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I.1 Introduction
We cover two groups of reduced instruction set computer (RISC) architectures in this Web 
sion. The first group is the desktop and server RISCs: 

• Digital Alpha 

• Hewlett Packard PA-RISC 

• IBM and Motorola PowerPC 

• Silicon Graphics MIPS 

• Sun Microsystems SPARC 

The second group is the embedded RISCs: 

• Advanced RISC Machines ARM 

• Advanced RISC Machines Thumb 

• Hitachi SuperH 

• Mitsubishi M32R 

• Silicon Graphics MIPS16 

There has never been another class of computers so similar. This similarity allows the prese
of 10 architectures in about 50 pages. Characteristics of the desktop RISCs are found in Fig
and the embedded RISCs in Figure I.2. 

Figure I.1 Summary of the Þrst version of Þve recent architectures for desktops and servers. Except for the 
number of data address modes and some instruction set details, the integer instruction sets of these architec
very similar. Contrast this with Figure I.34. Later versions of these architectures all support a flat, 64-bit addre
space.

 Alpha MIPS I PA-RISC 1.1 PowerPC SPARC V8 

Date announced 1992 1986 1986 1993 1987

Instruction size 
(bits)

32 32 32 32 32

Address space 
(size, model)

64 bits, flat 32 bits, flat 48 bits, 
segmented

32 bits, flat 32 bits, flat

Data alignment Aligned Aligned Aligned Unaligned Aligned

Data addressing 
modes

1 1 5 4 2

Protection Page Page Page Page Page

Minimum page 
size

8 KB 4 KB 4 KB 4 KB 8 KB

I/O Memory mapped Memory mapped Memory mapped Memory mapped Memory mapp

Integer registers 
(number, model, 
size)

31 GPR  
x 64 bits

31 GPR  
x 32 bits

31 GPR  
x 32 bits

32 GPR  
x 32 bits

31 GPR  
x 32 bits

 Separate 
floating-point 
registers

31 x 32 or  
31 x 64 bits

16 x 32 or  
16 x 64 bits 

56 x 32 or  
28 x 64 bits 

32 x 32 or  
32 x 64 bits

32 x 32 or  
32 x 64 bits

Floating-point 
format

IEEE 754 single, 
double 

IEEE 754 single, 
double

IEEE 754 single, 
double

IEEE 754 single, 
double

IEEE 754 single, 
double 
3
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Figure I.2 Summary of Þve recent architectures for embedded applications. Except for number of data address 
modes and some instruction set details, the integer instruction sets of these architectures are similar. Contrast
Figure I.34. 

Notice that the embedded RISCs tend to have 8 to 16 general purpose-registers while the 
top/server RISCs have 32, and that the length of instructions is 16 to 32 bits in embedded 
but always 32 bits in desktop/server RISCs. 

Although shown as separate embedded instruction set architectures, Thumb and MIPS16 
really optional modes of ARM and MIPS invoked by call instructions. When in this mode the
execute a subset of the native architecture using 16-bit-long instructions. These 16-bit instr
sets are not intended to be full architectures, but they are enough to encode most procedur
machines expect procedures to be homogeneous, with all instructions in either 16-bit mode
32-bit mode. Programs will consist of procedures in 16-bit mode for density or in 32-bit mod
performance. 

One complication of this description is that some of the older RISCs have been extended o
years. We decided to describe the latest version of the architectures: Alpha version 3, MIPS
PA-RISC 2.0, and SPARC version 9 for the desktop machines; ARM version 4, Thumb vers
Hitachi SuperH SH-3, M32R version 1, and MIPS16 version 1 for the embedded ones. 

The remaining sections proceed as follows. After discussing the addressing modes and inst
formats of our RISC architectures, we present the survey of the instructions in five steps: 

• Instructions found in the MIPS core, which is defined in Chapter 4 of the main text 

• Multimedia extensions of the desktop/server RISCs 

• Digital signal processing extensions of the embedded RISCs 

• Instructions not found in the MIPS core but found in two or more architectures 

• The unique instructions and characteristics of each of the 10 architectures 

We give the evolution of the instruction sets in the final section and conclude with a specula
about future directions for RISCs. 

 ARM Thumb SuperH M32R MIPS16 

Date announced 1985 1995 1992 1997 1996

Instruction size 
(bits)

32 16 16 16/32 16/32

Address space 
(size, model)

32 bits, flat 32 bits, flat 32 bits, flat 32 bits, flat 32/64 bits, flat

Data alignment Aligned Aligned Aligned Aligned Aligned

Data addressing 
modes

6 6 4 3 2

Integer registers 
(number, model, 
size)

15 GPR  
x 32 bits

8 GPR + SP, LR x 
32 bits

16 GPR  
x 32 bits

16 GPR  
x 32 bits

8 GPR + SP, RA  
x 32/64 bits

I/O Memory mapped Memory mapped Memory mapped Memory mapped Memory mapp
4
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I.2 Addressing Modes and Instruction Formats
Figure I.3 shows the data addressing modes supported by the desktop architectures. Since
one register that always has the value 0 when used in address modes, the absolute addres
with limited range can be synthesized using zero  as the base in displacement addressing. (Thi
register can be changed by ALU operations in PowerPC; it is always 0 in the other machine
Similarly, register-indirect addressing is synthesized by using displacement addressing with
offset of 0. Simplified addressing modes is one distinguishing feature of RISC architectures

Figure I.3 Summary of data addressing modes supported by the desktop architectures. PA-RISC also has short 
address versions of the offset addressing modes. MIPS V has indexed addressing for floating-point loads and
(These addressing modes are described in Figure 2.5, page 75.) 

Figure I.4 Summary of data addressing modes supported by the embedded architectures. SuperH and M32R 
have separate register indirect and register + offset addressing modes rather than just putting 0 in the offset 
ter mode. This increases the use of 16-bit instructions in the M32R, and it gives a wider set of addresses mod
ferent data transfer instructions in SuperH. To get greater addressing range, ARM and Thumb shift the offset 
2 bits if the data size is halfword or word. (These addressing modes are described in Figure 2.5, page 75.) 

 

Addressing mode Alpha MIPS V PA-RISC 2.0 PowerPC SPARC V9 

Register + offset (displacement or 
based)

X X X X X

Register + register (indexed) --- X (FP) X (Loads) X X

Register + scaled register (scaled) --- --- X --- ---

Register + offset and update register --- --- X X ---

Register + register and update register --- --- X X --- 

 

Addressing mode ARMv4 Thumb SuperH M32R MIPS16 

Register + offset (displacement or 
based)

X X X X X

Register + register (indexed) X X X --- ---

Register + scaled register (scaled) X --- --- --- ---

Register + offset and update register X --- --- --- ---

Register + register and update register X --- --- --- ---

Register indirect --- --- X X ---

Autoincrement, autodecrement X X X X ---

PC-relative data X X (loads) X --- X (loads) 
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Figure I.4 shows the data addressing modes supported by the embedded architectures. Un
desktop RISCs, these embedded machines do not reserve a register to contain 0. Although
have two to three simple addressing modes, ARM and SuperH have several, including fairl
plex calculations. ARM has an addressing mode that can shift one register by any amount,
to the other registers to form the address, and then update one register with this new addre

References to code are normally PC-relative, although jump register indirect is supported f
returning from procedures, for case statements, and for pointer function calls. One variation
PC-relative branch addresses are shifted left 2 bits before being added to the PC for the de
RISCs, thereby increasing the branch distance. This works because the length of all instru
for the desktop RISCs is 32 bits and instructions must be aligned on 32-bit words in memo
Embedded architectures with 16-bit-long instructions usually shift the PC-relative address b
for similar reasons. 

Figure I.5 shows the format of the desktop RISC instructions, which includes the size of the
address in the instructions. Each instruction set architecture uses these four primary instru
formats. Figure I.6 shows the six formats for the embedded RISC machines. The desire to 
smaller code size via 16-bit instructions leads to more instruction formats. 
6
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Figure I.5 Instruction formats for desktop RISC architectures. These four formats are found in all five architec
tures. (The superscript notation in this figure means the width of a field in bits.) Although the register fields ar
located in similar pieces of the instruction, be aware that the destination and two source fields are scrambled. 
main opcode, Opx = an opcode extension, Rd = the destination register, Rs1 = source register 1, Rs2 = sourc
2, and Const = a constant (used as an immediate or as an address). Unlike the other RISCs, Alpha has a for
immediates in arithmetic and logical operations that is different from the data transfer format shown here. It p
an 8-bit immediate in bits 20 to 13 of the RR format, with bits 12 to 5 remaining as an opcode extension. 

 
Opcode Register Constant

Alpha

MIPS

PowerPC

PA-RISC

SPARC

Alpha

MIPS

PowerPC

PA-RISC

SPARC

Alpha

MIPS

PowerPC

PA-RISC

SPARC

Alpha

MIPS

PowerPC

PA-RISC

SPARC

Register-register

Register-immediate

Branch

Jump/call

31 25 20 15 10 0

31 25 20 15 0

31 25

31 25

20

20

15 0

0

Rs15Rd5 Const16

Const5

Rs15 Const16

Opx6

Opx3

Opx11

Rs15 Const14 Opx2

O C

Opx2

O1 C1

Rs25 Rs15 Const11

Const19

Const26

Const24

Const21
1

Const30

Const16

Const16

Const16

Rs15 Rd5

Rd5 Rs15

Rs25 Rd5

Rd5 Opx6 Rs15 1 Const13

Rs15 Rs25 Rd5

Rd5 Rs15

Rs15

Rs25 Opx11

Opx6

Opx80Rd5 Opx6 Rs25

Op6

Op6

Opx11Rs15 Rs25 Rd5Op6

Opx11Rs15 Rs25 Rd5Op6

Op6

Op6

Op6

Op6

Op2

Op2

Op2

Op2

Rs15 Const21Op6

Rs15 Const21Op6

Op6

Op6

Op6

Op6

Op6

Op6

31 29 24 18 13 12 4

4

0

31 29 24 18 13 12 0

31 29 18 12 1 0

31 29 20 15 12 1 0

Opx5
/Rs25
7
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Figure I.6 Instruction formats for embedded RISC architectures. These six formats are found in all five archite
tures. The notation is the same as Figure I.5. Note the similarities in branch, jump, and call formats, and the d
in register-register, register-immediate, and data transfer formats. The differences result from whether the arch
has 8 or 16 registers, whether it is a 2- or 3-operand format, and whether the instruction length is 16 or 32 bit

Figure I.7 Summary of constant extension for desktop RISCs. The constants in the jump and call instructions o
MIPS are not sign-extended since they only replace the lower 28 bits of the PC, leaving the upper 4 bits unch
PA-RISC has no logical immediate instructions. 

  

 

Format: instruction category Alpha MIPS V PA-RISC 2.0 PowerPC SPARC V9 

Branch: all Sign Sign Sign Sign Sign

Jump/call: all Sign --- Sign Sign Sign

Register-immediate: data transfer Sign Sign Sign Sign Sign

Register-immediate: arithmetic Zero Sign Sign Sign Sign

Register-immediate: logical Zero Zero --- Zero Sign 

Register-register

Register-immediate

Data transfer

Branch

Jump

31 15 0

15 0

Opx4

Opx4

Opx4

Opx4

Opx4

Opx4

Opx4

Opx4

Opx4

Opx4

Opx4

Opx8Op8

Op4

Op4

Op5

Op6

Opx2

Op8

Op5

Op5

Op4

Op4

Op8

Op4

Op4

Op5

Op5

Op4

Op4

Op4

Op5

Op8

Op4

Op5

Op4

Op4

Op5

Rs14 Rd4 Rs24

Rd3Rs3

Rd4

Rd4

Opx4

Rs4

Rs4

Rd3 Rs13 Rs23

Rs14 Rd4 Const12

Rd3 Const8

Const8Rd4

Rd4 Rs4Opx4 Const16

Rd3 Rs3 Const5

Rs14 Rd4 Const12

Rs4 Const16

Rs4 Const16

Const5 Rs3

Const4

Rd3

Rd4

Rd4

Rs4

Rd3 Rs3 Const5

Const24

Const8

Const8

Rd4

Rd3 Const8

Const24

Const11

Const12

Const11

Const8

Arm

Thumb

Super H

M32R

MIPS16

Arm

Thumb

Super H

M32R

MIPS16

Arm

Thumb

Super H

M32R

MIPS16

Arm

Thumb

Super H

M32R

MIPS16

Arm

Thumb

Super H

M32R

MIPS16

3111927

10 7 4 1
31 0

31 0

31 0

31 0

11151927

15 010 7 4

15 010 7 4

15 010 7

15 010

11151927

27 23

27 23

Opx4 Op4 Const24

Op4

Op5

Op8

Opx5

Const24

Const26

Const11

Const12

Const11

Op6

Arm

Thumb

Super H

M32R

MIPS16

Call

31 0

Opcode Register Constant

27 23

31 025
8
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Figure I.8 Summary of constant extension for embedded RISCs. The 16-bit length instructions have much shorte
immediates than those of the desktop RISCs, typically only 5 to 8 bits. Most embedded RISCs, however, hav
to get a long address for procedure calls from two sequential halfwords. The constants in the jump and call in
tions of MIPS are not sign-extended since they only replace the lower 28 bits of the PC, leaving the upper 4 b
unchanged. The 8-bit immediates in ARM can be rotated right an even number of bits between 2 and 30, yiel
large range of immediate values. For example, all powers of 2 are immediates in ARM. 

