 - Para que a abordagem da prototipagem seja viável, é necessário que o tempo e os custos do seu desenvolvimento sejam controlados, caso contrário o próprio desenvolvimento do protótipo torna-se um projecto por si só, com todas as desvantagens inerentes a esse facto.
 - A prototipagem rápida do sistema torna-se, assim, numa abordagem fundamental para conseguir justificar a opção pelo modelo em espiral do processo de desenvolvimento.

5. Modelos de Processo (17/19)

- Tipos de modelos de processo (modelo em espiral) #6
 - O modelo em espiral suporta a abordagem operacional no desenvolvimento do sistema, uma vez que possibilita a reificação transformacional do sistema, a partir da especificação executável que consiste no primeiro protótipo do sistema.

 Nesta abordagem, os sucessivos protótipos executáveis são obtidos por refinamento e transformação a partir do protótipo anterior, garantindo o referencial semântico do primeiro protótipo ao longo de toda a fase de concepção, até chegar à implementação do sistema, correspondendo esta ao protótipo executável do último nível.

5. Modelos de Processo (18/19) Tipos de modelos de processo (modelo em espiral) #7 mapeamento entre a realidade e o sistema, por continuidade dos modelos análise implementação realidade concepção 0 •0 **→**0· **>**0 0 0 © 2001 UM/EE/DIJMF **>**O· **>**0 **>**0

5. Modelos de Processo (19/19)

- Metodologias de desenvolvimento (síntese final)
 - conjuntos de actividades que organizam a execução de determinadas fases do ciclo de vida do sistema.
 - cada metodologia de desenvolvimento define:
 - o modelo do processo de desenvolvimento (fases e relação entre elas);
 - os métodos a aplicar no âmbito da execução de cada fase;
 - a notação para representação semântica dos vários modelos do sistema construídos e manipulados em cada fase.

2001 UM/FE/DI/