Figures I.7 and I.8 show the variations in extending constant fields to the full width of the re
ters. In this subtle point, the RISCs are similar but not identical. 

I.3 Instructions: The MIPS Core Subset
The similarities of each architecture allow simultaneous descriptions, starting with the oper
equivalent to the MIPS core. 

MIPS Core Instructions

Almost every instruction found in the MIPS core is found in the other architectures, as Figur
through I.13 show. (For reference, definitions of the MIPS core instructions are found in Fig
4.42 of Chapter 4 and on the back inside cover of the book.) Instructions are listed under fo
egories: data transfer (Figure I.9); arithmetic, logical (Figure I.10); control (Figure I.11); and
floating point (Figure I.12). A fifth category (Figure I.13) shows conventions for register usa
and pseudoinstructions on each architecture. If a MIPS core instruction requires a short se
of instructions in other architectures, these instructions are separated by semicolons in Figu
through I.13. (To avoid confusion, the destination register will always be the leftmost opera
this Web extension, independent of the notation normally used with each architecture.) Fig
I.14 through I.17 show the equivalent listing for embedded RISCs. Note that floating point i
erally not defined for the embedded RISCs. 

Format: instruction category ARMv4 Thumb SuperH M32R MIPS16 

Branch: all Sign Sign Sign Sign Sign

Jump/call: all Sign Sign/Zero Sign Sign ---

Register-immediate: data transfer Zero Zero Zero Sign Zero

Register-immediate: arithmetic Zero Zero Sign Sign Zero/Sign

Register-immediate: logical Zero --- Zero Zero --- 
9
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Figure I.9 Desktop RISC data transfer instructions equivalent to MIPS core. A sequence of instructions to syn-
thesize a MIPS instruction is shown separated by semicolons. If there are several choices of instructions equi
MIPS core, they are separated by commas. For this figure, halfword is 16 bits and word is 32 bits. Note that in
LDS converts single-precision floating point to double precision and loads the entire 64-bit register. 

Figure I.10 Desktop RISC arithmetic-logical instructions equivalent to MIPS core. Dashes mean the operation is
not available in that architecture, or not synthesized in a few instructions. Such a sequence of instructions is 
separated by semicolons. If there are several choices of instructions equivalent to MIPS core, they are separ
commas. Note that in the "Arithmetic, logical" category all machines but SPARC use separate instruction mne
to indicate an immediate operand; SPARC offers immediate versions of these instructions but uses a single m
monic. (Of course these are separate opcodes!) 

Data transfer  
(instruction formats) 

R-I R-I R-I, R-R R-I, R-R R-I, R-R 

Instruction name Alpha MIPS V PA-RISC 2.0 PowerPC SPARC V9 

Load byte signed LDBU; 
SEXTB

LB LDB;  
EXTRW,S 31,8

LBZ; 
EXTSB

LDSB

Load byte unsigned LDBU LBU LDB, LDBX, LDBS LBZ LDUB

Load halfword signed LDWU; 
SEXTW

LH LDH;  
EXTRW,S 31,16

LHA LDSH

Load halfword unsigned LDWU LHU LDH, LDHX, LDHS LHZ LDUH

Load word LDLS LW LDW, LDWX, LDWS LW LD

Load SP float LDS* LWC1 FLDWX, FLDWS LFS LDF

Load DP float LDT LDC1 FLDDX, FLDDS LFD LDDF

Store byte STB SB STB, STBX, STBS STB STB

Store halfword STW SH STH, STHX, STHS STH STH

Store word STL SW STW, STWX, STWS STW ST

Store SP float STS SWC1 FSTWX, FSTWS STFS STF

Store DP float STT SDC1 FSTDX, FSTDS STFD STDF

Read, write special registers MF_, MT_ MF, MT_ MFCTL, MTCTL MFSPR, 
MF_, 
MTSPR, 
MT_

RD, WR, 
RDPR, WRPR, 
LDXFSR, 
STXFSR

Move integer to FP register ITOFS MFC1/ 
DMFC1

STW; FLDWX STW; LDFS ST; LDF

Move FP to integer register FTTOIS MTC1/ 
DMTC1

FSTWX; LDW STFS; LW STF; LD 

 

Arithmetic, logical  
(instruction formats) 

R-R, R-I R-R, R-I R-R, R-I R-R, R-I R-R, R-I 

Instruction name Alpha MIPS V PA-RISC 2.0 PowerPC SPARC V9 

Add ADDL ADDU, ADDU ADDL, LD0, 
ADDI, UADDCM

ADD, ADDI ADD

Add (trap if overflow) ADDLV ADD, ADDI ADDO, ADDIO ADDO;  
MCRXR; BC

ADDcc; TVS

Sub SUBL SUBU SUB, SUBI SUBF SUB

Sub (trap if overflow) SUBLV SUB SUBTO, SUBIO SUBF/oe SUBcc; TVS

Multiply MULL MULT,  
MULTU

SHiADD; ...;  
(i=1,2,3)

MULLW,  
MULLI

MULX

Multiply (trap if overflow) MULLV --- SHiADDO; ...; --- ---
10



Figure I.11 Desktop RISC control instructions equivalent to MIPS core. If there are several choices of instruc-
tions equivalent to MIPS core, they are separated by commas. 

Divide --- DIV, DIVU DS; ...; DS DIVW DIVX

Divide (trap if overflow) --- --- --- --- ---

And AND AND, ANDI AND AND, ANDI AND

Or BIS OR, ORI OR OR, ORI OR

Xor XOR XOR, XORI XOR XOR, XORI XOR

Load high part register LDAH LUI LDIL ADDIS SETHI (B 
fmt.)

Shift left logical SLL SLLV, SLL DEPW, Z 
31-i,32-i

RLWINM SLL

Shift right logical SRL SRLV, SRL EXTRW, U 31, 
32-i

RLWINM 
32-i

SRL

Shift right arithmetic SRA SRAV, SRA EXTRW, S 31, 
32-i

SRAW SRA

Compare CMPEQ, 
CMPLT, 
CMPLE

SLT/U,  
SLTI/U

COMB CMP(I)CLR SUBcc r0,... 

Control  
(instruction formats) 

B, J/C B, J/C B, J/C B, J/C B, J/C 

Instruction name Alpha MIPS V PA-RISC 2.0 PowerPC SPARC V9 

Branch on integer  
compare

B_  
(<, >, 
<=, >=, 
=, not=)

BEQ, BNE, 
B_Z (<, >, 
<=, >=)

COMB, COMIB BC BR_Z, BPcc 
(<, >, <=, 
>=, =, not=)

Branch on floating-  
point compare

FB_(<, >, 
<=, >=, 
=, not=)

BC1T, BC1F FSTWX f0; LDW 
t; BB t

BC FBPfcc (<, >, 
<=, >=, =, 
...)

Jump, jump register BR, JMP J, JR BL r0, BLR r0 B, BCLR, 
BCCTR

BA, JMPL 
r0,...

Call, call register BSR JAL, JALR BL, BLE BL, BLA, 
BCLRL, 
BCCTRL

CALL, JMPL

Trap CALL_PAL 
GENTRAP

BREAK BREAK TW, TWI Ticc, SIR

Return from interrupt CALL_PAL 
REI

JR; ERET RFI, RFIR RFI DONE, RETRY, 
RETURN 

(CONTINUED)

Arithmetic, logical  
(instruction formats) 

R-R, R-I R-R, R-I R-R, R-I R-R, R-I R-R, R-I 

Instruction name Alpha MIPS V PA-RISC 2.0 PowerPC SPARC V9 
11
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Figure I.12 Desktop RISC ßoating-point instructions equivalent to MIPS core. Dashes mean the operation is no
available in that architecture, or not synthesized in a few instructions. If there are several choices of instructio
equivalent to MIPS core, they are separated by commas. 

Figure I.13 Conventions of desktop RISC architectures equivalent to MIPS core. 

Floating point  
(instruction formats) 

R-R R-R R-R R-R R-R 

Instruction name Alpha MIPS V PA-RISC 2.0 PowerPC SPARC V9 

Add single, double ADDS, 
ADDT

ADD.S,  
ADD.D

FADD  
FADD/dbl

FADDS,  
FADD

FADDS,  
FADDD

Subtract single, double SUBS, 
SUBT

SUB.S,  
SUB.D

FSUB  
FSUB/dbl

FSUBS,  
FSUB

FSUBS,  
FSUBD

Multiply single, double MULS, 
MULT

MUL.S,  
MUL.D

FMPY  
FMPY/dbl

FMULS,  
FMUL

FMULS,  
FMULD

Divide single, double DIVS, 
DIVT

DIV.S,  
DIV.D

FDIV,  
FDIV/dbl

FDIVS,  
FDIV

FDIVS,  
FDIVD

Compare CMPT_ 
(=, <, 
<=, UN)

C_.S, C_.D 
(<, >, <=, 
>=, =, ...)

FCMP,  
FCMP/dbl  
(<, =, >)

FCMP FCMPS,  
FCMPD

Move R-R ADDT 
Fd,F31, 
Fs

MOV.S, 
MOV.D

FCPY FMV FMOVS/D/Q

Convert  
(single,double,integer)  
to (single,double,integer)

CVTST,  
CVTTS,  
CVTTQ,  
CVTQS,  
CVTQT

CVT.S.D,  
CVT.D.S,  
CVT.S.W,  
CVT.D.W,  
CVT.W.S,  
CVT.W.D

FCNVFF,s,d  
FCNVFF,d,s  
FCNVXF,s,s  
FCNVXF,d,d  
FCNVFX,s,s  
FCNVFX,d,s

---,  
FRSP,  
---,  
FCTIW,  
---,  
---

FSTOD,  
FDTOS,  
FSTOI,  
FDTOI,  
FITOS,  
FITOD 

Conventions Alpha MIPS V PA-RISC 2.0 PowerPC SPARC V9 

Register with value 0 r31 (source) r0 r0 r0 
(addressing)

r0

Return address register(any) r31 r2, r31 link 
(special)

r31

No-op LDQ_U r31, 
...

SLL r0, r0, 
r0

OR r0, r0, 
r0

ORI r0, r0, 
#0

SETHI r0,0

Move R-R integer BIS ..., 
r31, ...

ADD ..., r0, 
...

OR ..., r0, 
...

OR rx, ry, 
ry

OR ..., r0, 
...

Operand order OP Rs1, Rs2, 
Rd

OP Rd, Rs1, 
Rs2

OP Rs1, Rs2, 
Rd

OP Rd, Rs1, 
Rs2

OP Rs1, Rs2, 
Rd 
12



ned for 
ures, so 
in 

ons is 
 sepa-

, so 
in 
 16-bit 
the 
Figure I.14 Embedded RISC data transfer instructions equivalent to MIPS core. A sequence of instructions to 
synthesize a MIPS instruction is shown separated by semicolons. Note that floating point is generally not defi
the embedded RISCs. Thumb and MIPS16 are just 16-bit instruction subsets of the ARM and MIPS architect
machines can switch modes and execute the full instruction set. We use --- 1 to show sequences that are available 
32-bit mode but not 16-bit mode in Thumb or MIPS16. 

Figure I.15 Embedded RISC arithmetic-logical instructions equivalent to MIPS core. Dashes mean the opera-
tion is not available in that architecture, or not synthesized in a few instructions. Such a sequence of instructi
shown separated by semicolons. If there are several choices of instructions equivalent to MIPS core, they are
rated by commas. Thumb and MIPS16 are just 16-bit instruction subsets of the ARM and MIPS architectures
machines can switch modes and execute the full instruction set. We use --- 1 to show sequences that are available 
32-bit mode but not 16-bit mode in Thumb or MIPS16. The superscript 2 shows new instructions found only in
mode of Thumb or MIPS16, such as CMP/I 2. ARM includes shifts as part of every data operation instruction, so 
shifts with superscript 3 are just a variation of a move instruction, such as LSR3. 

Instruction name ARMv4 Thumb SuperH M32R MIPS16 

Data transfer  
(instruction formats) 

DT DT DT DT DT 

Load byte signed LDRSB LDRSB MOV.B LDB LB

Load byte unsigned LDRB LDRB MOV.B; EXTU.B LDUB LBU

Load half word signed LDRSH LDRSH MOV.W LDH LH

Load half word unsigned LDRH LDRH MOV.W; EXTU.W LDUH LHU

Load word LDR LDR MOV.L LD LW

Store byte STRB STRB MOV.B STB SB

Store half word STRH STRH MOV.W STH SH

Store word STR STR MOV.L ST SW

Read, write special registers MRS, MSR --- 1 LDC, STC MVFC, MVTC MOVE 

 

Arithmetic, logical  
(instruction formats) 

R-R, R-I R-R, R-I R-R, R-I R-R, R-I R-R, R-I 

Instruction name ARMv4 Thumb SuperH M32R MIPS16 

Add ADD ADD ADD ADD, ADDI, 
ADD3

ADDU, ADDIU

Add (trap if overflow) ADDS; 
SWIVS

ADD; BVC 
.+4; SWI

ADDV ADDV, 
ADDV3

--- 1

Subtract SUB SUB SUB SUB SUBU

Subtract (trap if overflow) SUBS; 
SWIVS

SUB; BVC 
.+1; SWI

SUBV SUBV --- 1

Multiply MUL MUL MUL MUL MULT,  
MULTU

Multiply (trap if overflow)     ---

Divide --- --- DIV1, 
DIVoS,DIVoU

DIV, DIVU DIV, DIVU

Divide (trap if overflow) --- ---   ---

And AND AND AND AND, AND3 AND

Or ORR ORR OR OR, OR3 OR

Xor EOR EOR XOR XOR, XOR3 XOR
13
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Figure I.16 Embedded RISC control instructions equivalent to MIPS core. Thumb and MIPS16 are just 16-bit 
instruction subsets of the ARM and MIPS architectures, so machines can switch modes and execute the full 
tion set. We use --- 1 to show sequences that are available in 32-bit mode but not 16-bit mode in Thumb or MIP
The superscript 2 shows new instructions found only in 16-bit mode of Thumb or MIPS16, such as BTEQZ2. 

Figure I.17 Conventions of embedded RISC instructions equivalent to MIPS core. 

Every architecture must have a scheme for compare and conditional branch, but despite al
similarities, each of these architectures has found a different way to perform the operation.

Load high part register --- ---  SETH --- 1

Shift left logical LSL3 LSL2 SHLL, SHLLn SLL, 
SLLI, 
SLL3

SLLV, SLL

Shift right logical LSR3 LSR2 SHRL, SHRLn SRL, 
SRLI, 
SRL3

SRLV, SRL

Shift right arithmetic ASR3 ASR2 SHRA, SHAD SRA, 
SRAI, 
SRA3

SRAV, SRA

Compare CMP,CMN,  
TST,TEQ

CMP, 
CMN,  
TST

CMP/cond,  
TST

CMP/I, 
CMPU/I

CMP/I 2, 
SLT/I,  
SLT/IU  

Control  
(instruction formats) 

B, J, C B, J, C B, J, C B, J, C B, J, C 

Instruction name ARMv4 Thumb SuperH M32R MIPS16 

Branch on integer compare B/cond B/cond BF, BT BEQ, BNE, 
BC,BNC, 
B__Z

BEQZ2, 
BNEZ2, 
BTEQZ2, 
BTNEZ2

Jump, jump register MOV 
pc,ri

MOV pc,ri BRA, JMP BRA, JMP B 2, JR

Call, call register BL BL BSR, JSR BL, JL JAL, JALR, 
JALX2

Trap SWI SWI TRAPA TRAP BREAK

Return from interrupt MOVS pc, 
r14

--- 1 RTS RTE --- 1 

Conventions ARMv4
 

Thumb SuperH M32R MIPS16 

Return address reg. R14 R14 PR (special) R14 RA (special)

No-op MOV 
r0,r0

MOV r0,r0 NOP NOP SLL r0, r0

Operands, order OP Rd, 
Rs1, 
Rs2

OP Rd, Rs1 OP Rs1, Rd OP Rd, Rs1 OP Rd, Rs1, Rs2  

(CONTINUED)

Arithmetic, logical  
(instruction formats) 

R-R, R-I R-R, R-I R-R, R-I R-R, R-I R-R, R-I 

Instruction name ARMv4 Thumb SuperH M32R MIPS16 
14
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Compare and Conditional Branch

SPARC uses the traditional four condition code bits stored in the program status word: negative, 
zero, carry, and overflow. They can be set on any arithmetic or logical instruction; unlike earli
architectures, this setting is optional on each instruction. An explicit option leads to fewer p
lems in pipelined implementation. Although condition codes can be set as a side effect of a
ation, explicit compares are synthesized with a subtract using r0  as the destination. SPARC 
conditional branches test condition codes to determine all possible unsigned and signed re
Floating point uses separate condition codes to encode the IEEE 754 conditions, requiring
ing-point compare instruction. Version 9 expanded SPARC branches in four ways: a separa
of condition codes for 64-bit operations; a branch that tests the contents of a register and br
if the value is =, not=, <, <=, >=, or <= 0 (see MIPS below); three more sets of floating-poin
dition codes; and branch instructions that encode static branch prediction. 

PowerPC also uses four condition codes: less than, greater than, equal, and summary overflow, 
but it has eight copies of them. This redundancy allows the PowerPC instructions to use di
condition codes without conflict, essentially giving PowerPC eight extra 4-bit registers. Any
these eight condition codes can be the target of a compare instruction and any can be the s
a conditional branch. The integer instructions have an option bit that behaves as if the intege
followed by a compare to zero that sets the first condition "register." PowerPC also lets the s
"register" be optionally set by floating-point instructions. PowerPC provides logical operatio
among these eight 4-bit condition code registers (CRAND, CROR, CRXOR, CRNAND, CRNOR, CREQV), 
allowing more complex conditions to be tested by a single branch. 

MIPS uses the contents of registers to evaluate conditional branches. Any two registers ca
compared for equality (BEQ) or inequality (BNE), and then the branch is taken if the condition 
holds. The set-on-less-than instructions (SLT, SLTI, SLTU, SLTIU ) compare two operands and
then set the destination register to 1 if less and to 0 otherwise. These instructions are enou
synthesize the full set of relations. Because of the popularity of comparisons to 0, MIPS inc
special compare-and-branch instructions for all such comparisons: greater than or equal to
(BGEZ), greater than zero (BGTZ), less than or equal to zero (BLEZ), and less than zero (BLTZ). Of 
course, equal and not equal to zero can be synthesized using r0  with BEQ and BNE. Like SPARC, 
MIPS I uses a condition code for floating point with separate floating-point compare and br
instructions; MIPS IV expanded this to eight floating-point condition codes, with the float-
ing-point comparisons and branch instructions specifying the condition to set or test. 

Alpha compares (CMPEQ, CMPLT, CMPLE, CMPULT, CMPULE) test two registers and set a third t
1 if the condition is true and to 0 otherwise. Floating-point compares (CMTEQ, CMTLT, CMTLE, 

CMTUN) set the result to 2.0 if the condition holds and to 0 otherwise. The branch instruction 

compare one register to 0 (BEQ, BGE, BGT, BLE, BLT, BNE) or its least significant bit to 0 
(BLBC, BLBS) and then branch if the condition holds. 

PA-RISC has many branch options, which we'll see in section I.8. The most straightforward
compare and branch instruction (COMB), which compares two registers, branches depending on
standard relations, and then tests the least-significant bit of the result of the comparison. 

ARM is similar to SPARC, in that it provides four traditional condition codes that are optiona
set. CMP subtracts one operand from the other and the difference sets the condition codes. C
pare negative (CMN) adds one operand to the other and the sum sets the condition codes. TST per-
forms logical AND on the two operands to set all condition codes but overflow, while TEQ uses 
exclusive OR to set the first three condition codes. Like SPARC, the conditional version of 
ARM branch instruction tests condition codes to determine all possible unsigned and signe
15
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tions. As we shall see in section I.9, one unusual feature of ARM is that every instruction ha
option of executing conditionally depending on the condition codes. (This bears similarities 
annulling option of PA-RISC, seen in section I.8.) 

Not suprisingly, Thumb follows ARM. Differences are that setting condition codes are not 
optional, the TEQ instruction is dropped, and there is no conditional execution of instructions.

The Hitachi SuperH uses a single T-bit condition that is set by compare instructions. Two b
instructions decide to branch if either the T bit is 1 (BT) or the T bit is 0 (BF). The two flavor
branch allow fewer comparison instructions. 

Mitsubishi M32R also offers a single condition code bit (C) used for signed and unsigned co
isons (CMP, CMPI, CMPU, CMPUI ) to see if one register is less than the other or not, similar to
MIPS set-on-less-than instructions. Two branch instructions test to see if the C bit is 1 or 0: BC and 
BNC. The M32R also includes instructions to branch on equality or inequality of registers (BEQ 
and BNE) and all relations of a register to 0 (BGEZ, BGTZ, BLEZ, BLTZ, BEQZ , BNEZ). Unlike BC 
and BNC,these last instructions are all 32 bits wide. 

MIPS16 keeeps set-on-less-than instructions (SLT, SLTI, SLTU, SLTIU ), but instead of putting 
the result in one of the eight registers, it is placed in a special register named T. MIPS16 is 
implemented in machines that also have the full 32-bit MIPS instructions and registers; hen
register T is really register 24 in the full MIPS architecture. The MIPS16 branch instructions
to see if a register is or is not equal to zero (BEQZ and BNEZ). There are also instructions that 
branch if register T is or is not equal to zero (BTEQZ and BTNEZ). To test if two registers are equal
MIPS added compare instructions (CMP, CMPI ) that compute the exclusive OR of two registers
and place the result in register T. Compare was added since MIPS16 left out instructions to
pare and branch if registers or equal or not (BEQ and BNE). 

Figures I.18 and I.19 summarize the schemes used for conditional branches. 

Figure I.18 Summary of Þve desktop RISC approaches to conditional branches. Floating-point branch on 
PA-RISC is accomplished by copying the FP status register into an integer register and then using the branch
instruction to test the FP comparison bit. Integer compare on SPARC is synthesized with an arithmetic instruct
sets the condition codes using r0 as the destination.

 Alpha MIPS V PA-RISC 2.0 PowerPC SPARC V9 

Number of condition code bits  
(integer and FP)

0 8 FP 8 FP 8 x 4 both 2 x 4 integer,  
4 x 2 FP

Basic compare instructions  
(integer and FP)

1 integer,  
1 FP

1 integer,  
1 FP

4 integer,  
2 FP

4 integer,  
2 FP

1 FP

Basic branch instructions  
(integer and FP)

1 2 integer,  
1 FP

7 integer 1 both 3 integer,  
1 FP

Compare register with register/  
const and branch

--- =, not= =, not=, <, <=, >, 
>=, even, odd

--- ---

Compare register to zero and  
branch

=, not=, <, 
<=, >, >=, 
even, odd

=, not=, <, <=, 
>, >=

=, not=, <, <=, >, 
>=, even, odd

--- =, not=, <, <=, 
>, >=
16
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Figure I.19 Summary of Þve embedded RISC approaches to conditional branches. 

I.4 Instructions: Multimedia Extensions of the 
Desktop/Server RISCs
Since every desktop microprocessor by definition has its own graphical displays, as transis
budgets increased it was inevitable that support would be added for graphics operations. M
graphics systems use 8 bits to represent each of the three primary colors plus 8 bits for a l
of a pixel (see Chapter 1). 

The addition of speakers and microphones for teleconferencing and video games suggeste
port of sound as well. Audio samples need more than 8 bits of precision, but 16 bits are suf

Every microprocessor has special support so that bytes and halfwords take up less space 
stored in memory, but due to the infrequency of arithmetic operations on these data sizes in
integer programs, there is little support beyond data transfers. The architects of the Intel i8
which was justified as a graphical accelerator within the company, recognized that many gr
and audio applications would perform the same operation on vectors of these data. Althoug
vector unit was beyond the transistor budget of the i860 in 1989, by partitioning the carry c
within a 64-bit ALU (see Chapter 4), it could perform simultaneous operations on short vect
eight 8-bit operands, four 16-bit operands, or two 32-bit operands. The cost of such partitio
ALUs was small. Applications that lend themselves to such support include MPEG (video),
games like DOOM (3D graphics), Adobe Photoshop (digital photography), and teleconferen
(audio and image processing). 

Like a virus, over time such multimedia support has spread to nearly every desktop microp
sor. HP was the first successful desktop RISC to include such support. As we shall see, thi
spread unevenly. The PowerPC is the only holdout, and rumors are that it is "running a feve

These extensions have been called subword parallelism, vector, or SIMD (single instruction
multiple data) (see Chapter 9). Since Intel marketing uses SIMD to describe the MMX exte
of the the 80x86, that may become the popular name. Figure I.20 summarizes the support 
architecture. 

 ARMv4 Thumb SuperH M32R MIPS16 

Number of condition code bits 4 4 1 1 1

Basic compare instructions 4 3 2 2 2

Basic branch instructions 1 1 2 3 2

Compare register with register/  
const and branch

--- --- =, >, >= =, not= ---

Compare register to zero and  
branch

--- ---  =, >, >= =, not=, <, 
<=, >, >=

=, not= 
17
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Figure I.20 Summary of multimedia support for desktop RISCs. B stands for byte (8 bits), H for halfword (16 
bits), and W for word (32 bits). Thus 8B means an operation on 8 bytes in a single instruction. Pack and unpa
the notation 2*2W to mean 2 operands each with 2 words. Note that MDMX has vector/scalar operations, wh
scalar is specified as an element of one of the vector registers. This table is a simplification of the full multime
architectures, leaving out many details. For example, MIPS MDMX includes instructions to multiplex between
operands, HP MAX2 includes an instruction to calculate averages, and SPARC VIS includes instructions to s
ters to constants. Also, this table does not include the memory alignment operation of MDMX, MAX, and VIS

From Figure I.20 you can see that in general MIPS MDMX works on 8 bytes or 4 halfwords
instruction, HP PA-RISC MAX2 works on 4 halfwords, SPARC VIS works on 4 halfwords or
words, and Alpha doesn't do much. The Alpha MAX operations are just byte versions of com
min, max, and absolute difference, leaving it up to software to isolate fields and perform pa
adds, subtracts, and multiplies on bytes and halfwords. MIPS also added operations to wo
two 32-bit floating-point operands per cycle, but they are considered part of MIPS V and no
ply multimedia extensions (see section I.7). 

One feature not generally found in general-purpose microprocessors is saturating operatio
uration means that when a calculation overflows, the result is set to the largest positive num
most negative number, rather than a modulo calculation as in two's complement arithmetic
monly found in digital signal processors (see the next section), these saturating operations
helpful in routines for filtering. 

These machines largely used existing register sets to hold operands: integer registers for A
and HP PA-RISC and floating-point registers for MIPS and Sun. Hence data transfers are a
plished with standard load and store instructions. MIPS also added a 192-bit (3*64) wide re
to act as an accumulator for some operations. By having 3 times the native data width, it ca

Instruction category Alpha MAX MIPS MDMX PA-RISC MAX2 Power PC SPARC VIS 

Add/subtract  8B,4H 4H  4H,2W

Saturating add/sub  8B,4H 4H   

Multiply  8B,4H   4B/H

Compare 8B (>=) 8B,4H (=,<,<=)   4H,2W 
(=,not=,>,<=)

Shift right/left  8B,4H 4H   

Shift right arithmetic  4H 4H   

Multiply and add  8B,4H   

Shift and add (saturating)   4H   

And/or/xor 8B,4H,2W 8B,4H,2W 8B,4H,2W  8B,4H,2W

Absolute difference 8B    8B

Max/min 8B, 4W 8B,4H    

Pack (2n bits --> n bits) 2W->2B, 
4H->4B

2*2W->4H,  
2*4H->8B

2*4H->8B  2W->2H,  
2W->2B, 
4H->4B

Unpack/merge 2B->2W, 
4B->4H

2*4B->8B,  
2*2H->4H

  4B->4H,  
2*4B->8B

Permute/shuffle  8B,4H 4H   

Register sets Integer Fl. Pt. + 192b 
Acc.

Integer  Fl. Pt. 
18
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partitioned to accumulate either 8 bytes with 24 bits per field or 4 halfwords with 48 bits per 
This wide accumulator can be used for add, subtract, and multiply/add instructions. MIPS c
performance advantages of 2 to 4 times for the accumulator. 

Perhaps the surprising conclusion of this table is the lack of consistency. The only operatio
found on all four are the logical operations (AND, OR, XOR), which do not need a partitioned ALU.
If we leave out the frugal Alpha, then the only other common operations are parallel adds an
tracts on 4 halfwords. 

Each manufacturer states that these are instructions intended to be used in hand-optimized
tine libraries, an intention likely to be followed, as a compiler that works well with all deskto
RISCs' multimedia extensions would be challenging. 

I.5 Instructions: Digital Signal Processing Extensions of the 
Embedded RISCs
One feature found in every digital signal processor (DSP) architecture is support for intege
multiply-accumulate. The multiplies tend to be on shorter words than regular integers, such
16-bits, and the accumulator tends to be longer words, such as 64 bits. The reason for mu
ply-accumulate is to efficiently implement digital filters, common in DSP applications. Since
Thumb and MIPS16 are subset architectures, they do not provide such support. Instead, p
mers should use the DSP or multimedia extensions found in the 32-bit mode instructions of
and MIPS V. 

Figure I.21 shows the size of the multiply, the size of the accumulator, and the operations a
instruction names for the embedded RISCs. Machines with accumulator sizes greater than
less than 64 bits will force the upper bits to remain as the sign bits, thereby "saturating" the 
set to maximum and minimum fixed-point values if the operations overflow. 

Figure I.21 Summary of Þve embedded RISC approaches to multiply-accumulate. 
 

 ARMv4 Thumb SuperH M32R MIPS16 

Size of multiply 32B x 32B --- 32B x 32B, 16B x 
16B

32B x 16B, 16B x 
16B

---

Size of accumulator 32B/64B --- 32B/42B, 48B/64B 56B ---

Accumulator name Any GPR or pairs 
of GPRs

--- MACH, MACL ACC ---
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I.6 Instructions: Common Extensions to MIPS Core
Figures I.22 through I.28 list instructions not found in Figures I.9 through I.17 in the same f
categories. Instructions are put in these lists if they appear in more than one of the standar
tectures. The instructions are defined using the hardware description language defined in F
I.29. 

Figure I.22 Data transfer instructions not found in MIPS core but found in two or more of the Þve desktop 
architectures. The load linked/store conditional pair of instructions gives Alpha and MIPS atomic operations fo
semaphores, allowing data to be read from memory, modified, and stored without fear of interrupts or other m
accessing the data in a multiprocessor (see Chapter 9). Prefetching in the Alpha to external caches is accomplishe
with FETCH and FETCH_M; on-chip cache prefetches use LD_Q A, R31,  and LD_Y A. F31 is used in the 
Alpha 21164 (see Bhandarkar [1995], p. 190). 

Operations 32B/64B product+ 
64B accumulate  
signed/unsigned

--- 32B product + 
42B/32B accumulate 
(operands in 
memory);  
64B product + 
64B/48B accumulate 
(operands in 
memory);  
clear MAC

32B/48B 
product+ 64B 
accumulate, 
round, move

---

Corresponding instruction 
names

MLA, SMLAL, 
UMLAL

--- MAC, MACS, 
MAC.L, MAC.LS,  
CLRMAC

MACHI/MACLO, 
MACWHI/ 
MACWLO, RAC, 
RACH,   
MVFACHI/  
MVFACLO, 
MVTACHI/  
MVTACLO

--- 

 

Name DeÞnition Alpha MIPS V PA-RISC 2.0 Power PC SPARC V9

Atomic swap R/M  
(for locks and 
semaphores)

Temp<---Rd;  
Rd<---Mem[x];  
Mem[x]<---Temp

LDL/Q_L; 
STL/Q_C

LL; SC --- (see 
I.8)

LWARX;  
STWCX

CASA,  
CASX

Load 64-bit integer Rd<---64 Mem[x] LDQ LD LDD LD LDX

Store 64-bit integer Mem[x]<---64 Rd STQ SD STD STD STX

Load 32-bit integer  
unsigned

Rd32..63<---32 Mem[x];  
Rd0..31<---32 0

LDL; 
EXTLL

LWU LDW LWZ LDUW

Load 32-bit integer  
signed

Rd32..63<---32 Mem[x];  
Rd0..31<---32 Mem[x]032

LDL LW LDW; 
EXTRD,S 
63,8

LWA LDSW

Prefetch Cache[x]<---hint FETCH, 
FETCH_M*

PREF, 
PREFX

LDD, r0 
LDW, r0

DCBT,  
DCBTST

PRE- 
FETCH

(CONTINUED)

 ARMv4 Thumb SuperH M32R MIPS16 
20



Figure I.23 Arithmetic-logical instructions not found in MIPS core but found in two or more of the Þve desk-
top architectures. 

Load coprocessor Coprocessor<--- Mem[x]--- LWCi CLDWX, 
CLDWS

--- ---

Store coprocessor Mem[x]<--- Coprocessor--- SWCi CSTWX, 
CSTWS

--- ---

Endian (Big/Little Endian?) Either Either Either Either Either

Cache flush (Flush cache block at this 
address)

ECB CP0op FDC, FIC DCBF FLUSH

Shared memory  
synchronization

(All prior data transfers 
complete before next 
data transfer may start)

WMB SYNC SYNC SYNC MEMBAR 

Name DeÞnition Alpha MIPS V PA-RISC 2.0 PowerPC SPARC V9

64-bit integer 
arithmetic ops

Rd<---64Rs1 op64 Rs2 ADD, SUB, 
MUL

DADD, 
DSUB  
DMULT, 
DDIV

ADD, 
SUB,  
SHLADD,  
DS

ADD, 
SUBF, 
MULLD, 
DIVD

ADD, SUB, 
MULX, 
S/UDIVX

64-bit integer logical 
ops

Rd<---64Rs1 op64 Rs2 AND, OR, 
XOR

AND, 
OR, XOR

AND, OR, 
XOR

AND, OR, 
XOR

AND, OR, 
XOR

64-bit shifts Rd<---64Rs1 op64 Rs2 SLL, SRA, 
SRL

DSLL/V, 
DSRA/V, 
DSRL/V

DEPD,Z 
EXTRD,S  
EXTRD,U

SLD, 
SRAD, 
SRLD

SLLX, 
SRAX, 
SRLX

Conditional move if (cond) Rd<---Rs CMOV_ MOVN/Z SUBc, n; 
ADD

--- MOVcc, 
MOVr

Support for 
multiword integer 
add

CarryOut,Rd <--- Rs1 + 
Rs2 + OldCarryOut

--- ADU; 
SLTU; 
ADDU,  
DADU; 
SLTU; 
DADDU

ADDC ADDC, 
ADDE.

ADDcc

Support for 
multiword integer 
sub

CarryOut, Rd <--- Rs1  
Rs2 + OldCarryOut

--- SUBU; 
SLTU; 
SUBU,  
DSUBU; 
SLTU; 
DSUBU

SUBB SUBFC, 
SUBFE.

SUBcc

And not Rd <--- Rs1 & ~(Rs2) BIC --- ANDCM ANDC ANDN

Or not Rd <--- Rs1 | ~(Rs2) ORNOT --- --- ORC ORN

Add high  
immediate

Rd0..15<---Rs10..15 +  
(Const<<16);

--- --- ADDIL 
(R---I)

ADDIS  
(R-I)

---

Coprocessor  
operations

(Defined by coprocessor)--- COPi COPR,i --- IMPDEPi  

(CONTINUED)

Name DeÞnition Alpha MIPS V PA-RISC 2.0 Power PC SPARC V9
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Figure I.24 Control instructions not found in MIPS core but found in two or more of the Þve desktop 
architectures. 

Figure I.25 Floating-point instructions not found in MIPS core but found in two or more of the Þve desktop 
architectures. 

Figure I.26 Data transfer instructions not found in MIPS core but found in two or more of the Þve embedded 
architectures.We use --- 1 to show sequences that are available in 32-bit mode but not 16-bit mode in Thumb
MIPS16. 

Name DeÞnition Alp
ha

MIPS V PA-RISC 
2.0

PowerPC
 

SPARC 
V9

Optimized 
delayed  
branches

(Branch not always delayed) ---BEQL, BNEL, B_ZL 
(<, >, <=, >=)

COMBT, n, 
COMBF, n

--- BPcc, A, 
FPBcc, A

Conditional trap if (COND) {R31<---PC; 
PC<---0..0#i}

--- T_,,T_I (=, not=, 
<, >, <=, >=)

SUBc, n; 
BREAK

TW, TD, 
TWI, TDI

Tcc

No. control 
registers

Misc. regs (virtual  
memory, interrupts,...)

6 equiv. 12 32 33 29 

Name DeÞnition Alpha MIPS V PA-RISC 
2.0 

PowerPC SPARC 
V9 

Multiply and add Fd <--- ( Fs1 x Fs2) + Fs3 --- MADD.S/D FMPYFADD 
sgl/dbl

FMADD/S  

Multiply and sub Fd <--- ( Fs1 x Fs2) - Fs3 --- MSUB.S/D FMSUB/S  

Neg mult and add Fd <--- -(( Fs1 x Fs2) + Fs3)--- NMADD.S/D FMPYFNEG 
sgl/dbl

FNMADD/S  

Neg mult and sub Fd <--- -(( Fs1 x Fs2) - Fs3)--- NMSUB.S/D  FNMSUB/S  

Square root Fd <--- SQRT(Fs) SQRT_ SQRT.S/D FSQRT 
sgl/dbl

FSQRT/S FSQRTS/
D

Conditional move if (cond) Fd<---Fs FCMOV_ MOVF/T, 
MOVF/T.S/D

FTEST; 
FCPY

--- FMOVcc

Negate Fd <--- Fs ^ x80000000 CPYSN NEG.S/D FNEG 
sgl/dbl

FNEG FNEGS/D
/Q

Absolute value Fd <--- Fs & x7FFFFFFF --- ABS.S/D FABS/dbl FABS FABSS/
D/Q 

Name DeÞnition ARMv4 Thumb SuperH M32R MIPS16

Atomic swap R/M  
(for semaphores)

Temp<---Rd;  
Rd<---Mem[x];  
Mem[x]<---Temp

SWP, SWPB --- 1 (see 
TAS)

LOCK; 
UNLOCK

--- 1

Memory 
management unit

Paged address translation Via  
coprocessor 
instructions

--- 1 LDTLB  --- 1

Endian (Big/Little Endian?) Either Either Either Big Either 
22
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Figure I.27 Arithmetic-logical instructions not found in MIPS core but found in two or more of the Þve embed-
ded architectures. We use --- 1 to show sequences that are available in 32-bit mode but not in 16-bit mode in 
Thumb or MIPS16. The superscript 2 shows new instructions found only in 16-bit mode of Thumb or MIPS16
as NEG2. 

Figure I.28 Control information in the Þve embedded architectures.

Although most of the categories are self-explanatory, a few bear comment: 

• The "atomic swap" row means a primitive that can exchange a register with memory w
interruption. This is useful for operating system semaphores in a uniprocessor as well
multiprocessor synchronization (see section 8.5). 

• The 64-bit data transfer and operation rows show how MIPS, PowerPC, and SPARC d
64-bit addressing and integer operations. SPARC simply defines all register and addr
operations to be 64 bits, adding only special instructions for 64-bit shifts, data transfer
branches. MIPS includes the same extensions, plus it adds separate 64-bit signed ari
instructions. PowerPC adds 64-bit right shift, load, store, divide, and compare and has
arate mode determining whether instructions are interpreted as 32- or 64-bit operation
64-bit operations will not work in a machine that only supports 32-bit mode. PA-RISC 
expanded to 64-bit addressing and operations in version 2.0. 

• The "prefetch" instruction supplies an address and hint to the implementation about the
Hints include whether the data is likely to be read or written soon, likely to be read or 
ten only once, or likely to be read or written many times. Prefetch does not cause exce
MIPS has a version that adds two registers to get the address for floating-point progra
unlike non-floating-point MIPS programs. (See pages 412–414 in Chapter 5 to learn m
about prefetching.) 

• In the "Endian" row, "Big or Little" means there is a bit in the program status register th
allows the processor to act either as Big Endian or Little Endian (see page 73 in Chap
This can be accomplished by simply complementing some of the least-significant bits 
address in data transfer instructions. 

Name DeÞnition ARMv4 Thumb SuperH M32R MIPS16 

Load immediate Rd<---Imm MOV MOV MOV,  
MOVA

LDI, 
LD24

LI

Support for multiword 
integer add

CarryOut, Rd <--- Rd +Rs1 + 
OldCarryOut

ADCS ADC ADDC ADDX ---1

Support for multiword 
integer sub

CarryOut, Rd <--- Rd -Rs1` + 
OldCarryOut

SBCS SBC SUBC SUBX ---1

Negate Rd <--- 0 - Rs1  NEG2 NEG NEG NEG

Not Rd <--- ~(Rs1) MVN MVN NOT NOT NOT

Move Rd <--- Rs1 MOV MOV MOV MV MOVE

Rotate right Rd <--- Rs i, >>  
Rd0...i-1 <--- Rs31-i...31

ROR ROR ROTR   

And not Rd <--- Rs1 & ~(Rs2) BIC BIC     

Name DeÞnition ARMv4
 

Thumb SuperH M32R MIPS16 

No. control registers Misc. registers 21 29 9 5 36 
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• The "shared-memory synchronization" helps with cache-coherent multiprocessors: Al
loads and stores executed before the instruction must complete before loads and stor
it can start. (See Chapter 9.) 

• The "coprocessor operations" row lists several categories that allow for the processor
extended with special-purpose hardware. 

Figure I.29 Hardware description notation (and some standard C operators).

Notation Meaning Example Meaning 

<-- Data transfer. Length of transfer 
is given by the destination's 
length; the length is specified 
when not clear.

Regs[R1]<--Regs[R2]; Transfer contents of R2 to R1. 
Registers have a fixed length, so
transfers shorter than the 
register size must indicate 
which bits are used.

M Array of memory accessed in 
bytes. The starting address for a 
transfer is indicated as the index 
to the memory array.

Regs[R1]<--M[x]; Place contents of memory 
location x  into R1. If a transfer 
starts at M[i]  and requires 4 
bytes, the transferred bytes are 
M[i] , M[i+1] , M[i+2] , and 
M[i+3] .

<--n Transfer an n-bit field, used 
whenever length of transfer is 
not clear.

M[y]<-- 16M[x]; Transfer 16 bits starting at 
memory location x  to memory 
location y . The length of the 
two sides should match.

Xn Subscript selects a bit. Regs[R1] 0<--0; Change sign bit of R1 to 0. 
(Bits are numbered from MSB 
starting at 0.)

Xm..n Subscript selects a field. Regs[R3] 24..31 <--M[x]; Moves contents of memory 
location x into low-order byte 
of R3.

Xn Superscript replicates a bit 
field.

Regs[R3] 0..23 <--024; Sets high-order three bytes of 
R3 to 0.

## Concatenates two fields. Regs[R3]<--0 24## M[x]; 
F2##F3<-- 64M[x];

Moves contents of location x 
into low byte of R3; clears 
upper three bytes. Moves 64 
bits from memory starting at 
location x ; 1st 32 bits go into 
F2, 2nd 32 into F3.

*, & Dereference a pointer; get the 
address of a variable.

p*<--&x; Assign to object pointed to by 
p, the address of the variable x .

<<, >> C logical shifts (left, right). Regs[R1] << 5 Shift R1 left 5 bits.

==, !=, 
>, <, >=, 
<=

C relational operators; equal, 
not equal, greater, less, greater 
or equal, less or equal.

(Regs[R1]== Regs[R2]) & 
(Regs[R3]!=Regs[R4])

True if contents of R1 equal the 
contents of R2 and contents of 
R3 do not equal the contents of 
R4.

&, |, ^, ! C bitwise logical operations: 
and, or, exclusive or, and 
complement.

(Regs[R1] &  
(Regs[R2]| Regs[R3]))

Bitwise AND of R1 and the 
bitwise OR of R2 and R3. 
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One difference that needs a longer explanation is the optimized branches. Figure I.30 show
options. The Alpha and PowerPC offer branches that take effect immediately, like branches
earlier architectures. To accelerate branches, these machines use branch prediction (see s
6.1). All the rest of the desktop RISCs offer delayed branches (again, see section 6.1). The
ded RISCs generally do not support delayed branch, with the exception of SuperH, which h
an option. 

The other three desktop RISCs provide a version of delayed branch that makes it easier to
delay slot. The SPARC "annulling" branch executes the instruction in the delay slot only if t
branch is taken; otherwise the instruction is annulled. This means the instruction at the targ
the branch can safely be copied into the delay slot since it will only be executed if the bran
taken. The restrictions are that the target is not another branch and that the target is known
pile time. (SPARC also offers a nondelayed jump because an unconditional branch with the
bit set does not execute the following instruction.) Later versions of the MIPS architecture ha
added a branch likely instruction that also annuls the following instruction if the branch is n
taken. PA-RISC allows almost any instruction to annul the next instruction, including branch
Its "nullifying" branch option will execute the next instruction depending on the direction of 
branch and whether it is taken (i.e., if a forward branch is not taken or a backward branch is 
taken). Presumably this choice was made to optimize loops, allowing the instructions follow
the exit branch and the looping branch to execute in the common case. 

Figure I.30 When the instruction following the branch is executed for three types of branches. 

Now that we have covered the similarities, we will focus on the unique features of each arc
ture. We first cover the desktop/server RISCs, ordering them by length of description of the
unique features from shortest to longest, and then the embedded RISCs. 

 (Plain) branch Delayed branch Annulling 
delayed 
branch 

Found in 
architectures

Alpha, PowerPC, ARM, 
Thumb, SuperH, M32R, 
MIPS 16

MIPS V, 
PA-RISC, 
SPARC,  
SuperH

MIPS V, 
SPARC

PA-RISC

Execute following 
instruction

Only if branch not taken Always Only if 
branch taken

If forward branch not taken 
or backward branch taken 
25
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I.7 Instructions Unique to MIPS V
MIPS has gone through five generations of instruction sets, and this evolution has generally
features found in other architectures. Here are the salient unique features of MIPS, the first 
of which were found in the original instruction set. 

Nonaligned Data Transfers

MIPS has special instructions to handle misaligned words in memory. A rare event in most 
grams, it is included for supporting 16-bit minicomputer applications and for doing memcpy and 
strcpy  faster. Although most RISCs trap if you try to load a word or store a word to a misali
address, on all architectures misaligned words can be accessed without traps by using fou
byte instructions and then assembling the result using shifts and logical ors. The MIPS load
store word left and right instructions (LWL, LWR, SWL, SWR) allow this to be done in just two instruc
tions: LWL loads the left portion of the register and LWR loads the right portion of the register. SWL 
and SWR do the corresponding stores. Figure I.31 shows how they work. There are also 64-b
sions of these instructions. 

Figure I.31 MIPS instructions for unaligned word reads. This figure assumes operation in Big Endian mode. Ca
1 first loads the 3 bytes 101, 102, and 103 into the left of R2, leaving the least-significant byte undisturbed. The fol
lowing LWR simply loads byte 104 into the least-significant byte of R2, leaving the other bytes of the register 
unchanged using LWL. Case 2 first loads byte 203 into the most-significant byte of R4, and the following LWR loads 
the other 3 bytes of R4 from memory bytes 204, 205, and 206. LWL reads the word with the first byte from memory
shifts to the left to discard the unneeded byte(s), and changes only those bytes in Rd. The byte(s) transferred are from
the first byte until the lowest-order byte of the word. The following LWR addresses the last byte, right shifts to disca
the unneeded byte(s), and finally changes only those bytes of Rd. The byte(s) transferred are from the last byte up 
the highest-order byte of the word. Store word left (SWL) is simply the inverse of LWL, and store word right (SWR) is 
the inverse of LWR. Changing to Little Endian mode flips which bytes are selected and discarded. (If big-little, 
left-right, load-store seem confusing, don't worry; they work!) 

 

100 101 102 103

104 105 106 107

200 201 202 203

204 205 206 207

Case 1
Before

After

After

M[100] D DA V

M[104]

R2

R2

R2

E

J

D

D

O

A

A

H

V

V

N

N

E

LWL R2, 101:

LWR R2, 104:

Case 2
Before

After

After

M[200]

M[204]

R4

R4

R4

A V E

J

D

D

O

O

A

H

H

V

N

N

E

LWL R4,  203:

LWR R4,  206:
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Remaining Instructions

Below is a list of the remaining unique details of the MIPS architecture: 

• NOR—This logical instruction calculates ~(Rs1 | Rs2). 

• Constant shift amount—Non-variable shifts use the 5-bit constant field shown in the reg
ter-register format in Figure I.5. 

• SYSCALL—This special trap instruction is used to invoke the operating system. 

• Move to/from control registers—CTCi  and CFCi  move between the integer registers and co
trol registers. 

• Jump/call not PC-relative—The 26-bit address of jumps and calls is not added to the PC
is shifted left 2 bits and replaces the lower 28 bits of the PC. This would only make a d
ence if the program were located near a 256-MB boundary. 

• TLB instructions—Translation lookaside buffer (TLB) misses were handled in software 
MIPS I, so the instruction set also had instructions for manipulating the registers of the
(see Chapter 7 for more on TLBs). These registers are considered part of the "system
cessor." Since MIPS I the instructions differ among versions of the architecture, they a
more part of the implementations than part of the instruction set architecture. 

• Reciprocal and reciprocal square root—These instructions, which do not follow IEEE 754
guidelines of proper rounding, are included apparently for applications that value spee
divide and square root more than they value accuracy. 

• Conditional procedure call instructions—BGEZAL saves the return address and branches 
the content of Rs1 is greater than or equal to zero, and BLTZAL does the same for less than 
zero. The purpose of these instructions is to get a PC-relative call. (There are "likely" 
sions of these instructions as well.) 

• Parallel single-precision floating-point operations—As well as extending the architecture 
with parallel integer operations in MDMX, MIPS V also supports two parallel 32-bit floa
ing-point operations on 64-bit registers in a single instruction. "Paired single" operatio
include add (ADD.PS), subtract (SUB.PS), compare (C.__.PS ), convert (CVT.PS.S , 
CVT.S.PL, CVT.S.PU ), negate (NEG.PS), absolute value (ABS.PS), move (MOV.PS, MOVF.PS, 
MOVT.PS), multiply (MUL.PS), multiply-add (MADD.PS), and multiply-subtract (MSUB.PS). 

There is no specific provision in the MIPS architecture for floating-point execution to procee
parallel with integer execution, but the MIPS implementations of floating point allow this to 
pen by checking to see if arithmetic interrupts are possible early in the cycle (see Appendix
Normally, exception detection would force serialization of execution of integer and floating-p
operations. 
27
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I.8 Instructions Unique to Alpha
The Alpha was intended to be an architecture that was easy to build high-performance imp
tations. Toward that goal, the architects orginally made two controversial decisions: imprec
floating-point exceptions and no byte or halfword data transfers. 

To simplify pipelined execution, Alpha does not require that an exception act as if no instuc
past a certain point are executed and that all before that point have been executed. It supp
TRAPB instruction, which stalls until all prior arithmetic instructions are guaranteed to comple
without incurring arithmetic exceptions. In the most conservative mode, placing one TRAPB per 
exception-causing instruction slows execution by roughly five times but provides precise ex
tions (see Darcy and Gay [1996]). 

Code that does not include TRAPB does not the obey IEEE 754 floating-point standard. The rea
is that parts of the standard (NaNs, infinities, and denormal) are implemented in software o
Alpha, as it is on many other microprocessors. To implement these operations in software,
ever, programs must find the offending instruction and operand values, which cannot be don
imprecise interrupts! 

When the architecture was developed, it was believed by the architects that byte loads and
would slow down data transfers. Byte loads require an extra shifter in the data transfer path
byte stores require that the memory system perform a read-modify-write for memory system
with error correction codes since the new ECC value must be recalculated. This omission m
that byte stores require the sequence load word, replace desired byte, and then store word
sistently, floating-point loads go though considerable byte swapping to convert the obtuse V
floating-point formats into a canonical form.) 

To reduce the number of instructions to get the desired data, Alpha includes an elaborate s
byte manipulation instructions: extract field and zero rest of a register (EXTxx), insert field 
(INSxx ), mask rest of a register (MSKxx), zero fields of a register (ZAP), and compare multiple 
bytes (CMPGE). 

Apparently the implementors were not as bothered by load and store byte as were the orig
architects. Beginning with the shrink of the second version of the Alpha chip (21164A), the 
tecture does include loads and stores for bytes and halfwords. 

Remaining Instructions

Below is a list of the remaining unique instructions of the Alpha architecture: 

• PAL code—To provide the operations that the VAX performed in microcode, Alpha provi
a mode that runs with all privileges enabled, interrupts disabled, and virtual memory m
ping turned off for instructions. PAL (Privileged Architecture Library) code is used for T
management, atomic memory operations, and some operating system primitives. PAL
is called via the CALL_PAL instruction. 

• No divide—Integer divide is not supported in hardware. 

• "Unaligned" load/store—LDQ_U and STQ_U load and store 64-bit data using addresses tha
ignore the least significant three bits. Extract instructions then select the desired unali
word using the lower address bits. These instructions are similar to LWL/R,SWL/R in MIPS. 

• Floating point single precision represented as double precision—Single-precision data is 
kept as conventional 32-bit formats in memory but is converted to 64-bit double precis
format in registers. 
28
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• Floating-point register F31 is fixed at zero—To simplify comparisons to zero. 

• VAX floating-point formats—To maintain compatability with the VAX architecture, in add
tion to the IEEE 754 single- and double-precision formats called S and T, Alpha suppor
VAX single- and double-precision formats called F and G, but not VAX format D. (D ha
too narrow an exponent field to be useful for double precision and was replaced by G
VAX code.) 

• Bit count instructions—Version 3 of the architecture added instructions to count the num
of leading zeros (CTLZ), count the number of trailing zeros (CTTZ), and count the number of
ones in a word (CTPOP). Originally found on Cray computers, these instructions help with
decryption. 

I.9 Instructions Unique to SPARC v.9
Several features are unique to SPARC. 

Register Windows

The primary unique feature of SPARC is register windows, an optimization for reducing reg
traffic on procedure calls. Several banks of registers are used, with a new one allocated on
procedure call. Although this could limit the depth of procedure calls, the limitation is avoide
operating the banks as a circular buffer, providing unlimited depth. The knee of the cost-pe
mance curve seems to be six to eight banks. 

SPARC can have between 2 and 32 windows, typically using eight registers each for the gl
locals, incoming parameters, and outgoing parameters. (Given that each window has 16 un
registers, an implementation of SPARC can have as few as 40 physical registers and as m
520, although most have 128 to 136, so far.) Rather than tie window changes with call and
instructions, SPARC has the separate instructions SAVE and RESTORE. SAVE is used to "save" the 
caller's window by pointing to the next window of registers in addition to performing an add
instruction. The trick is that the source registers are from the caller's window of the addition
ation, while the destination register is in the callee's window. SPARC compilers typically us
instruction for changing the stack pointer to allocate local variables in a new stack frame. RESTORE 
is the inverse of SAVE, bringing back the caller's window while acting as an add instruction, w
the source registers from the callee's window and the destination register in the caller's win
This automatically deallocates the stack frame. Compilers can also make use of it for gene
the callee's final return value. 

The danger of register windows is that the larger number of registers could slow down the c
rate. This was not the case for early implementations. The SPARC architecture (with regist
dows) and the MIPS R2000 architecture (without) have been built in several technologies s
1987. For several generations the SPARC clock rate has not been slower than the MIPS clo
for implementations in similar technologies, probably because cache-access times dominat
ter-access times in these implementations. The current generation machines took different
mentation strategies—in-order vs. out-of-order—and it's unlikely that the number of registe
themselves determined the clock rate in either machine. 

Another data transfer feature is alternate space option for loads and stores. This simply allo
memory system to identify memory accesses to input/output devices, or to control registers
devices such as the cache and memory-management unit. 
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Fast Traps

Version 9 SPARC includes support to make traps fast. It expands the single level of traps to
least four levels, allowing the window overflow and underflow trap handlers to be interrupted
extra levels mean the handler does not need to check for page faults or misaligned stack p
explicitly in the code, thereby making the handler faster. Two new instructions were added 
return from this multilevel handler: RETRY (which retries the interrupted instruction) and DONE 
(which does not). To support user-level traps, the instruction RETURN will return from the trap in 
nonprivileged mode. 

Support for Lisp and Smalltalk

The primary remaining arithmetic feature is tagged addition and subtraction. The designers
SPARC spent some time thinking about languages like LISP and Smalltalk, and this influen
some of the features of SPARC already discussed: register windows, conditional trap instru
calls with 32-bit instruction addresses, and multiword arithmetic (see Taylor et al. [1986] an
Ungar et al. [1984]). A small amount of support is offered for tagged data types with operat
for addition, subtraction, and hence comparison. The two least-significant bits indicate whe
the operand is an integer (coded as 00), so TADDcc and TSUBcc set the overflow bit if either oper-
and is not tagged as an integer or if the result is too large. A subsequent conditional branch
instruction can decide what to do. (If the operands are not integers, software recovers the o
ands, checks the types of the operands, and invokes the correct operation based on those 
turns out that the misaligned memory access trap can also be put to use for tagged data, s
loading from a pointer with the wrong tag can be an invalid access. Figure I.32 shows both
of tag support. 

Figure I.32 SPARC uses the two least-signiÞcant bits to encode different data types for the tagged arithmetic 
instructions. (a) Integer arithmetic, which takes a single cycle as long as the operands and the result are integ
The misaligned trap can be used to catch invalid memory accesses, such as trying to use an integer as a poi
languages with paired data like LISP, an offset of –3 can be used to access the even word of a pair (CAR) an
be used for the odd word of a pair (CDR). 

 

(a) Add, sub, or
compare integers
(coded as 00)

(b) Loading via
valid pointer
(coded as 11)

00 (R5)

00 (R6)

00 (R7)

11

3

(R4)

00 (Word
address)

TADDcc r7, r5, r6

LD rD, r4, -3

+
–

–
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Overlapped Integer and Floating-Point Operations

SPARC allows floating-point instructions to overlap execution with integer instructions. To 
recover from an interrupt during such a situation, SPARC has a queue of pending floating-p
instructions and their addresses. RDPR allows the processor to empty the queue. The second fl
ing-point feature is the inclusion of floating-point square root instructions FSQRTS, FSQRTD, and 
FSQRTQ. 

Remaining Instructions

The remaining unique features of SPARC are as follows: 

• JMPL uses Rd to specify the return address register, so specifying r31  makes it similar to 
JALR in MIPS and specifying r0  makes it like JR. 

• LDSTUB loads the value of the byte into Rd and then stores FF16 into the addressed byte. This
version 8 instruction can be used to implement a semaphore (see Chapter 9). 

• CASA (CASXA) atomically compares a value in a processor register to 32-bit (64-bit) va
in memory; if and only if they are equal, it swaps the value in memory with the value in
second processor register. This version 9 instruction can be used to construct wait-fre
chronization algorithms that do not require the use of locks. 

• XNOR calculates the exclusive OR with the complement of the second operand. 

• BPcc, BPr , and FBPcc include a branch prediction bit so that the compiler can give hints
the machine about whether a branch is likely to be taken or not. 

• ILLTRAP  causes an illegal instruction trap. Muchnick [1988] explains how this is used f
proper execution of aggregate returning procedures in C. 

• POPC counts the number of bits set to one in an operand, also found in the third versio
the Alpha architecture. 

• Non-faulting loads allow compilers to move load instructions ahead of conditional contr
structures that control their use. Hence, non-faulting loads will be executed speculativ

• Quadruple precision floating-point arithmetic and data transfer allow the floating-point 
registers to act as eight 128-bit registers for floating-point operations and data transfe

• Multiple-precision floating-point results for multiply mean that two single-precision oper-
ands can result in a double-precision product and two double-precision operands can
in a quadruple-precision product. These instructions can be useful in complex arithmet
some models of floating-point calculations. 
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I.10 Instructions Unique to PowerPC
PowerPC is the result of several generations of IBM commercial RISC machines—IBM RT
IBM Power-1, and IBM Power-2—plus the Motorola 88x00. 

Branch Registers: Link and Counter

Rather than dedicate one of the 32 general-purpose registers to save the return address o
dure call, PowerPC puts the address into a special register called the link register. Since many pro-
cedures will return without calling another procedure, link doesn't always have to be saved
Making the return address a special register makes the return jump faster since the hardwa
not go through the register read pipeline stage for return jumps. 

In a similar vein, PowerPC has a count register to be used in for loops where the program iterat
for a fixed number of times. By using a special register the branch hardware can determine
quickly whether a branch based on the count register is likely to branch, since the value of t
ister is known early in the execution cycle. Tests of the value of the count register in a bran
instruction will automatically decrement the count register. 

Given that the count register and link register are already located with the hardware that co
branches, and that one of the problems in branch prediction is getting the target address e
the pipeline (see Chapter 6), the PowerPC architects decided to make a second use of the
ters. Either register can hold a target address of a conditional branch. Thus PowerPC supp
its basic conditional branch with two instructions that get the target address from these reg
(BCLR, BCCTR). 

Remaining Instructions

Unlike most other RISC machines, register 0 is not hardwired to the value 0. It cannot be u
a base register—that is, it generates a 0 in this case—but in base+index addressing it can 
as the index. The other unique features of the PowerPC are as follows: 

• Load multiple and store multiple save or restore up to 32 registers in a single instruction

• LSW and STSW permit fetching and storing of fixed and variable-length strings that have 
trary alignment. 

• Rotate with mask instructions support bit field extraction and insertion. One version rota
the data and then performs logical AND with a mask of ones, thereby extracting a field. Th
other version rotates the data but only places the bits into the destination register wher
is a corresponding 1 bit in the mask, thereby inserting a field. 

• Algebraic right shift sets the carry bit (CA) if the operand is negative and any one bits are
shifted out. Thus a signed divide by any constant power of two that rounds toward zer
be accomplished with a SRAWI followed by ADDZE, which adds CA to the register. 

• CBTLZ will count leading zeros. 

• SUBFIC computes (immediate – RA), which can be used to develop a one's or two's c
plement. 

• Logical shifted immediate instructions shift the 16-bit immediate to the left 16 bits before
performing AND, OR, or XOR. 
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I.11 Instructions Unique to PA-RISC 2.0
PA-RISC was expanded slightly in 1990 with version 1.1 and changed significantly in 2.0 w
64-bit extensions in 1996. PA-RISC perhaps has the most unusual features of any desktop
machine. For example, it has the most addressing modes, instruction formats, and, as we s
several instructions that are really the combination of two simpler instructions. 

NulliÞcation

As shown in Figure I.30, several RISC machines can choose to not execute the instruction 
ing a delayed branch in order to improve utilization of the branch slot. This is called nullification 
in PA-RISC, and it has been generalized to apply to any arithmetic-logical instruction as wel
all branches. Thus an add instruction can add two operands, store the sum, and cause the
ing instruction to be skipped if the sum is zero. Like conditional move instructions, nullificat
allows PA-RISC to avoid branches in cases where there is just one instruction in the then p
an if statement. 

A Cornucopia of Conditional Branches

Given nullification, PA-RISC did not need to have separate conditional branch instructions.
inventors could have recommended that nullifying instructions precede unconditional branc
thereby simplifying the instruction set. Instead, PA-RISC has the largest number of conditio
branches of any RISC machine. Figure I.33 shows the conditional branches of PA-RISC. A
can see, several are really combinations of two instructions. 

Figure I.33 The PA-RISC conditional branch instructions. The 12-bit offset is called offset12  in this table, and 
the 5-bit immediate is called imm5.  The 16 conditions are =, <, <=, odd, signed overflow, unsigned no overflow, 
or no overflow unsigned, never, and their respective complements. The BB instruction selects one of the 32 bits of th
register and branches depending if its value is 0 or 1. The BVB selects the bit to branch using the shift amount regist
a special-purpose register. The subscript notation specifies a bit field. 

Name Instruction Notation 

COMB Compare and branch if (cond(Rs1,Rs2)) { PC <--- PC + offset12}

COMIB Compare imm. and branch if (cond(imm5,Rs2)) {PC <--- PC + offset12}

MOVB Move and branch Rs2 <--- Rs1,  
if (cond(Rs1,0))

{PC <--- PC + offset12}

MOVIB Move immediate and branch Rs2 <--- imm5,  
if (cond(imm5,0))

{PC <--- PC + offset12}

ADDB Add and branch Rs2 <--- Rs1 + Rs2,  
if (cond(Rs1 + Rs2,0))

{PC <--- PC + offset12}

ADDIB Add imm. and branch Rs2 <--- imm5 + Rs2,  
if (cond(imm5 + Rs2,0))

{PC <--- PC + offset12}

BB Branch on bit if (cond(Rsp,0) {PC <--- PC + offset12}

BVB Branch on variable bit if (cond(Rssar,0) {PC <--- PC + offset12}  
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Synthesized Multiply and Divide

PA-RISC provides several primitives so that multiply and divide can be synthesized in softw
Instructions that shift one operand 1, 2, or 3 bits and then add, trapping or not on overflow,
useful in multiplies. (Alpha also includes instructions that multiply the second operand of ad
and subtracts by 4 or by 8: S4ADD,S8ADD, S4SUB,and S8SUB.) Divide step performs the critical 
step of nonrestoring divide, adding or subtracting depending on the sign of the prior result.
Magenheimer et al. [1988] measured the size of operands in multiplies and divides to show
well the multiply step would work. Using these data for C programs, Muchnick [1988] found
by making special cases the average multiply by a constant takes 6 clock cycles and multip
variables takes 24 clock cycles. PA-RISC has 10 instructions for these operations. 

The original SPARC architecture used similar optimizations, but with increasing number of 
sistors the instruction set was expanded to include full multiply and divide operations. PA-R
gives some support along these lines by putting a full 32-bit integer multiply in the floating-p
unit; however, the integer data must first be moved to floating-point registers. 

Decimal Operations

COBOL programs will compute on decimal values, stored as 4 bits per digit, rather than co
ing back and forth between binary and decimal. PA-RISC has instructions that will convert 
sum from a normal 32-bit add into proper decimal digits. It also provides logical and arithm
operations that set the condition codes to test for carries of digit, bytes, or halfwords. Thes
ations also test whether bytes or halfwords are zero. These operations would be useful in a
metic on 8-bit ASCII characters. Five PA-RISC instructions provide decimal support. 

Remaining Instructions

Here are some remaining PA-RISC instructions: 

• Branch vectored shifts an index register left 3 bits, adds it to a base register, and then 
branches to the calculated address. It is used for case statements. 

• Extract and deposit instructions allow arbitrary bit fields to be selected from or inserted i
registers. Variations include whether the extracted field is sign-extended, whether the 
field is specified directly in the instruction or indirectly in another register, and whether
rest of the register is set to zero or left unchanged. PA-RISC has 12 such instructions

• To simplify use of 32-bit address constants, PA-RISC includes ADDIL, which adds a 
left-adjusted 21-bit constant to a register and places the result in register 1. The follow
data transfer instruction uses offset addressing to add the lower 11 bits of the address
ister 1. This pair of instructions allows PA-RISC to add a 32-bit constant to a base regis
the cost of changing register 1. 

• PA-RISC has nine debug instructions that can set breakpoints on instruction or data 
addresses and return the trapped addresses. 

• Load and clear instructions provide a semaphore or lock that reads a value from memo
and then writes zero. 

• Store bytes short optimizes unaligned data moves, moving either the leftmost or the righ
most bytes in a word to the effective address, depending on the instruction options an
dition code bits. 
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• Loads and stores work well with caches by having options that give hints about wheth
load data into the cache if it's not already in the cache. For example, load with a desti
of register 0 is defined to be software-controlled cache prefetch. 

• PA-RISC 2.0 extended cache hints to stores to indicate block copies, recommending t
processor not load data into the cache if it's not already in the cache. It also can sugg
on loads and stores, there is spatial locality to prepare the cache for subsequent sequ
accesses. 

• PA-RISC 2.0 also provides an optional branch target stack to predicting indirect jumps
on subroutine returns. Software can suggest which addresses get placed on and rem
from the branch target stack, but hardware controls whether or not these are valid. 

• Multiply/add and multiply/subtract are floating-point operations that can launch two inde
pendent floating-point operations in a single instruction in addition to the fused multiply
and fused multiply/negate/add introduced in version 2.0 of PA-RISC. 

I.12 Instructions Unique to ARM
It's hard to pick the most unusual feature of ARM, but perhaps it is conditional execution of
instructions. Every instruction starts with a 4-bit field that determines whether it will act as a
or as a real instruction, depending on the condition codes. Hence conditional branches are
erly considered as conditionally executing the unconditional branch instruction. Conditiona
cution allows avoiding a branch to jump over a single instruction. It takes less code space an
to simply conditionally execute one instruction. 

The 12-bit immediate field has a novel interpretation. The 8 least-significant bits are 
zero-extended to a 32-bit value, then rotated right the number of bits specified in the first 4 
the field multiplied by 2. Whether this split actually catches more immediates than a simple 
field would be an interesting study. One advantange is that this scheme can represent all po
2 in a 32-bit word. 

Operand shifting is not limited to immediates. The second register of all arithmetic and logi
processing operations has the option of being shifted before being operated on. The shift o
are shift left logical, shift right logical, shift right arithmetic, and rotate right. Once again, it wo
be interesting to see how often operations like rotate-and-add, shift-right-and-test, ..., occu
ARM programs. 

Remaining Instructions

Below is a list of the remaining unique instructions of the ARM architecture: 

• Block loads and stores—Under control of a 16-bit mask within the instructions, any of th
16 registers can be loaded or stored into memory in a single instruction. These instruc
can save and restore registers on procedure entry and return. These instructions can 
used for block memory copy—offering up to four times the bandwidth of a single regis
load-store—and today block copies are the most important use. 

• Reverse subtract—RSB allows first register to be subtracted from the immediate or shift
register. RSC does the same thing, but includes the carry when calculating the differe

• Long multiplies—Similar to MIPS, Hi and Lo registers get the 64-bit signed product 
(SMULL) or the 64-bit unsigned product (UMULL). 
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• No divide—Like the Alpha, integer divide is not supported in hardware. 

• Conditional trap—A common extension to the MIPS core found the desktop RISCs (Fig
I.22 through I.25), it comes for free in the conditional execution of all ARM instructions
including SWI. 

• Coprocessor interface—Like many of the desktop RISCs, ARM defines a full set of copr
cessor instructions: data transfer, moves between general-purpose and coprocessor r
and coprocessor operations. 

• Floating-point architecture—Using the coprocessor interface, a floating-point architectu
has been defined for ARM. It was implemented as the FPA10 coprocessor. 

• Branch and exchange instruction sets—The BX instruction is the transition between ARM
and Thumb, using the lower 31 bits of the register to set the PC and the most significa
to determine if the mode is ARM (1) or Thumb(0). 

I.13 Instructions Unique to Thumb
In the ARM version 4 model, frequently executed procedures will use ARM instructions to g
maximum performance, with the less frequently executed ones using Thumb to reduce the 
code size of the program. Since typically only a few procedures dominate execution time, t
hope is that this hybrid gets the best of both worlds. 

Although Thumb instructions are translated by the hardware into conventional ARM instruc
for execution, there are several restrictions. First, conditional execution is dropped from alm
instructions. Second, only the first 8 registers are easily available in all instructions, with the
pointer, link register, and program counter used implicitly in some instructions. Third, Thum
uses a two-operand format to save space. Fourth, the unique shifted immediates and shifte
ond operands have disappeared and are replaced by separate shift instructions. Fifth, the 
ing modes are simplified. Finally, putting all instructions into 16 bits forces many more 
instruction formats. 

In many ways the simplified Thumb architecture is more conventional than ARM. 

Here are additional changes made from ARM in going to Thumb: 

• Drop of immediate logical instructions—Logical immediates are gone. 

• Condition codes implicit—Rather than have condition codes set optionally, they are defi
by the opcode. All ALU instructions and none of the data transfers set the condition co

• Hi/Lo register access—The 16 ARM registers are halved into Lo registers and Hi registe
with the 8 Hi registers including the stack pointer (SP), link register, and PC. The Lo re
ters are available in all ALU operations. Variations of ADD, BX, CMP, and MOV also work with 
all combinations of Lo and Hi registers. SP and PC registers are also available in varia
of data transfers and add immediates. Any other operations on the Hi registers require
MOV to put the value into a Lo register, perform the operation there, and then transfer th
back to the Hi register. 
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• Branch/call distance—Since instructions are 16 bits wide, the 8-bit conditional branch 
address is shifted by 1 instead of by 2. Branch with link is specified in two instructions
catenating 11 bits from each instruction and shifting it left to form a 23-bit address to l
into PC. 

• Distance for data transfer offsets—The offset is now 5 bits for the general-purpose regist
and 8 bits for SP and PC. 

I.14 Instructions Unique to SuperH
Register 0 plays a special role in SuperH address modes. It can be added to another regis
form an address in indirect indexed addressing and PC-relative addressing. R0 is used to lo
stants to give a larger addressing range than can easily be fit into the 16-bit instructions of 
SuperH. R0 is also the only register that can be an operand for immediate versions of AND,
OR, and XOR. 

Below is a list of the remaining unique details of the SuperH architecture: 

• Decrement and test—DT decrements a register and sets the T-bit to 1 if the result is 0. 

• Optional delayed branch—Although the other embedded RISC machines generally do n
use delayed branches (see Chapter 6), SuperH offers optional delayed branch execu
BT and BF. 

• Many multiplies—Depending if the operation is signed or unsigned, if the operands are
bits or 32 bits, or if the product is 32 bits or 64 bits, the proper multiply instruction is MULS, 
MULU, DMULS, DMULU, or MUL. The product is found in the MACL and MACH registers. 

• Zero and sign extension—Byte or halfwords are either zero-extended (EXTU) or 
sign-extended (EXTS) within a 32-bit register. 

• One bit shift amounts—Perhaps in an attempt to make them fit within the 16-bit instructio
shift instructions only shift a single bit at a time. 

• Dynamic shift amount—These variable shifts test the sign of the amount in a register to
determine whether they shift left (positive) or shift right (negative). Both logical (SHLD) and 
arithmetic (SHAD) instructions are supported. These instructions help offset the 1-bit con
shift amounts of standard shifts. 

• Rotate—SuperH offers rotations by 1 bit left (ROTL) and right (ROTR), which set the T bit 
with the value rotated, and also have variations that include the T bit in the rotations (ROTCL 
and ROTCR). 

• SWAP—This instruction either swaps the high and low bytes of a 32-bit word or the two
bytes of the rightmost 16 bits. 

• Extract word (XTRCT)—The middle 32 bits from a pair of 32-bit registers are placed in 
another register. 

• Negate with carry—Like SUBC (Figure I.27), except the first operand is 0. 

• Cache prefetch—Like many of the desktop RISCs (Figures I.22 through I.25), SuperH h
an instruction (PREF) to prefetch data into the cache. 

• Test and set—SuperH uses the older test and set (TAS) instruction to perform atomic locks or
semaphores (see Chapter 9). TAS first loads a byte from memory. It then sets the T bit to 1
the byte is 0 or to 0 if the byte is not 0. Finally, it sets the most significant bit of the byte
and writes the result back to memory. 
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I.15 Instructions Unique to M32R
The most unusual feature of the M32R is a slight VLIW approach to the pairs of 16-bit instr
tions. A bit is reserved in the first instruction of the pair to say whether this instruction can b
cuted in parallel with the next instruction—that is, the two instructions are independent—or
these two must be executed sequentially. (An earlier machine that offered a similar option w
Intel i860.) This feature is included for future implementations of the architecture. 

One surprise is that all branch displacements are shifted left 2 bits before being added to th
and the lower two bits of the PC are set to 0. Since some instructions are only 16 bits long,
shift means that a branch cannot go to any instruction in the program: it can only branch to
instructions on word boundaries. A similar restriction is placed on the return address for the
branch-and-link and jump-and-link instructions: they can only return to a word boundary. Th
for a slightly larger branch distance, software must ensure that all branch addresses and a
addresses are aligned to a word boundary. The M32R code space is probably slightly large
probably executes more NOP instructions than it would if the branch address were only sh
left 1 bit. 

However, the VLIW feature above means that a NOP can execute in parallel with another 1
instruction, so that the padding doesn't take more clock cycles. The code size expansion d
on the ability of the compiler to schedule code and to pair successive 16-bit instructions; M
ishi claims that code size overall is only 7% larger than that for the Motorola 680x0 architec

Below is the remaining unique detail of the M32R architecture: 

• Remainder—The result is the remainder of the divide operation rather than the quotien

I.16 Instructions Unique to MIPS16
MIPS16 is not really a separate instruction set but a 16-bit extension of the full 32-bit MIPS 
tecture. It is compatible with any of the 32-bit address MIPS architectures (MIPS I, MIPS II
64-bit architectures (MIPS III, IV, V). The ISA mode bit determines the width of instructions
means 32-bit-wide instructions and 1 means 16-bit-wide instructions. The new JALX instruction 
toggles the ISA mode bit to switch to the other ISA. JR and JALR have been redefined to set the
ISA mode bit from the most significant bit of the register containing the branch address, an
bit is not considered part of the address. All jump and link instructions save the current mod
as the most significant bit of the return address. 

Hence MIPS supports whole procedures containing either 16-bit or 32-bit instructions, but i
not support mixing the two lengths together in a single procedure. The one exception is theJAL 
and JALX: these two instructions need 32 bits even in the 16-bit mode, presumably to get a 
enough address to branch to far procedures. 

In picking this subset, MIPS decided to include opcodes for some three-operand instruction
to keep 16 opcodes for 64-bit operations. The combination of this many opcodes and opera
16 bits led the architects to provide only 8 easy-to-use registers—just like Thumb—wherea
other embedded RISCs offer about 16 registers. Since the hardware must include the full 3
ters of the 32-bit ISA mode, MIPS16 includes move instructions to copy values between th
MIPS16 registers and the remaining 24 registers of the full MIPS architecture. To reduce pr
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on the 8 visible registers, the stack pointer is considered a separate register. MIPS16 inclu
variety of separate opcodes to do data transfers using sp as a base register and to increme
LWSP, LDSP, SWSP, SDSP, ADJSP, DADJSP, ADDIUSPD,  and DADDIUSP. 

To fit within the 16-bit limit, immediate fields have generally been shortened to 5 to 8 bits. 
MIPS16 provides a way to extend its shorter immediates into the full width of immediates in
32-bit mode. Borrowing a trick from the Intel 8086, the EXTEND instruction is really a 16-bit prefix 
than can be prepended to any MIPS16 instruction with an address or immediate field. The 
supplies enough bits to turn the 5-bit fields of data transfers and 5- to 8-bit fields of arithme
immediates into 16-bit constants. Alas, there are two exceptions. ADDIU and DADDIU start with 
4-bit immediate fields, but since EXTEND can only supply 11 more bits, the wider immediate is 
limited to 15 bits. EXTEND also extends the 3-bit shift fields into 5-bit fields for shifts. (In case y
were wondering, the EXTEND prefix does not need to start on a 32-bit boundary.) 

To further address the supply of constants, MIPS16 added a new addressing mode! PC-re
addressing for load word (LWPC) and load double (LDPC) shifts an 8-bit immediate field by 2 or 3
bits, respectively, adding it to the PC with the lower 2 or 3 bits cleared. The constant word o
bleword is then loaded into a regsiter. Thus 32-bit or 64-bit constants can be included with 
MIPS16 code, despite the loss of LIU  to set the upper register bits. Given the new addressing 
mode, there is also an instruction (ADDIUPC) to calculate a PC-relative address and place it in a
register. 

MIPS16 differs from the other embedded RISCs in that it can subset a 64-bit address archit
As a result it has 16-bit instruction-length versions of 64-bit data operations: data transfer (LD, 

SD, LWU), arithmetic operations (DADDU/IU, DSUBU,  DMULT/U, DDIV/U ), and shifts (DSLL/V, 

DSRA/V, DSRL/V ). 

Since MIPS plays such a prominent role in this book, we show all the additional changes m
from the MIPS core instructions in going to MIPS16: 

• Drop of signed arithmetic instructions—arithmetic instructions that can trap were droppe
to save opcode space: ADD,ADDI,SUB,DADD,DADDI,DSUB . 

• Drop of immediate logical instructions—Logical immediates are gone too: ANDI,ORI,XORI . 

• Branch instructions pared down—Comparing two registers and then branching did not fit
nor did all the other comparisons of a register to zero. Hence these instructions didn't
it either: BEQ, BNE, BGEZ, BGTZ, BLEZ,  and  BLTZ. As mentioned in section I.3, to help com
pensate MIPS16 includes compare instructions to test if two registers are equal. Since
pare and set-on-less-than set the new T register, branches were added to test the T r

• Branch distance—Since instructions are 16 bits wide, the branch address is shifted by o
instead of by two. 

• Delayed branches disappear—The branches take effect before the next instruction. Jum
still have a one-slot delay. 

• Extension and distance for data transfer offsets—The 5-bit and 8-bit fields are 
zero-extended instead of sign-extended in 32-bit mode. To get greater range, the imm
fields are shifted left 1, 2, or 3 bits depending if the data is halfword, word, or doublewo
the EXTEND prefix is prepended to these instructions, they use the conventional signed 
immediate of 32-bit mode. 
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• Extension of arithmetic immediates—The 5-bit and 8-bit fields are zero-extended for 
set-on-less-than and compare instructions, for forming a PC-relative address, and for a
to SP and placing the result in a register (ADDIUSP,DADDIUSP). Once again, if the EXTEND 

prefix is prepended to these instructions, they use the conventional signed 16-bit imm
of 32-bit mode. They are still sign-extended for general adds and for adding to SP and
ing the result back in SP (ADJSP,DADJSP). Alas, code density and orthogonality are strang
bedfellows in MIPS16! 

• Redefining shift amount of 0—MIPS16 defines the value 0 in the 3-bit shift field to mean 
shift of 8 bits. 

• New instructions added due to loss of register 0 as zero—Load immediate, negate, and not
were added, since these operations could no longer be synthesized from other instruc
using r0 as a source. 

I.17 Concluding Remarks
This Web extension covers the addressing modes, instruction formats, and all instructions 
in 10 recent RISC architectures. Although the later sections concentrate on the differences
would not be possible to cover 10 architectures in these few pages if there were not so man
larities. In fact, we would guess that more than 90% of the instructions executed for any of 
architectures would be found in Figures I.9 through I.17. To contrast this homogeneity, Figu
I.34 gives a summary for four architectures from the 1970s in a format similar to that shown
Figure I.1. (Imagine trying to write a single chapter in this style for those architectures!) In t
history of computing, there has never been such widespread agreement on computer archi

Figure I.34 Summary of four 1970s architectures. Unlike the architectures in Figure I.1, there is little agreemen
between these architectures in any category. (See Chapter 3 for more details on the 80x86 and Web Extensio
description of the VAX.) 

 IBM 360/370 Intel 8086 Motorola 68000 DEC VAX 

Date announced 1964/1970 1978 1980 1977

Instruction size(s) (bits) 16,32,48 8,16,24,32,40,48 16,32,48,64,80 8,16,24,32,..., 

Addressing (size, model) 24 bits, flat/  
31 bits, flat

4+16 bits,  
segmented

24 bits, flat 32 bits, flat

Data aligned? Yes 360/ No 
370

No 16-bit aligned No

Data addressing modes 2/3 5 9 = 14

Protection Page None Optional Page

Page size 2 KB & 4 KB --- 0.25 to 32 KB 0.5 KB

I/O Opcode Opcode Memory mapped Memory mapped

Integer registers (size,  
model, number)

16 GPR x 32 
bits

8 dedicated  
data x 16 bits

8 data & 8 address  
x 32 bits

15 GPR x 32 bits

Separate floating-point registers 4 x 64 bits Optional:  
8 x 80 bits

Optional:  
8 x 80 bits

0

Floating-point format IBM (floating  
hexadecimal)

IEEE 754 single,  
double, extended

IEEE 754 single,  
double, extended

DEC 
40
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This style of architectures cannot remain static, however. Like people, instruction sets tend
bigger as they get older. Figure I.35 shows the genealogy of these instruction sets, and Figu
shows which features were added to or deleted from generations of desktop RISCs over tim

As you can see, all the desktop RISC machines have evolved to 64-bit address architectur
they have done so fairly painlessly. The only remaining major desktop 32-bit address archit
is the Intel 80x86, which is to be succeeded by the Intel/HP IA-64 in about 1999. 

Whether IA-64 is similar to the 80x86, similar to desktop RISCs, or the beginning of a new 
branch of computer architecture will be known in just a moment on the architecture timeline
IA-64 proves successful, then microprocessor architectures of the 1970s will finally step int
tory rather than shape the cost and performance of modern desktop computing.   

Figure I.35 The lineage of RISC instruction sets. Commercial machines are shown in plain text and research 
machines in bold. The CDC-6600 and Cray-1 were load-store machines with register 0 fixed at 0, and separat
and floating-point registers. Instructions could not cross word boundaries. An early IBM research machine led
801 and America research projects, with the 801 leading to the unsuccessful RT/PC and America leading to t
cessful Power architecture. Some people who worked on the 801 later joined Hewlett Packard to work on the
PA-RISC. The two university projects were the basis of MIPS and SPARC machines. According to Furber [199
Berkeley RISC project was the inspiration of the ARM architecture. While ARM1, ARM2, and ARM3 were nam
both architectures and chips, ARM version 4 is the name of the architecture used in ARM7, ARM8, and Stron
chips. (There are no ARMv4 and ARM5 chips, but ARM6 and early ARM7 chips use the ARM3 architecture.) 
built a RISC microprocessor in 1988 but did not introduce it. Instead, DEC shipped workstations using MIPS 
processors for three years before they brought out their own RISC instruction set, Alpha 21064, which is very
to MIPS III and PRISM. The Alpha architecture has had small extensions but they have not been formalized w
sion numbers; we used the version 3 because that is the version of the reference manual. The Alpha 21164A
added byte and halfword loads and stores, and the Alpha 21264 includes the MAX multimedia and bit count 
tions. Internally, Digital names chips after the fabrication technology: EV4 (21064), EV45 (21064A), EV5 (211
EV56 (21164A), and EV6 (21264). "EV" stands for "extended VAX." 
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Figure I.36 Features added to desktop RISC machines. X means in the original machine, + means added later,
means continued from prior machine, and — means removed from architecture. Alpha is not included, but it a
byte and word loads and stores, and bit count and multimedia extensions, in version 3. MIPS V added the MD
instructions and paired single floating-point operations. 
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